首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a general combinatorial approach to identify optimal substrates of a given protease by using quantitative kinetic screening of cellular libraries of peptide substrates (CLiPS). A whole-cell protease activity assay was developed by displaying fluorescent reporter substrates on the surface of Escherichia coli as N-terminal fusions. This approach enabled generation of substrate libraries of arbitrary amino acid composition and length that are self-renewing. Substrate hydrolysis by a target protease was measured quantitatively via changes in whole-cell fluorescence by using FACS. FACS enabled efficient screening to identify optimal substrates for a given protease and characterize their cleavage kinetics. The utility of CLiPS was demonstrated by determining the substrate specificity of two unrelated proteases, caspase-3 and enteropeptidase (or enterokinase). CLiPS unambiguously identified the caspase-3 consensus cleavage sequence DXVDG. Enteropeptidase was unexpectedly promiscuous, but exhibited a preference for substrates with the motif (D/E)RM, which were cleaved substantially faster than the canonical DDDDK recognition sequence, widely used for protein purification. CLiPS provides a straightforward and versatile approach to determine protease specificity and discover optimal substrates on the basis of cleavage kinetics.  相似文献   

2.
The prohormone-processing Kex2 protease of the budding yeast Saccharomyces cerevisiae can be converted from an intracellular membrane protein to a soluble, secreted, and active form by deletion of the transmembrane domain and C-terminal tail. One such molecule was purified to near homogeneity from the culture medium of an overexpressing yeast strain. Amino acid sequence analysis revealed that the N terminus of mature Kex2 protease is created by a potentially autoproteolytic cleavage at Lys108-Arg109, prior to the domain homologous to subtilisin, followed by trimming of Leu-Pro and Val-Pro dipeptides by the Ste13 dipeptidyl aminopeptidase. Kinetic parameters were examined using fluorogenic peptidyl-methylcoumarin amide substrates. Initial burst titration indicated that the preparation was entirely active. Measurements of dependence of activity on pH yielded a simple curve suggesting titration of a single ionizable group. Activity was half-maximal at pH 5.7 and nearly constant from pH 6.5 to 9.5. Discrimination between substrates was as great as 360-fold in Km and 130-fold in kcat. Substrates with a Lys-Arg dipeptide preceding the cleaved bond were preferred, having kcat/Km values up to 1.1 x 10(7) sec-1.M-1. The enzyme cleaved substrates having Arg-Arg, Pro-Arg, Ala-Arg, and Thr-Arg with increased Km but with unchanged kcat. In contrast, the enzyme displayed a dramatically lower kcat for a Lys-Lys substrate with a smaller increase in Km. Thus the two residues preceding the cleaved bond may play distinct roles in the selectivity of binding and cleavage of prohormone substrates.  相似文献   

3.
A method is presented for the preparation and use of fluorogenic peptide substrates that allows for the configuration of general substrate libraries to rapidly identify the primary and extended specificity of proteases. The substrates contain the fluorogenic leaving group 7-amino-4-carbamoylmethylcoumarin (ACC). Substrates incorporating the ACC leaving group show kinetic profiles comparable to those with the traditionally used 7-amino-4-methylcoumarin (AMC) leaving group. The bifunctional nature of ACC allows for the efficient production of single substrates and substrate libraries by using 9-fluorenylmethoxycarbonyl (Fmoc)-based solid-phase synthesis techniques. The approximately 3-fold-increased quantum yield of ACC over AMC permits reduction in enzyme and substrate concentrations. As a consequence, a greater number of substrates can be tolerated in a single assay, thus enabling an increase in the diversity space of the library. Soluble positional protease substrate libraries of 137, 180 and 6,859 members, possessing amino acid diversity at the P4-P3-P2-P1 and P4-P3-P2 positions, respectively, were constructed. Employing this screening method, we profiled the substrate specificities of a diverse array of proteases, including the serine proteases thrombin, plasmin, factor Xa, urokinase-type plasminogen activator, tissue plasminogen activator, granzyme B, trypsin, chymotrypsin, human neutrophil elastase, and the cysteine proteases papain and cruzain. The resulting profiles create a pharmacophoric portrayal of the proteases to aid in the design of selective substrates and potent inhibitors.  相似文献   

