共查询到20条相似文献,搜索用时 15 毫秒
1.
Adolescence is defined by puberty and represents a period characterized by neural circuitry maturation (e.g., fronto-striatal systems) facilitating cognitive improvements. Though studies have characterized age-related changes, the extent to which puberty influences maturation of fronto-striatal networks is less known. Here, we combine two longitudinal datasets to characterize the role of puberty in the development of fronto-striatal resting-state functional connectivity (rsFC) and its relationship to inhibitory control in 106 10–18-year-olds. Beyond age effects, we found that puberty was related to decreases in rsFC between the caudate and the anterior vmPFC, rostral and ventral ACC, and v/dlPFC, as well as with rsFC increases between the dlPFC and nucleus accumbens (NAcc) across males and females. Stronger caudate rsFC with the dlPFC and vlPFC during early puberty was associated with worse inhibitory control and slower correct responses, respectively, whereas by late puberty, stronger vlPFC rsFC with the dorsal striatum was associated with faster correct responses. Taken together, our findings suggest that certain fronto-striatal connections are associated with pubertal maturation beyond age effects, which, in turn are related to inhibitory control. We discuss implications of puberty-related fronto-striatal maturation to further our understanding of pubertal effects related to adolescent cognitive and affective neurodevelopment. 相似文献
2.
Functional connectivity (FC) between the amygdala and the ventromedial prefrontal cortex underlies socioemotional functioning, a core domain of impairment in autism spectrum disorder (ASD). Although frontoamygdala circuitry undergoes dynamic changes throughout development, little is known about age-related changes in frontoamygdala networks in ASD. Here we characterize frontoamygdala resting-state FC in a cross-sectional sample (ages 7–25) of 58 typically developing (TD) individuals and 53 individuals with ASD. Contrary to hypotheses, individuals with ASD did not show different age-related patterns of frontoamygdala FC compared with TD individuals. However, overall group differences in frontoamygdala FC were observed. Specifically, relative to TD individuals, individuals with ASD showed weaker frontoamygdala FC between the right basolateral (BL) amygdala and the rostral anterior cingulate cortex (rACC). These findings extend prior work to a broader developmental range in ASD, and indicate ASD-related differences in frontoamygdala FC that may underlie core socioemotional impairments in children and adolescents with ASD. 相似文献
3.
Veer IM Oei NY Spinhoven P van Buchem MA Elzinga BM Rombouts SA 《Psychoneuroendocrinology》2012,37(7):1039-1047
Whether glucocorticoids mediate medial prefrontal cortex (mPFC) regulation of the amygdala in humans remains unclear. In the current study we investigated whether cortisol levels under relatively stress-free circumstances are related to amygdala resting-state functional connectivity with the mPFC. Resting-state fMRI data were acquired from 20 healthy male participants. Salivary cortisol was sampled at multiple times throughout the experiment. The cortisol area under the curve increase (AUCi) was calculated as a measure of cortisol dynamics. Next, seed based correlations were employed on the resting-state fMRI data to reveal regions of amygdala functional connectivity related to variations in cortisol AUCi. The resulting statistical maps were corrected for multiple comparisons using cluster based thresholding (Z>2.3, p<.05). Two regions in the mPFC showed decreasing negative functional connectivity with the amygdala when a lesser decrease in cortisol AUCi was observed: the perigenual anterior cingulate cortex and medial frontal pole (BA10). Although we initially showed a relation with cortisol AUCi, it seemed that the baseline cortisol levels were actually driving this effect: higher baseline cortisol levels related to stronger negative functional connectivity with the mPFC. Endogenous cortisol levels may modulate amygdala functional connectivity with specific regions in the mPFC, even under relatively stress-free circumstances. Our results corroborate previous findings from both animal and human studies, suggesting cortisol-mediated regulation of the amygdala by the mPFC. We propose that through this feedback mechanism the stress response might be adjusted, pointing to the putative role of cortisol in modulating stress- and, more generally, emotional responses. 相似文献
4.
The adaptive calibration model suggests exposure to highly stressful or highly supportive early environments sensitizes the brain to later environmental input. We examined whether family and peer experiences predict neural sensitivity to social cues in 85 adolescent girls who completed a social feedback task during a functional brain scan and an interview assessing adversity. Whole-brain functional connectivity (FC) analyses revealed curvilinear associations between social experiences and FC between the ventral striatum and regions involved in emotion valuation, social cognition, and salience detection (e.g., insula, MPFC, dACC, dlPFC) during social reward processing, such that stronger FC was found at both very high and very low levels of adversity. Moreover, exposure to adversity predicted stronger FC between the amygdala and regions involved in salience detection, social cognition, and emotional memory (e.g., sgACC, precuneus, lingual gyrus, parahippocampal gyrus) during social threat processing. Analyses also revealed some evidence for blunted FC (VS-PCC for reward; amygdala-parahippocampal gyrus for threat) at very high and low levels of adversity. Overall, results suggest social experiences may play a critical role in shaping neural sensitivity to social feedback during adolescence. Future work will need to elucidate the implications of these patterns of neural function for the development of psychopathology. 相似文献
5.
