首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory loss and behavioral and psychological symptoms of dementia. An imbalance of different neurotransmitters--glutamate, acetylcholine, dopamine, and serotonin--has been proposed as the neurobiological basis of behavioral symptoms in AD. The molecular changes associated with neurotransmission imbalance in AD are not clear. We hypothesized that altered reuptake of neurotransmitters by vesicular glutamate transporters (VGLUTs), excitatory amino acid transporters (EAATs), the vesicular acetylcholine transporter (VAChT), the serotonin reuptake transporter (SERT), or the dopamine reuptake transporter (DAT) are involved in the neurotransmission imbalance in AD. We tested this hypothesis by examining protein and mRNA levels of these transporters in postmortem prefrontal cortex from 10 AD patients and 10 matched non-AD controls. Compared with controls, protein and mRNA levels of VGLUTs, EAAT1-3, VAChT, and SERT were reduced significantly in AD. Expression of DAT and catechol O-methyltransferase was unchanged. Reduced VGLUTs and EAATs may contribute to an alteration in glutamatergic recycling, and reduced SERT could exacerbate depressive symptoms in AD. The reduced VAChT expression could contribute to the recognized cholinergic deficit in AD. Altered neurotransmitter transporters could contribute to the pathophysiology of AD and are potential targets for therapy.  相似文献   

3.
4.
Cortical involvement in multiple sclerosis (MS) is emerging as an important determinant of disease progression. The mechanisms responsible for MS cortical pathology are not fully characterized. The objective of this study was to assess the role of excitotoxicity in MS cortex, evaluating excitatory amino acid transporter (EAAT) expression and its relationship with demyelination, inflammation, gliosis, and neuronal and synaptic pathology. EAATs are essential in maintaining low extracellular glutamate concentrations and preventing excitotoxicity. Ten MS brains (3 relapsing-remitting MS cases and 7 secondary progressive MS cases) were evaluated by immunohistochemistry for myelin basic protein, CD68, HLA-DR, EAAT1, EAAT2, glial fibrillary acidic protein, phosphorylated c-Jun N-terminal kinase (pJNK), synaptophysin, and neurofilaments. Cortical lesions were frequently observed in MS brains in variable numbers and extensions. In cortical lesions, activated microglia infiltration correlated with focal loss of EAAT1, EAAT2, and synaptophysin immunostaining, and with neuronal immunostaining for pJNK, a protein involved in response to excitotoxic injury. No reduction of EAATs or synaptophysin immunostaining was observed in demyelinated cortex in the absence of activated microglia. Alterations of the mechanisms of glutamate reuptake are found in cortical MS lesions in the presence of activated microglia and are associated with signs of neuronal and synaptic damage suggestive of excitotoxicity. Excitotoxicity may be involved in the pathogenesis of demyelination and of neuronal and synaptic damage in MS cortex.  相似文献   

5.
Rakhade SN  Loeb JA 《Epilepsia》2008,49(2):226-236
PURPOSE: To study the differential expression of excitatory amino acid transporters (EAATs) at localized epileptic foci compared to nonepileptic regions in human neocortical epilepsy. Decreased expression of EAATs, the predominant mechanism to remove synaptic-released glutamate, may explain mechanisms of heightened excitability at these epileptic foci. METHODS: The differential expression of EAAT1-4 at the mRNA and protein levels was measured in electrically mapped human neocortical tissues using quantitative real-time PCR and immunoblotting. This required a novel way to prevent aggregation of EAAT proteins through cold solubilization. Layer-specific neuronal densities were measured to control for potential differences in neuronal density. RESULTS: While focal epileptic brain regions show marked increases in immediate early genes, they have significant reductions in the neuronal glutamate transporter mRNAs (EAAT3 and EAAT4). These changes were not associated with changes in relative neuronal density, suggesting a reduction in EAAT mRNA per neuron. Immunohistochemical staining of epileptic human neocortex confirmed the presence of EAAT1 and EAAT2 proteins in astroglial cells and EAAT3 and EAAT4 proteins in human cortical neurons. At the protein level, western blots of the same epileptic and nonepileptic regions for a subset of these patients showed a similar decrease of EAAT3 and EAAT4. Despite no change in EAAT2 mRNA, EAAT2 protein expression was significantly reduced at epileptic foci. CONCLUSION: Regional reductions in EAAT expression at human neocortical epileptic foci could produce increased local glutamate levels that in turn may contribute to both hyperexcitability and the spontaneous generation of epileptic discharges that characterize human epileptic foci.  相似文献   