4.
Hanspal M  Dua M  Takakuwa Y  Chishti AH  Mizuno A 《Blood》2002,100(3):1048-1054
Plasmodium falciparum-derived cysteine protease falcipain-2 cleaves host erythrocyte hemoglobin at acidic pH and specific components of the membrane skeleton at neutral pH. Analysis of stage-specific expression of these 2 proteolytic activities of falcipain-2 shows that hemoglobin-hydrolyzing activity is maximum in early trophozoites and declines rapidly at late stages, whereas the membrane skeletal protein hydrolyzing activity is markedly increased at the late trophozoite and schizont stages. Among the erythrocyte membrane skeletal proteins, ankyrin and protein 4.1 are cleaved by native and recombinant falcipain-2 near their C-termini. To identify the precise peptide sequence at the hydrolysis site of protein 4.1, we used a recombinant construct of protein 4.1 as substrate followed by MALDI-MS analysis of the cleaved product. We show that falcipain-2-mediated cleavage of protein 4.1 occurs immediately after lysine 437, which lies within a region of the spectrin-actin-binding domain critical for erythrocyte membrane stability. A 16-mer peptide containing the cleavage site completely inhibited the enzyme activity and blocked falcipain-2-induced fragmentation of erythrocyte ghosts. Based on these results, we propose that falcipain-2 cleaves hemoglobin in the acidic food vacuole at the early trophozoite stage, whereas it cleaves specific components of the red cell skeleton at the late trophozoite and schizont stages. It is the proteolysis of skeletal proteins that causes membrane instability, which, in turn, facilitates parasite release in vivo.  相似文献   

5.
Proteolytic removal of the pre-segment from growing nascent chains of pre-human placental lactogen (hPL) occurred during in vitro translation of placental mRNA if crude membranes derived from ascites lysates, dog pancreas, or rat liver rough endoplasmic reticulum were added to the translation mixtures. The cotranslational proteolytic event was inhibited by the peptide protease inhibitor, chymostatin, but not by leupeptin, antipain, or elastatinal. The proteases involved in cleavage were solubilized with detergent and converted completed pre-hPL to hPL (post-translational processing). Direct assay of the solubilized membranes, with synthetic fluorogenic aminocoumarin peptide substrates, revealed no significant tryptic or elastase-like activity, but activity against a chymotrypsin substrate [(succinyl-Ala-Ala-Phe)-7-amino-4-methyl-coumarin] was found. This activity was dependent upon both an endopeptidase and an aminopeptidase. Although bestatin inhibited the aminopeptidase activity, it had no effect on the endopeptidase or on post-translational cleavage. Although this endopeptidase cleaved on the COOH side of an alanine residue, it was not inhibited by elastatinal. However, it was inhibited by high levels of chymostatin and by some serine protease inhibitors.  相似文献   

6.
Origins of the specificity of tissue-type plasminogen activator.   总被引:4,自引:0,他引:4       下载免费PDF全文
The role of subsite interactions in defining the stringent substrate specificity of tissue-type plasminogen activator (t-PA) has been examined by using an fd phage library that displayed random hexapeptide sequences and contained 2 x 10(8) independent recombinants. Forty-four individual hexapeptides were isolated and identified as improved substrates for t-PA. A peptide containing one of the selected amino acid sequences was cleaved by t-PA 5300 times more efficiently than a peptide that contained the primary sequence of the actual cleavage site in plasminogen. These results suggest that small peptides can mimic determinants that mediate specific proteolysis, emphasize the importance of subsite interactions in determining protease specificity, and have important implications for the evolution of protease cascades.  相似文献   

