首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimizing photodynamic therapy involves attempting to increase both the absolute tumour content of photosensitizer and the selectivity between tumour and surrounding normal tissue. One reason why photodynamic therapy has not been considered suitable for treatment of metastatic tumours in the liver, is the poor selectivity of conventional photosensitizers for tumour compared to normal liver. This report details an alternative approach to increasing this selectivity by the use of antibody-targeted photosensitizers (or photoimmunoconjugates) to target intrahepatic tumours caused by human colorectal cancer cells in the nude mouse, and explores the role of molecular charge on the tumour-targeting efficiency of macromolecules. The murine monoclonal antibody 17.1A (which recognizes an antigen expressed on HT 29 cells) was used to prepare site-specific photoimmunoconjugates with the photosensitizer chlorine6. The conjugates had either a predominant cationic or anionic charge and were injected i.v. into tumour-bearing mice. Biodistribution 3 or 24 h later was measured by extraction of tissue samples and quantitation of chlorine6 content by fluorescence spectroscopy. The photoimmunoconjugates were compared to the polylysine conjugates in an attempt to define the effect of molecular charge as well as antibody targeting. The anionic 17.1A conjugate delivered more than twice as much photosensitizer to the tumour at 3 h than other species (5 times more than the cationic 17. 1A conjugate) and had a tumour:normal liver ratio of 2.5. Tumour-to-liver ratios were greater than one for most compounds at 3 h but declined at 24 h. Tumour-to-skin ratios were high (> 38) for all conjugates but not for free chlorine6. Cationic species had a high uptake in the lungs compared to anionic species. The photoimmunoconjugates show an advantage over literature reports of other photosensitizers, which can result in tumour:normal liver ratios of less than 1.  相似文献   

2.
Molecular charge is one of the main determinants of transvascular transport. There are, however, no data available on the effect of molecular charge on microvascular permeability of macromolecules in solid tumours. To this end, we measured tumour microvascular permeability to different proteins having similar size but different charge. Measurements were performed in the human colon adenocarcinoma LS174T transplanted in transparent dorsal skinfold chambers in severe combined immunodeficient (SCID) mice. Bovine serum albumin (BSA) and IgG were fluorescently labelled and were either cationized by conjugation with hexamethylenediamine or anionized by succinylation. The molecules were injected i.v. and the fluorescence in tumour tissue was quantified by intravital fluorescence microscopy. The fluorescence intensity and pharmacokinetic data were used to calculate the microvascular permeability. We found that tumour vascular permeability of cationized BSA (pI-range: 8.6-9.1) and IgG (pI: 8.6-9.3) was more than two-fold higher (4.25 and 4.65x10(-7) cm s(-1)) than that of the anionized BSA (pI approximately 2.0) and IgG (pI: 3.0-3.9; 1.11 and 1.93x10(-7) cm s(-1), respectively). Our results indicate that positively charged molecules extravasate faster in solid tumours compared to the similar-sized compounds with neutral or negative charges. However, the plasma clearance of cationic molecules was approximately 2x faster than that of anionic ones, indicating that the modification of proteins enhances drug delivery to normal organs as well. Therefore, caution should be exercised when such a strategy is used to improve drug and gene delivery to solid tumours.  相似文献   

3.
5-aminolevulinic acid mediated changes in tissue specific fluorescence were studied in bladder cancer. Bladders of normal patients and also patients diagnosed with cancer were instilled with 5-aminolevulinic acid and the resultant protoporphyrin IX mediated fluorescence intensity was imaged and quantified with confocal laser microscopy and fluorescence image analysis. Urothelial tumour cells were observed to fluoresce more intensely than normal urothelial cells. Submucosa and muscle tissues exhibited minimal fluorescence compared to urothelial cells of malignant origin and also normal urothelial cells. Degree of fluorescence intensity was in the order of malignant urothelium > normal urothelium > normal submucosa > normal muscles. Fluorescence intensity was also found to increase with duration of ALA instillation. Grade 3 malignant cells produced more fluorescence compared to grade 2 and grade 1. Similarly, T1 transitional cell carcinoma (TCC) showed increased fluorescence intensity than that of Ta TCC. Also, tumour blood vessels fluoresced more intensely compared to blood vessels found in normal bladder tissue. Tissue specific ALA mediated PpIX micro fluorescence can be used as a diagnostic technique for early detection of neoplasms and confocal laser microscopy and fluorescence image analysis are advantageous diagnostic tools for the photodynamic diagnosis of bladder neoplasms in vivo.  相似文献   