6.
Excitatory amino acid transporters (EAATs) maintain the balance between pathological and physiological conditions by limiting the extracellular concentration of glutamate within the CNS and thus preventing excitotoxic injury. The loss of EAAT2 has been associated with the development of neurological diseases such as amyotrophic lateral sclerosis. It has therefore been suggested that the over-expression of specific EAATs may provide some degree of neuroprotection. However, the inability to isolate and study the function of the different EAAT isoforms in a cell type-specific manner has made it difficult to determine the exact contribution of individual EAATs toward neuroprotection or neurodegeneration in the context of excitotoxic injury. To address this question, we transduced hippocampal slice cultures from 1-week-old C57B/6 mice with recombinant adeno-associated virus carrying an EAAT2 gene expression cassette. EAAT2 gene expression was driven in neurons with the neuron-specific enolase promoter. Using this model system, we were able to induce a significant increase in the expression of functional EAAT2. Consequently, a significant increase in CA1 neuronal damage was observed in slices over-expressing EAAT2 in neurons following an acute exposure to exogenous glutamate. These data suggest that the increased expression of EAAT2 within neurons may contribute to neurodegeneration.  相似文献   

7.
Transient focal cerebral ischemia leads to extensive excitotoxic glial damage in the subcortical white matter. Efficient reuptake of released glutamate is essential for preventing glutamate receptor overstimulation and neuronal and glial death. The present study evaluates the expression of the main glutamate transporters (EAAT1, EAAT2, and EAAT3) in subcortical white matter of the rat after transient middle cerebral artery occlusion. Western blot analysis and immunohistochemistry show an increase in the expression of EAAT1 and EAAT2 in subcortical white matter early after ischemia which subsequently decreases at longer reperfusion periods. However, expression of both EAAT1 and EAAT2 remains higher in astrocytes forming the gliotic scar and in microglial/macrophage cells at the border of or within the infarct area, respectively. Taken together, these results indicate that there is a transient enhanced expression of EAATs in the subcortical white matter early after ischemia. Our findings reveal an adaptive response of subcortical white matter to increased levels of glutamate during focal cerebral ischemia which may limit excitotoxic damage.  相似文献   

8.
9.
The study of the functional expression of glutamate signaling molecules in peripheral tissues has received relatively little attention. However, evidence is increasing for a role of glutamate as an extracellular signal mediator in endocrine systems, in addition to having an excitatory amino acid neurotransmitter role in the CNS. Chromaffin cells are good models of catecholaminergic neurons, in which previous work from our group demonstrated the existence of both functional glutamate receptors and specific exocytotic and nonexocytotic glutamate release. In this work, the presence of specific plasma membrane (EAATs) and vesicular glutamate (VGLUTs) transporters has been investigated by using confocal microscopy, flow cytometric analysis, Western blot, and qRT-PCR techniques. We found specific expression of EAAT3, EAAT2, VGLUT1, and VGLUT3 in about 95%, 65%, 55%, and 25%, respectively, of the whole chromaffin cell population. However, chromaffin cells do not express VGLUT2 and have a very low expression of EAAT1. VGLUTs are localized mainly in the membrane fraction, and EAATs share their subcellular location between membrane and cytosolic fractions. Their estimated molecular weights were about 70 kDa for EAAT2, about 65 kDa for EAAT3, about 50 kDa for VGLUT1, and about 60 kDa for VGLUT3. RT-qPCR techniques confirm the expression of these glutamate transporters at the mRNA level and show a different regulation by cytokines and glucocorticoids between VGLUT1 and -3 and EAAT2 and -3 subfamilies. These interesting results support the participation of these glutamate transporters in the process of glutamate release in chromaffin cells and in the regulation of their neurosecretory function in adrenal medulla.  相似文献   