7.
Fluorescent conjugated polyelectrolytes with pendant ionic sulfonate and carboxylate groups are used to sense protease activity. Inclusion of the fluorescent conjugated polyelectrolyte into the assay scheme leads to amplification of the sensory response. The sensing mechanism relies on an electrostatic interaction between the conjugated polyelectrolyte and a peptide substrate that is labeled with a fluorescence quencher. Enzyme activity and hydrolysis kinetics are measured in real time by using fluorescence spectroscopy. Two approaches are presented. In the first approach, a fluorescence turn-on sensor was developed that is based on the use of p-nitroanilide-labeled peptide substrates. In this system enzyme-catalyzed peptide hydrolysis is signaled by an increase in the fluorescence from the conjugated polyelectrolyte. The turn-on system was used to sense peptidase and thrombin activity when the concentrations of the enzyme and substrate are in the nanomolar regime. Kinetic parameters were recovered from real-time assays. In the second approach, a fluorescence turn-off sensor was developed that relies on a peptide-derivatized rhodamine substrate. In the turn-off system enzyme-catalyzed peptide hydrolysis is signaled by a decrease in the fluorescence intensity of the conjugated polyelectrolyte.  相似文献   

8.
Processing of the gag and pol gene precursor proteins of retroviruses is essential for infectivity and is directed by a viral protease that is itself included in one of these precursors. We demonstrate here that small synthetic peptides can be used as both model substrates and inhibitors to investigate the specificity and molecular parameters of the reaction. The results indicate that a peptide that extends five amino acids but not three amino acids in both directions from a known cleavage site is accurately hydrolyzed by the protease of avian sarcoma-leukosis virus. Substitutions of the amino acids to either side of the peptide bond to be cleaved affect the ability of the peptide (as well as a larger precursor protein) to serve as a substrate. The specificity is more stringent for the amino acid that will become the carboxyl end after cleavage. Some substitutions produced peptides that were not cleaved but could act as inhibitors of cleavage of a susceptible peptide. Thus, small model substrates may be used to explore both the binding and catalytic properties of these important proteases.  相似文献   

9.
The preferred amino acid residues at the P'1 and P'2 positions of peptide substrates of the 3C proteinase from hepatitis A virus (HAV-3C) have been determined by a rapid screening method. The enzyme was presented with two separate mixtures of N-terminal acetylated peptides, which were identical in sequence except for the amino acids at the P'1 or P'2 positions, where a set of 15 or 16 amino acids was introduced. Enzyme-catalyzed hydrolysis of the peptide mixtures generated free amino termini, which allowed direct sequence analysis by Edman degradation. The relative yield of each amino acid product in the appropriate sequencing cycle gave the amount of each substrate mixture component hydrolyzed. This allowed the simultaneous evaluation of the relative kcat/Km values for each component in the mixture. The peptide substrates preferred by the HAV-3C proteinase in the P'1 mixture were glycine, alanine, and serine. The enzyme has little specificity at P'2; only arginine and proline peptides were excluded as substrates. This method provides a rapid determination of the preferred residues for a peptide substrate and should be applicable to other endoproteinases.  相似文献   

10.
Synthetic polypeptides were employed as substrates in kinetic analyses of the reaction mechanism for the catalytic subunit of a cyclic AMP-dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) from calf thymus. This enzyme preparation was shown to catalyze the transfer of phosphate from ATP to histone H1 from calf thymus, as well as to two synthetic polypeptides, Arg-Lys-Ala-Ser-Gly-Pro (H1-6) and Arg-Arg-Lys-Ala-Ser-Gly-Pro (H1-7), corresponding to the amino acid sequence about serine-38 in calf H1. A related, basic heptapeptide corresponding to a sequence from pig liver pyruvate kinase, Leu-Arg-Arg-Ala-Ser-Leu-Gly (K), was also a substrate. The stoichiometry of peptide phosphorylation was established in each case as the transfer of 1 mol of phosphate from the gamma position of MgATP to the serine hydroxyl of 1 mol of the peptide. Steady-state, initial-velocity, kinetic parameters were determined for each substrate, using various concentrations of ATP. Under the conditions used, all synthetic peptides reacted with greater maximum velocities than whole histone H1. Nevertheless, the K(m) for H1, 54 muM, was lower than the K(m) values of the synthetic substrates. The most efficient substrate was peptide K, which had a V(max) of 50.6 mumol/min per mg of kinase and a K(m) of 63 muM. In the absence of peptide substrate no ATPase activity was detectable at a sensitivity of 0.05% of the rate of peptide phosphorylation, suggesting that ATP is not cleaved to form an unstable phosphoenzyme complex. The data are consistent with a sequential reaction mechanism involving a ternary complex between enzyme, polypeptide substrate, and ATP.  相似文献   