4.
The structural and molecular diversity of vascular endothelium may depend on the functional state and tissue localisation of its cells. Tumour vasculature expresses a number of molecular markers that distinguish it from normal vasculature. In cancer, the determinant of specific tumour vasculature heterogeneity is, in part, dictated by dysregulated expression of tumour-derived angiogenic factors. The identification of molecular 'addresses' on the surface of tumour vasculature has significantly contributed to the selection of targets, which have been used for delivering therapeutic and imaging agents in cancer. Cytotoxic drug, pro-apoptotic peptides, protease inhibitors, and gene therapy vectors have been successfully linked to peptides and delivered to tumour sites with an improved experimental therapy. Different diagnostic and therapeutic compounds can be efficiently targeted to specific receptors on vascular endothelial cells; the development of ligand-directed vector tools may promote systemic targeted gene delivery. Here, we review the very recent advances in the identification of peptide ligands and their corresponding tissue-specific endothelial receptors through the phage display technology with emphasis on ligand-directed delivery of therapeutic agents and targeted gene therapy.  相似文献   

5.
The current study investigates the potential of the photosensitizer Fotolon as a photodynamic diagnostic agent in an in vivo system of human nasopharyngeal carcinoma (NPC) cells. Fotolon (formerly known as Photolon) represents a complex of trisodium salt Chlorin e6 and polyvinylpyrrolidone (PVP). It is a photosensitizing agent that selectively accumulates in tumour tissues. A poorly differentiated human nasopharyngeal carcinoma cell line CNE-2 was xenografted on 6-8 weeks old male balb/c nude mice for our photodynamic diagnostic (PDD) studies. A fluorescence endoscope system was used to perform the in vivo macroscopic fluorescence digital imaging of tumours on the mice. The macroscopic images were further analyzed for distribution of fluorescence intensity. Laser fluorescence confocal microscopy was used to capture microscopic fluorescence images of the tumour tissue. In our PDD studies, we observed intense fluorescence in the tumour and tumour vasculature of human NPC xenografts on nude mice as early as 15-min post administration of Fotolon. High fluorescence selectivity in the tumour tissue was observed between 3-h and 6-h time points. The tumour to normal tissue selectivity ratio was highest at 6 h. The microfluorescence tumour imaging shows similar trends confirming the macroscopic fluorescence data. Fotolon shows much promise as a good photodiagnostic agent.  相似文献   