10.
Excitatory amino acid transporters (EAATs) are involved in regulating extracellular glutamate levels at synaptic regions in the CNS. EAAT1, 2, 3, and 5 have been found in the mammalian retina, but the presence of EAAT4 has remained controversial. Recently, we found a high level of EAAT4 mRNA in the human retina, and this observation lead us to examine whether EAAT4 was expressed in the mammalian retina. Immunoblotting studies showed the presence of EAAT4-immunoreactive proteins in human and mouse retinas, corresponding to EAAT4 monomers and dimers. Immunohistochemistry revealed that EAAT4 was localized in rod and cone photoreceptor outer segments in the human retina, and in the outer and inner segments of mouse and ground squirrel retinas. In no case was EAAT4 found in the outer plexiform layer or in any other layer in the retina. EAAT4 expression by photoreceptors was confirmed by immunoblotting a purified rod outer segment preparation, which showed the presence of a 50-kDa EAAT4-immunoreactive protein. In addition, the EAAT4-associated protein, GTRAP41, was found in the human, mouse, and squirrel retinas as well as in the rod outer segment preparation. Further immunocytochemical and co-immunoprecipitation experiments demonstrated that GTRAP41 was colocalized and interacted in vivo with EAAT4. Importantly, glutamate uptake and drug inhibition experiments showed that an EAAT4-like glutamate uptake system is present in the rod outer segments. Finally, we examined whether glutamate signaling mediated by EAAT4 can modulate rod outer segment phagocytosis by the retinal pigment epithelium. Results of the present study show that EAAT4 is present in the outer segments, a nonsynaptic region of photoreceptors, where it might provide a feedback mechanism for sensing extracellular glutamate or serve as an outer barrier to prevent glutamate from escaping from the retina.  相似文献   

11.
12.
13.
Regulation of extracellular excitotoxins by glial and neuronal glutamate transporters is critical to maintain synaptic terminal integrity. Factors interfering with the normal functioning of these transporters might be involved in neurodegeneration. Among them, recent studies have shown that hypoxia alters glutamate transporter function; however, it is unclear if hypoxia has an effect on the expression of glutamate transporters and which intracellular signaling pathways are involved. The C6 rat glial and GT1--7 mouse neuronal cell lines were exposed to hypoxic conditions (5% CO(2), 95% N(2)) and levels of glutamate transporter mRNA were determined by ribonuclease protection assay. After 21 hr, there was a 100% increase in levels of rat excitatory amino acid transporter 3 (EAAT3) mRNA in C6 cells and a 600% increase in levels of murine EAAT2 mRNA in GT1--7 cells. There was a similar increase in mRNA levels after hypoxia in C6 cells transfected with human EAAT2, whereas reoxygenation normalized the expression levels of glutamate transporters. Although the expression of EAATs was associated with increased immunoreactivity by Western blot, functioning of the transporters was decreased as evidenced by D-aspartate uptake. Finally, although the protein kinase C stimulator phorbol-12-myristate-13-acetate enhanced EAAT2 mRNA levels after hypoxia, protein kinase C inhibitor bisindolylmaleimide I had the opposite effect. Taken together, this study suggests that the hypoxia is capable of upregulating levels of EAATs via a protein kinase C-dependent compensatory mechanism. This increased expression is not sufficient to overcome the decreased functioning of the EAATs associated with decreased ATP production and mitochondrial dysfunction.  相似文献   