11.
Lysosomal beta-galactosidase is required for the degradation of GM1 ganglioside and other glycolipids and glycoproteins with a terminal galactose moiety. Deficiency of this enzyme leads to the lysosomal storage disorder, GM1 gangliosidosis, marked by severe neurodegeneration resulting in premature death. As a step towards preclinical studies for enzyme replacement therapy in an animal model of GM1 gangliosidosis, a feline beta-galactosidase cDNA was cloned into a mammalian expression vector and subsequently expressed in Chinese hamster ovary (CHO-K1) cells. The enzyme secreted into culture medium exhibited specific activity on two synthetic substrates as well as on the native beta-galactosidase substrate, GM1 ganglioside. The enzyme was purified from transfected CHO-K1 cell culture medium by chromatography on PATG-agarose. The affinity-purified enzyme preparation consisted mainly of the protein with approximate molecular weight of 94 kDa and displayed immunoreactivity with antibodies raised against a 16-mer synthetic peptide corresponding to C-terminal amino acid sequence deduced from the feline beta-galactosidase cDNA.  相似文献   

12.
A novel assay for factor XIII is described that utilizes exclusively small synthetic peptides as substrates for the cross-linking reaction catalyzed by activated factor XIII (FXIIIa). The acyl donor substrate (selection peptide) is immobilized on a microplate via biotin while the acyl acceptor substrate (detection peptide) is labeled with the fluorochrome Oregon green to allow sensitive detection without the need for secondary enzyme systems for signal amplification. Starting with an amino acid sequence from the fibrin gamma-chain (GQQHHLGGAKQAGDV) as a prototype peptide, the influence of amino acid exchanges were investigated with respect to their impact on the FXIIIa-catalyzed reaction. It was found that FXIIIa readily accepts a broad range of substrate peptides, with a proline neighboring the essential lysine having the most detrimental effect. The assay appears to be valuable for the molecular characterization of factor XIII and may be used for a deeper investigation into the substrate requirements of this final enzyme of wound repair, and eventually also for the characterization of other transglutaminases.  相似文献   

13.
Proteolytic enzymes have great significance in medicine and the pharmaceutical industry and are applied in multiple fields of life sciences. Therefore, cost-efficient, reliable and sensitive real-time monitoring methods are highly desirable to measure protease activity. In this paper, we describe the development of a new experimental approach for investigation of proteolytic enzymes. The method was designed by the combination of recombinant fusion protein substrates and bio-layer interferometry (BLI). The protease (PR) of human immunodeficiency virus type 1 (HIV-1) was applied as model enzyme to set up and test the method. The principle of the assay is that the recombinant protein substrates immobilized to the surface of biosensor are specifically cleaved by the PR, and the substrate processing can be followed by measuring change in the layer thickness by optical measurement. We successfully used this method to detect the HIV-1 PR activity in real time, and the initial rate of the signal decrease was found to be proportional to the enzyme activity. Substrates representing wild-type and modified cleavage sites were designed to study HIV-1 PR’s specificity, and the BLI-based measurements showed differential cleavage efficiency of the substrates, which was proven by enzyme kinetic measurements. We applied this BLI-based assay to experimentally confirm the existence of extended binding sites at the surface of HIV-1 PR. We found the measurements may be performed using lysates of cells expressing the fusion protein, without primary purification of the substrate. The designed BLI-based protease assay is high-throughput-compatible and enables real-time and small-volume measurements, thus providing a new and versatile approach to study proteolytic enzymes.  相似文献   