6.
Zinc(II) phthalocyanine, a hydrophobic photosensitiser, was incorporated in unilamellar liposomes and studied in vivo for fluorescence kinetics and photodynamic activity. An observation chamber mounted in a dorsal skinfold of female WAG/Rij rats was used as a model system. In the chamber, an isogeneic mammary carcinoma was transplanted in the subcutaneous tissue. Phthalocyanine fluorescence was excited at 610 nm with a power density of 0.25 mW cm-2 and was detected above 665 nm through a high-pass filter using a two-stage image intensifier coupled to a charge-coupled device (CCD) camera. Following i.v. administration of 0.14 mg kg-1 of the drug, the fluorescence pharmacokinetics of the dye in vasculature, normal tissue and tumour tissue was determined as a function of time. Tumour fluorescence increased slowly to a maximum about 3 h post injection (p.i.), and remained well above the normal tissue fluorescence till 24 h p.i. Fluorescence in the circulation was always stronger than in the tissues. A treatment light dose at a wavelength of 675 nm was delivered 24 h p.i. One group of six animals received a total light dose of 150 J cm-2 (100 mW cm-2). A second group of six animals received a total light dose of 450 J cm-2 at the same dose rate. Vascular damage resulting from treatment was observed only at the final stages of the irradiation, despite the relatively high levels of fluorescence in the circulation. Immediate post-treatment (re)transplantation of the content of the chamber into the flank always resulted in tumour regrowth, confirming the presence of viable tumour cells following photodynamic therapy (PDT). When the chamber was left intact, the light dose of 450 J cm-2 yielded complete tissue necrosis. The role of the dye-carrier complex in shielding the vascular surrounding from photoproducts was studied in a third group of animals. The presence of peroxides was demonstrated in the serum of these animals after PDT with zinc phthalocyanine in liposomes (ZnPc-lip) using a total light dose of 450 J cm-2. This ex vivo observation supports the previously reported observations in vitro that the carrier complex is able to quench the photoproducts resulting from photoactivation of the photosensitiser which is present in the circulation.  相似文献   

7.
目的 研究体内大肠癌、腺瘤性息肉、慢性炎症与正常组织的激光诱发荧光(LIF)光谱,重点探讨癌前病变的特征性光谱规律。方法 将与氮分子激光器(激发波长337nm)耦合的光纤经纤维结肠镜活检孔插入,激光由光纤导入,分别检测83例患体内病变组织(包括大肠癌39例,腺瘤性息肉33例,慢性炎症23例)与正常组织的LIF光谱,所得光谱由同根光纤导出,由OMA Ⅲ进行记录、分析处理。结果 癌与正常组织的光谱强  相似文献   

8.
Recently, cationic liposomes have been shown to preferentially target the angiogenic endothelium of tumors. It was the aim of our study to investigate the influence of liposomal surface charge on the uptake and kinetics of liposomes into solid tumors and tumor vasculature. Experiments were performed in the amelanotic hamster melanoma A-Mel-3 growing in the dorsal skinfold chamber preparation of male Syrian golden hamsters. Fluorescently labeled liposomes with different surface charge were prepared. Accumulation of i.v. injected liposomes was assessed by quantitative intravital fluorescence microscopy of tumor and surrounding host tissue. The histological distribution of liposomes was analyzed by double-fluorescence microscopy 20 min after application of fluorescently labeled lectin as a vascular marker. After i.v. application of anionic and neutral liposomes, we observed an almost homogeneous distribution of liposome-induced fluorescence throughout the chamber preparation without specific targeting to tumor tissue. In contrast, cationic liposomes exhibited a significantly enhanced accumulation in tumor tissue and tumor vasculature up to 3-fold compared to surrounding tissue (p<0.05). The histological distribution of neutral and anionic liposomes revealed extravasation 20 min after i.v. injection, while cationic liposomes displayed a highly selective accumulation on the vascular endothelium. In conclusion, cationic liposomes exhibited a preferential uptake in angiogenic tumor vessels and therefore may provide an efficient tool for the selective delivery of diagnostic or therapeutic agents to angiogenic blood vessels of solid tumors. On the other hand, anionic and neutral liposomes may be used as carriers of drugs to the extravascular compartment of tumors due to their extravasation.  相似文献   