14.
Glutamate transport is critical for synaptic inactivation of glutamate and prevention of excitotoxicity. The following four glutamate transporters have been identified in human brain: EAAT1, EAAT2, EAAT3, and EAAT4. Deficient glutamate transport has been identified in the motor cortex and the spinal cord of tissue from amyotrophic lateral sclerosis (ALS) patients. The defect appears to be due to a selective loss of the astroglial specific glutamate transporter protein EAAT2. In these studies we sought to extend our understanding of glutamate transporters in ALS by examining the mRNA for each transporter subtype in ALS motor cortex. All tissue was matched for age and postmortem delay. There was no quantitative change in mRNA for EAAT1, EAAT2, or EAAT3 in ALS motor cortex, even in patients with a large loss of EAAT2 protein (95% decrease compared with control) and decreased tissue glutamate transport (73% decrease compared with control). These studies suggest that the dramatic abnormalities in EAAT2 may be due to translational or post- translational processes.  相似文献   

15.
A disturbance in glutamatergic transmission has been suggested to contribute to the pathophysiology of schizophrenia and recent studies on ionotropic glutamate receptors are consistent with altered glutamatergic function in the hippocampus of schizophrenics. In order to investigate this hypothesis further, the expression of two 'glutamatergic' markers, the mRNAs of metabotropic glutamate receptor 5 (mGluR5) and human excitatory amino acid transporter (EAAT2) were compared in the hippocampus of control subjects and schizophrenics. We examined the regional/cellular mRNA expression of mGluR5 and EAAT2 in postmortem hippocampal sections from schizophrenics and control subjects, using in situ hybridization. Regions of interests were dentate gyrus, cornu ammonis 4, 3, 1 and parahippocampal gyrus. The regional/cellular mGluR5 mRNA content was not different between the two groups. The cellular EAAT2 mRNA content was significantly decreased in schizophrenic parahippocampal gyrus, but not in other hippocampal regions. Furthermore, only in the parahippocampal gyrus, schizophrenics had a significantly increased mGluR5/EAAT2 ratio at both the regional and cellular mRNA level. The results suggest that a disturbance of glutamatergic neurotransmission in schizophrenia was not apparent using these indices in the hippocampus, but 'hypo-glutamatergic' neurotransmission may be present in the schizophrenic parahippocampal gyrus.  相似文献   

16.
Summary. Cysteine uptake is the rate-limiting process in glutathione synthesis. Previously we have shown that the inhibitors of excitatory amino acid transporters (EAATs) significantly enhance glutamate toxicity via depletion of intracellular glutathione. In this study we show evidence that the neuronal glutamate transporter EAAT3 is directly enrolled in cysteine uptake in cultured neurons. Neuronal cysteine uptake was dependent on the extracellular sodium, and was suppressed by EAAT inhibitors. Cysteine uptake was suppressed by extracellular glutamate and aspartate, substrates of EAATs, and not by substrates of cysteine transporters. Intracellular glutathione levels were reduced by EAAT inhibitors, and not by inhibitors of cysteine transporters. Knock down of EAAT3 expression using antisense oligonucleotide significantly reduced cysteine uptake, intracellular glutathione level, and neuronal viability against oxidative stress. These facts indicate that EAAT3 functions as a cysteine transporter, and this function seems to be unique and distinct from cysteine transporters that have been reported.  相似文献   

17.
Functional studies suggest that up to 95% of all glutamate transport is handled by the glutamate transporter EAAT2. Amino and C-terminal antibodies demonstrate that under normal conditions EAAT2 is specific to astrocytes. A truncated splice variant of EAAT2, known as EAAT2b, also has been identified in astrocytes and some neurons. In vitro studies suggest EAAT2b transports glutamate similar to EAAT2, although the contribution of EAAT2b to normal clearance of extracellular glutamate is unknown. To investigate EAAT2b biology in pathological conditions, we examined the cellular and regional distribution of EAAT2b in amyotrophic lateral sclerosis. Using epitope-specific, affinity purified antibodies, we found that EAAT2b tissue levels were increased by more than twofold in amyotrophic lateral sclerosis motor cortex, whereas EAAT2 levels were decreased by up to 95%. EAAT2b distribution in normal human cortex was largely confined to the neuropil-like EAAT2, with occasional faint neuronal expression. In contrast, amyotrophic lateral sclerosis motor cortex had an obvious qualitative increase in neuropil EAAT2b staining and a drastic increase in neuronal soma and dendritic EAAT2b immunostaining. Despite these increases in EAAT2b immunostaining, functional transporter studies demonstrated a large loss of EAAT2 function. These studies clearly document altered regulation and splicing of the dominant glutamate transporter EAAT2 under conditions of neurological stress.  相似文献   