14.
A peptide-based photoaffinity label for the catalytic subunit of the cAMP-dependent protein kinase was prepared from the amino acid p-benzoyl-L-phenylalanine [L-Phe(pBz)]. By using solid-phase peptide synthesis methodology, DL-Phe(pBz) was incorporated into the cAMP-dependent protein kinase substrate Leu-Arg-Arg-Ala-Ser-Leu-Gly in place of the phosphorylatable serine. The diastereomeric peptides were separated by reverse-phase HPLC. The peptide substrate analog containing L-Phe(pBz) had a Ki of approximately 110 microM at pH 7.5. When photolyzed at 350 nm in the presence of the enzyme, this peptide caused time- and concentration-dependent inactivation. Radioactive acetylated L-Phe(pBz) peptide was used to establish the binding stoichiometry of peptide to enzyme; these results, together with protection experiments, showed the photoaffinity labeling to be specific (approximately 1:1). To identify the residues that were modified on the catalytic subunit, the photoinactivated enzyme was cleaved with CNBr and V8 protease (Staphylococcus aureus). The resulting peptide fragments were purified by HPLC and were sequenced; these experiments identified the modified residues as Gly-125 and Met-127. This region of the cAMP-dependent protein kinase catalytic subunit contains many residues that are conserved in serine- and tyrosine-protein kinases.  相似文献   

15.
Expression of BAX, without another death stimulus, proved sufficient to induce a common pathway of apoptosis. This included the activation of interleukin 1β-converting enzyme (ICE)-like proteases with cleavage of the endogenous substrates poly(ADP ribose) polymerase and D4-GDI (GDP dissociation inhibitor for the rho family), as well as the fluorogenic peptide acetyl-Asp-Glu-Val-Asp-aminotrifluoromethylcoumarin (DEVD-AFC). The inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk) successfully blocked this protease activity and prevented FAS-induced death but not BAX-induced death. Blocking ICE-like protease activity prevented the cleavage of nuclear and cytosolic substrates and the DNA degradation that followed BAX induction. However, the fall in mitochondrial membrane potential, production of reactive oxygen species, cytoplasmic vacuolation, and plasma membrane permeability that are downstream of BAX still occurred. Thus, BAX-induced alterations in mitochondrial function and subsequent cell death do not apparently require the known ICE-like proteases.  相似文献   

16.
GFP and the red fluorescent protein, DsRed, have been combined to design a protease assay that allows not only for fluorescence resonance energy transfer (FRET) studies but also for dual-color crosscorrelation analysis, a single-molecule-based method that selectively probes the concomitant movement of two distinct tags. The measurement principle is based on a spectrally resolved detection of single molecules diffusing in and out of a diffraction-limited laser focus. Double-labeled substrate molecules are separated into two single-labeled products by specific cleavage at a protease cleavage site between the two flanking tags, DsRed and GFP, thus disrupting joint fluctuations in the two detection channels and terminating FRET between the two labels. In contrast to enzyme assays based solely on FRET, this method of dual-color crosscorrelation is not limited to a certain range of distances between the fluorophores and is much more versatile with respect to possible substrate design. To simplify the measurement setup, two-photon excitation was used, allowing for simultaneous excitation of both tags with a single infrared laser wavelength. The general concept was experimentally verified with a GFP-peptide-DsRed construct containing the cleavage site for tobacco etch virus protease. Two-photon excitation in the infrared and the use of cloneable tags make this assay easily adaptable to intracellular applications. Moreover, the combination of FRET and crosscorrelation analysis in a single-molecule-based approach promises exciting perspectives for miniaturized high-throughput screening based on fluorescence spectroscopy.  相似文献   

17.
18.
A novel assay was developed for evaluation of mouse angiotensin-converting enzyme (ACE) 2 and recombinant human ACE2 (rACE2) activity. Using surface-enhanced laser desorption/ionization time of flight mass spectrometry (MS) with ProteinChip Array technology, ACE1 and ACE2 activity could be measured using natural peptide substrates. Plasma from C57BL/6 mice, kidney from wild-type and ACE2 knockout mice, and rACE2 were used for assay validation. Plasma or tissue extracts were incubated with angiotensin I (Ang I; 1296 m/z) or angiotensin II (Ang II; 1045 m/z). Reaction mixtures were spotted onto the ProteinChips WCX2 and peptides detected using surface-enhanced laser desorption/ionization time of flight MS. MS peaks for the substrates, Ang I and Ang II, and the generated peptides, Ang (1-7) and Ang (1-9), were monitored. The ACE2 inhibitor MLN 4760 (0.01 to 100 micromol/L) significantly inhibited rACE2 activity (IC50=3 nmol/L). Ang II was preferably cleaved by rACE2 (km=5 mumol/L), whereas Ang I was not a good substrate for rACE2. There was no detectable ACE2 activity in plasma. Assay specificity was validated in a model of ACE2 gene deletion. In kidney extract from ACE2-deficient mice, there was no generation of Ang (1-7) from Ang II. However, Ang (1-7) was produced when Ang I was used as a substrate. In conclusion, we developed a specific and sensitive assay for ACE2 activity, which used the natural endogenous peptide substrate Ang II. This approach allows for the rapid screening for ACE2, which has applications in drug testing, high-throughput enzymatic assays, and identification of novel substrates/inhibitors of the renin-angiotensin system.  相似文献   