9.
Bacteriochlorin a (BCA), a derivative of bacteriochlorphyll a, is an effective photosensitiser in vitro and in vivo. BCA has a major absorption peak at 760 nm where tissue penetration is optimal. This property, together with rapid tissue clearance promises minor skin photosensitivity. The tissue localising and photodynamic properties of BCA were studied using isogeneic RMA mammary tumours, transplanted into subcutaneous tissue in transparent ''sandwich'' observation chambers on the back of WAG/Rij rats. The fluorescence kinetics following an i.v. administration of 20 mg kg-1 BCA was assessed in blood vessels, tumour and normal tissue. Subsequently, the development of vascular- and tissue damage after a therapeutic light dose (760 nm, 600 J cm-2) was observed. Fifteen minutes post injection (p.i.), the fluorescence of BCA in the tumour reached a plateau value of 2.5 times the fluorescence in the normal tissue. From 1 h post injection the tumour fluorescence diminished gradually; after 24 h, the tumour fluorescence signal did not exceed that of the normal tissue. Following photodynamic therapy (PDT), 24 h p.i., complete vascular stasis was observed 2 h post treatment in the tumour only, with subsequent recovery. The presence of viable tumour cells following PDT was assessed by histology and re-transplantation of treated tumour tissue from the chamber into the flank immediately or 7 days after treatment. In both cases tumour regrowth was observed. BCA-PDT (20 mg kg-1, 760 nm, 100 J cm-2) 1 h after BCA administration, an interval which gives the optimal differential between tumour and normal tissue, was sufficient to prevent tumour regrowth. However, this only occurred when re-transplantation was performed 7 days after PDT. During PDT, 1 h p.i., vascular damage in tumour and normal tissue was considerable. Complete vascular shut-down was observed in the tumour 2 h after therapy and in the surrounding tissues at 24 h. Circulation damage was associated with vascular spasm and occlusion probably due to thrombi formation. Oedema was notable, especially following PDT with 600 J cm-2 at 24 h p.i.  相似文献   

10.
In photodynamic therapy (PDT), photosensitisers accumulate somewhat preferentially in malignant tissues; photoactivation with appropriate wavelength of light release toxic molecular species which lead to tumour tissue death. In order to target ovarian cancer with increased specificity, a chlorin-based photosensitiser (chlorin e6 monoethylendiamine monoamide) was conjugated to OC125, a monoclonal antibody recognising an antigen expressed in 80% of non-mucinous ovarian cancers. In previous work, this immunoconjugate (IC) was shown to be selectively phototoxic to cancer cells from ovarian cancer patients ex vivo and to localise preferentially in ovarian cancer tissue in vivo. In this study we report results from in vivo phototoxicology and photodynamic treatment studies using this IC in a murine model for ovarian cancer. A comparison of single vs multiple treatments was also made. For in vivo experimentation, Balb C nude mice were injected with 30 x 10(6) NIH:OVCAR 3 cancer cells to create an ascitic tumour model. Animals were then given intraperitoneal injections of the immunoconjugate (0.5 mg kg-1). Twenty-four hours later the intraperitoneal surfaces were exposed to 656 nm light from an argon-ion pumped-dye laser (50 mW, 656 nm), using a cylindrical diffusing tip fibre. The overall treatment was given either once or multiply. No animals died from treatment complications. Twenty-four hours following one and three PDT treatments, the percentage of viable tumour cells in the ascites of the treated animals analysed ex vivo was 34% and 5% of control for one and three treatments respectively. With respect to survival, all control mice (n = 18) died between 30 and 50 days. However, for those treated three times (n = 10), 40% were still alive after 50 days, and for those treated four times (n = 12) 58% were alive after 50 days. Evaluation with log-rank test revealed a significant survival with intraperitoneal PDT compared with controls (P = 0.0006). These preliminary results suggest that PDT with an OC125 immunoconjugate may be an effective therapy for the management of advanced ovarian cancer. Clinical application of this therapy needs to be further optimised and may require multiple treatments, similar to fractionated radiation therapy and cyclic chemotherapy, in order to control malignant disease with acceptable toxicity to normal tissue.  相似文献   