18.
Excitatory amino-acid transporters (EAATs) transport glutamate into cells under physiologic conditions. Excitatory amino-acid transporter type 3 (EAAT3) is the major neuronal EAAT and also uptakes cysteine, the rate-limiting substrate for synthesis of glutathione. Thus, we hypothesize that EAAT3 contributes to providing brain ischemic tolerance. Male 8-week-old EAAT3 knockout mice on CD-1 mouse gene background and wild-type CD-1 mice were subjected to right middle cerebral artery occlusion for 90 minutes. Their brain infarct volumes, neurologic functions, and brain levels of glutathione, nitrotyrosine, and 4-hydroxy-2-nonenal (HNE) were evaluated. The EAAT3 knockout mice had bigger brain infarct volumes and worse neurologic deficit scores and motor coordination functions than did wild-type mice, no matter whether these neurologic outcome parameters were evaluated at 24 hours or at 4 weeks after brain ischemia. The EAAT3 knockout mice contained higher levels of HNE in the ischemic penumbral cortex and in the nonischemic cerebral cortex than did wild-type mice. Glutathione levels in the ischemic and nonischemic cortices of EAAT3 knockout mice tended to be lower than those of wild-type mice. Our results suggest that EAAT3 is important in limiting ischemic brain injury after focal brain ischemia. This effect may involve attenuating brain oxidative stress.  相似文献   

19.
Emerging evidence suggests that a disturbance of the glutamate neurotransmitter system may be a contributory factor to motor neuron injury in motor neuron disease. Previous autoradiographic and immunoblotting studies have suggested that there may be reduced expression of glutamate transporter proteins in pathologically affected areas of the CNS in motor neuron disease. This study further explores the possible alteration in expression of the excitatory amino acid transporter protein EAAT2 in MND, by examining the protein expression in situ, in frozen sections, using immunohistochemistry. The aim of the study was to compare the distribution and density of EAAT2 in the motor cortex and spinal cord of MND cases (n = 16) compared with neurologically normal controls (n = 12), matched for relevant parameters. A novel, previously characterized, monoclonal antibody to EAAT2 was employed. EAAT2 immunoreactivity in motor neuron disease and control cases was compared using relative optical density measurements generated by computerized image analysis. In the motor cortex, EAAT2 immunoreactivity was laminated comprising a superficial intense band (corresponding to layers 1 and 2); a paler middle band (layer 3 and part of 5) and a more intense deep layer (layers 5 and 6). In the spinal cord, the ventral horn showed strong immunoreactivity with dense perisomatic staining around motor neuron cell bodies, the substantia gelatinosa showed moderate diffuse staining and the intermediate spinal laminae showed weak staining. This general pattern of immunoreactivity was preserved in the motor neuron disease cases. However, in the motor neuron disease cases compared with controls, the optical density values for EAAT2 immunoreactivity were significantly reduced in all grey matter regions of the lumbar spinal cord (P < 0.001) and were increased in the middle laminae of the motor cortex (P < 0.05). This study indicates that glutamate transporter pathology in motor neuron disease may be a more complex phenomenon than previously recognized.  相似文献   

20.
Alterations in glutamatergic neurotransmission are thought to be involved in several psychiatric disorders, including schizophrenia. Equilibrative nucleoside transporter type 1 (ENT1) regulates glutamate levels by regulating excitatory amino acid transporter expression and activity in the brain. In this study, we investigated whether ENT1 is abnormally expressed in the brain of elderly patients with schizophrenia. We measured protein expression of ENT1 in the superior temporal gyrus (STG) and anterior cingulate cortex (ACC) in patients with schizophrenia (STG, n=22; ACC, n=34) and a comparison group (STG, n=24; ACC, n=29). We found decreased ENT1 expression in the STG in patients with schizophrenia, supporting the hypothesis of altered glutamate transport in this illness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号