19.
Membrane metallo-endopeptidase (NEP; neutral endopeptidase, kidney-brush-border neutral proteinase, enkephalinase, EC 3.4.24.11) cleaves peptides at the amino side of hydrophobic amino acids. While the enzyme is known to be in organs such as kidney and brain, we found it in human neutrophils. These cells cleaved the NEP substrate glutaryl (Glut)-Ala-Ala-Phe-(4-methoxynaphthylamine) (Glut-Ala-Ala-Phe-MNA) at a rate of 9.5 nmol X hr-1 per 10(6) cells, and phosphoramidon (1 microM) inhibited the hydrolysis by 90%. Intact neutrophils from donors who smoked had NEP activities about twice that of nonsmokers. Subcellular fractionation and sucrose density gradient centrifugation of lysed neutrophils showed that most of the NEP activity was membrane bound. A washed membrane fraction from human neutrophils rapidly cleaved 0.5 mM Glut-Ala-Ala-Phe-MNA (96 nmol X min-1 X mg-1) and the hydrolysis was inhibited by phosphoramidon and by specific antiserum to human renal NEP. The washed membrane fraction also rapidly cleaved 0.1 mM bradykinin (34 nmol X min-1 mg-1) and 0.1 mM fMet-Leu-Phe (49 nmol X min-1 X mg-1). The membrane-bound enzyme cleaved the peptide substrates at the same site as the homogeneous human renal NEP, and phosphoramidon and thiorphan inhibited the hydrolysis. Kinetic studies with pure human renal NEP showed that the chemotactic peptide fMet-Leu-Phe was one of the best biologically active substrates (Km, 59 X 10(-6) M; kcat, 3654 min-1). Immunocytochemistry at the light microscopic level revealed a high concentration of NEP on the cell membrane of neutrophils. This was confirmed with electron microscopy using the immunogold technique on ultrathin cryosections. These studies indicate that NEP in neutrophils may have important functions in inflammation and chemotaxis.  相似文献   

20.
The intracellular degradation of many proteins is mediated in an ATP-dependent manner by large assemblies comprising a chaperone ring complex associated coaxially with a proteolytic cylinder, e.g., ClpAP, ClpXP, and HslUV in prokaryotes, and the 26S proteasome in eukaryotes. Recent studies of the chaperone ClpA indicate that it mediates ATP-dependent unfolding of substrate proteins and directs their ATP-dependent translocation into the ClpP protease. Because the axial passageway into the proteolytic chamber is narrow, it seems likely that unfolded substrate proteins are threaded from the chaperone into the protease, suggesting that translocation could be directional. We have investigated directionality in the ClpA/ClpP-mediated reaction by using two substrate proteins bearing the COOH-terminal ssrA recognition element, each labeled near the NH(2) or COOH terminus with fluorescent probes. Time-dependent changes in both fluorescence anisotropy and fluorescence resonance energy transfer between donor fluorophores in the ClpP cavity and the substrate probes as acceptors were measured to monitor translocation of the substrates from ClpA into ClpP. We observed for both substrates that energy transfer occurs 2--4 s sooner with the COOH-terminally labeled molecules than with the NH(2)-terminally labeled ones, indicating that translocation is indeed directional, with the COOH terminus of the substrate protein entering ClpP first.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号