11.
Vascular endothelial growth factor (VEGF) plays an important role in tumour angiogenesis. VEGF binds to tyrosine kinase receptors, which are expressed almost exclusively on tumour endothelium. Therefore, VEGF can be used to target toxin molecules to tumour vessels for anti-angiogenic therapy. However, recent evidence suggests that VEGF can also bind in an isoform-specific fashion to a newly identified neuropilin-1 (NP-1) receptor. NP-1 is widely expressed in normal tissue and presents a potential target for unwanted toxicity. As a consequence, we investigated whether the VEGF121 isoform, which lacks the NP-1 binding domain, could be used to target toxin polypeptides to tumour vasculature. Treatment of endothelial cells with a VEGF121-diphtheria toxin (DT385) conjugate selectively inhibited proliferating endothelial cells, whereas confluent cultures were completely resistant to the construct. In addition, VEGF121-DT385 conjugate treatment completely prevented tumour cell induced angiogenesis in vivo. Most importantly, the conjugate inhibited tumour growth in athymic mice and induced tumour-specific vascular damage. There was also no apparent toxicity associated with the treatment. Our results suggest that proliferating endothelial cells are highly sensitive to VEGF121-toxin conjugates and that the binding to NP-1 receptors is not necessary for efficient inhibition of tumour growth.  相似文献   

12.
Conjugates between photosensitisers (PS) and charged polymeric carriers are under investigation for photodynamic therapy of cancer and may allow targeting to certain cell types or compartments in tumours. Covalent attachment of polyethylene glycol to macromolecules (pegylation) may alter their pharmacokinetics, cell type targeting, and photophysical properties. Macrophages may take up large amounts of aggregated PS, thus lessening the selectivity for cancer cells in tumours. We investigated the effect of pegylation on the uptake and phototoxicity of poly-L-lysine chlorin(e6) conjugates with either cationic or anionic charges in two cell lines, human ovarian cancer cells and mouse macrophages. The cationic conjugate after pegylation became less aggregated, consumed less oxygen and had reduced cellular uptake. However, the phototoxicity corrected for cellular uptake increased three- to five-fold. In contrast, the anionic succinylated conjugate on pegylation became more aggregated, consumed similar amounts of oxygen, and had higher cellular uptake. The anionic conjugate showed the highest relative phototoxicity towards both the cell lines (compared to the other three conjugates) and it decreased most towards the macrophages after pegylation. Pegylation reduced the amount of oxygen consumed per chlorin(e6) molecule when photosensitised cells were illuminated. These in vitro studies suggest that pegylation alters the phototoxicity of PS conjugates depending on the effect produced on the aggregation state.  相似文献   

13.
Photodynamic therapy is a potential treatment for superficial bladder cancer that utilizes photosensitizer drugs, which are activated by light to cause tissue destruction. However, first-generation photosensitizers cause prolonged phototoxicity, have poor tumour specificity and can accumulate within detrusor muscle, resulting in permanent loss of bladder capacity following treatment. A newer drug, called 5-aminolaevulinic acid (ALA), generates a sensitizer called protoporphyrin IX (PpIX) in situ and has been shown, qualitatively, to be more tumour specific. The fluorescence kinetics of ALA-induced PpIX was investigated in patient biopsies of bladder tumour, normal urothelium and detrusor muscle, both in vitro after incubation of specimens in ALA-rich culture medium for various times and in vivo after instillation of intravesical ALA before endoscopic resection. The fluorescence in tumour tissue was twice that of normal urothelium in vitro and up to tenfold in vivo. There was little ALA-induced fluorescence in detrusor muscle, both in vitro and in vivo. Most importantly, no patients experienced phototoxicity or other adverse events following intravesical instillation of ALA.  相似文献   

14.
The only curative treatment for patients with liver metastases to date is surgery, but few patients are suitable candidates for hepatic resection. The majority of patients will have to rely on other treatment modalities for palliation. Photodynamic therapy (PDT) could be a selective, minimally invasive treatment for patients with liver metastases. We studied PDT in an implanted colon carcinoma in the liver of Wag/Rij rats, using the photosensitizer meta-tetra(hydroxyphenyl)chlorin (mTHPC). mTHPC tissue kinetics were studied using ex vivo extractions and in vivo fluorescence measurements. Both methods showed that mTHPC kinetics were different for liver and tumour tissue. After initial high levels at 4 h after administration (0.1 and 0.3 mg kg(-1)) mTHPC in liver tissue decreased rapidly in time. In tumour tissue no decrease in photosensitizer levels occurred, with mTHPC remaining high up to 48 h after administration. Both concentration data and fluorescence data showed an increase in tumour to liver ratios of up to 6.3 and 5.0 respectively. Illumination with 652 nm (15 J) resulted in extensive damage to tumour tissue, with necrosis of up to 13 mm in diameter. Damage to normal liver tissue was mild and transient as serum aspartate aminotransferase and alanine aminotransferase levels normalized within a week after PDT treatment. Long-term effects of mTHPC-PDT were studied on day 28 after treatment. Regardless of drug dose and drug-light interval, PDT with mTHPC resulted in complete tumour remission in 27 out of 31 treated animals (87%), with only four animals in which tumour regrowth was observed. Non-responding tumours proved to be significantly larger (P < 0.001) in size before PDT treatment. This study demonstrates that mTHPC is retained in an intrahepatic tumour and that mTHPC-PDT is capable of inducing complete tumour remission of liver tumours.  相似文献   

15.
The goal of this study was to develop a strategy for the selective destruction of colorectal cancer cells. Towards this end, photoimmunoconjugates were prepared between the anti-colon cancer monoclonal antibody 17.1A and the photosensitizer (PS) chlorin(e6) (c(e6)). Polylysine linkers bearing several c(e6) molecules were covalently attached in a site-specific manner to partially reduced IgG molecules, which allowed photoimmunoconjugates to bear either cationic or anionic charges. The conjugates retained immunoreactivity as shown by enzyme-linked immunosorbent assays and by competition studies with native antibody. The overall charge on the photoimmunoconjugate was an important determinant of PS delivery. The cationic photoimmunoconjugate delivered 4 times more c(e6) to the cells than the anionic photoimmunoconjugate, and both 17.1A conjugates showed, in comparison to non-specific rabbit IgG conjugates, selectivity for antigen-positive target cells. Illumination with only 3 J cm(-2) of 666 nm light reduced the number of colony forming cells by more than 90% for the cationic 17.1A conjugate and by 73% for the anionic 17.1A conjugate after incubation with 1 microM c(e6) equivalent of the respective conjugates. By contrast, 1 microM free c(e6) gave only a 35% reduction in colonies. These data suggest photoimmunoconjugates may have applications in photoimmunotherapy where destruction of colorectal cancer cells is required.  相似文献   

16.
The efficacy of photodynamic therapy (PDT) using delta-aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX) sensitisation and laser light at 635 nm was investigated in the treatment of experimental hepatic tumours. The model of liver tumours was induced either by local inoculation or by administration of tumour cells through the portal vein in rats. ALA at a dose of 60 mg kg(-1) b.w. was intravenously administered 60 min before PDT. PpIX accumulation in tumour, normal liver and abdominal wall muscle was detected by means of laser-induced fluorescence (LIF). Laser Doppler imaging (LDI) was used to determine changes in the superficial blood flow in connection with PDT. Histopathological examinations were performed to evaluate the PDT effects on the tumour and the surrounding liver tissue, including pathological features in the microvascular system. The accumulation of PpIX, as monitored by LIF, showed high fluorescence intensities at about 635 nm in both the hepatic tumour tissue and normal liver and low values in the abdominal wall. LDI demonstrated that the blood flow in the treated tumour and its surrounding normal liver tissue decreased immediately after the PDT, indicating an effect on the vascular system. A large number of thrombi in the irradiated tumour were found microscopically 3 h after the PDT. The tumour growth rate showed a marked decrease when evaluated 3 and 6 days after the treatment. These results show that the ALA-PDT is effective in the inhibition of growth of experimental hepatic tumours.  相似文献   

17.
An intravenously administered fluorescent carbocyanine dye, DiOC7(3), has been evaluated for use in conjunction with Hoechst 33342 as a marker of murine tumour vasculature. DiOC7(3) stains cells immediately adjacent to blood vessels and thus, like Hoechst 33342, outlines perfused tumour vasculature. The different fluorescence excitation and emission properties of DiOC7(3) and Hoechst 33342 permit discrimination of the stains in the same tissue section. Mice tolerate a DiOC7(3) dose of 1 mg kg-1 i.v. with no ill effects. The dye has a distribution half-life in blood of 180s and staining of perivascular tumour cells is sufficiently stable to allow visualisation of vasculature for up to 30 min after DiOC7(3) injection. However, DiOC7(3) causes a 75% reduction in tumour blood flow as measured by laser Doppler techniques. Consequently, the compound appears to be most suitable as a second vascular marker, administered at some time after Hoechst 33342, to detect temporal and spatial fluctuations in tumour perfusion.  相似文献   

18.
Laser-induced fluorescence (LIF) was used to characterise the localisation of an intravenously administered trimethylated carotenoporphyrin [CP(Me)3] and a trimethoxylated carotenoporphyrin [CP(OMe)3] in an intramuscularly transplanted malignant tumour (MS-2 fibrosarcoma) and healthy muscle in female Balb/c mice, 3, 24, 48 and 96 h post injection. The fluorescence was induced with a dye laser pumped by a nitrogen laser, emitting light at 425 nm. The fluorescence spectra were recorded in the region 455-760 nm using a polychromator equipped with an image-intensified CCD camera. The tumour/peritumoral muscle ratio was about 5:1 for CP(Me)3 and about 6:1 for CP(OMe)3 in terms of the background-free fluorescence intensity, which peaked at about 655 nm. By including the endogenous tissue fluorescence, the contrast was further enhanced by a factor of approximately 2.  相似文献   

19.
The effect of hyperthermia on the nanoparticle extravasation in different tumour regions was investigated in real time using confocal laser scanning microscopy. Murine mammary carcinoma 4T1 was implanted in the nude mice dorsal skin-fold window chamber. Tumour angiogenesis was observed through the window chamber on days 4, 7, 8 and 10 after the implantation. In 10 days, the tumour became 1-2 mm in diameter and 150 microm thick. Most vessels were found to be <15 microm in diameter. Histological examination showed that there were fewer vessels in a more ordered branching pattern inside the tumour than in the tumour periphery. After hyperthermia at 42 degrees C for 1 h, numerous erythrocytes were found in the peripheral region. Extravasation of rhodamine-labelled 100 nm nanoparticles in different tumour regions under both normal and hyperthermic conditions (34 and 42 degrees C) was quantified using confocal fluorescence microscopy. The relative fluorescence intensity hardly changed in tissue at 34 degrees C, but increased by the local hyperthermia at 42 degrees C. In particular, the relative intensity in the tumour periphery was more than 120 as compared to 40 in the tumour centre, after 1 h hyperthermia. Results showed that the thermally induced liposome nanoparticle extravasation was heterogeneous in tumour, owing to the non-uniform distribution of tumour vasculature. Further, the degree of vascular damage was found to be more severe in the tumour periphery, which is likely due to the high thermal sensitivity of newly formed tumour vessels in this region.  相似文献   

20.
Results from experimental tumours suggest that the mechanism of action of photodynamic therapy (PDT) involves both a direct killing of tumour cells, and a secondary effect- resulting from vascular damage. We have investigated the possible vascular changes induced by PDT in an intraocular retinoblastoma-like rat tumour model using the 86RbCl extraction procedure. Light irradiation (90 J/cm2; 633 nm; 30 min) of intraocular tumours 24 h after an intraperitoneal injection of 5 mg/kg Photofrin II produced an increase in the tumour uptake of 86RbCl during the treatment period. However, 24 h later these values had decreased to 25 % of that normally found in control animals. these effects were observed in both the tumour material and associated normal eye tissue, but not in PDT treated normal eyes without tumours. the results confirm that the vasculature of this eye tumour model is a target for some of the PDT effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号