Dorsal striatum, principally comprising of caudate and putamen, is well-known to support motor function but also various higher-order cognitive functions. This is enabled by developing short- and long-range connections to distributed cortical regions throughout the life span, but few studies have examined developmental changes from young children to adults in the same cohort. Here we investigated the development of dorsal-striatal network in a large (n = 476), single-site sample of healthy subjects 3–42 years of age in three groups (children, adolescence, adults). The results showed that the connectivity within the striatum and to sensorimotor regions was established at an early stage of life and remained strong in adolescence, supporting that sensory-seeking behaviours and habit formation are important learning mechanisms during the developmental periods. This connectivity diminished with age, as many behaviours become more efficient and automated. Adolescence demonstrated a remarkable transition phase where the connectivity to dorsolateral prefrontal cortex emerged but connectivity to the dorsomedial prefrontal and posterior brain, which belong to the ventral attentional and default mode networks, was only seen in adults. This prolonged maturation in between-network integration may explain the behavioural characteristics of adolescents in that they exhibit elaborated cognitive performance but also demonstrate high risk-taking behaviours. 相似文献
6.
创伤后应激障碍患者杏仁核为主的边缘系统静息态脑功能磁共振研究 总被引:1,自引:0,他引:1
目的 观察静息状态下创伤后应激障碍(posttraumatic stress disorder,PTSD)患者以杏仁核为主的脑区的脑功能改变.方法 采用基于低频振幅(amplitude of low frequency fluctuation,ALFF)算法的静息功能磁共振成像技术(fMRI)对10例临床确诊的PISD患者和10例性别、年龄及受教育年限匹配的正常对照进行静息fMRI检查,采用t检验比较两组的杏仁核等脑区基于血氧水平依赖活动的差异.结果 与正常对照组相比,PTSD患者组右侧杏仁核ALFF活性明显增加(P<0.01),海马旁回、钩回等边缘系统其他脑区亦见ALFF活性增加(P<0.01),而前额叶、岛叶及楔前叶ALFF活性减低(P<0.01).结论 PTSD患者静息态下包括杏仁核在内的边缘系统多个脑区活动增强,前额叶、岛叶、楔前叶等脑区功能抑制. 相似文献
7.
Rikkert Hindriks Tommy A. A. Broeders Menno M. Schoonheim Linda Douw Fernando Santos Wessel van Wieringen Prejaas K. B. Tewarie 《Human brain mapping》2024,45(5):e26663
Blood-level oxygenation-dependent (BOLD) functional magnetic resonance imaging (fMRI) is the most common modality to study functional connectivity in the human brain. Most research to date has focused on connectivity between pairs of brain regions. However, attention has recently turned towards connectivity involving more than two regions, that is, higher-order connectivity. It is not yet clear how higher-order connectivity can best be quantified. The measures that are currently in use cannot distinguish between pairwise (i.e., second-order) and higher-order connectivity. We show that genuine higher-order connectivity can be quantified by using multivariate cumulants. We explore the use of multivariate cumulants for quantifying higher-order connectivity and the performance of block bootstrapping for statistical inference. In particular, we formulate a generative model for fMRI signals exhibiting higher-order connectivity and use it to assess bias, standard errors, and detection probabilities. Application to resting-state fMRI data from the Human Connectome Project demonstrates that spontaneous fMRI signals are organized into higher-order networks that are distinct from second-order resting-state networks. Application to a clinical cohort of patients with multiple sclerosis further demonstrates that cumulants can be used to classify disease groups and explain behavioral variability. Hence, we present a novel framework to reliably estimate genuine higher-order connectivity in fMRI data which can be used for constructing hyperedges, and finally, which can readily be applied to fMRI data from populations with neuropsychiatric disease or cognitive neuroscientific experiments. 相似文献
8.
Childhood adversity has been associated with elevated risk for psychopathology. We investigated whether development of functional brain networks important for executive function (EF) could serve as potential mediators of this association. We analyzed data of 475 adolescents, a subsample of the multisite longitudinal NCANDA (National Consortium on Alcohol and Neurodevelopment in Adolescence) cohort with completed measures of childhood trauma, resting-state functional brain connectivity data, and symptoms of internalizing and externalizing psychopathology at baseline and follow-up years 1–4. Using parallel process latent growth models, we found that childhood adversity was associated with increased risk for externalizing/internalizing behaviors. We specifically investigated whether functional connectivity of the dorsal anterior cingulate cortex (dACC) to brain regions within the cingulo-opercular (CO) network, a well-known EF network that underlies control of attention and self-regulation, mediates the association between adversity and symptoms of psychopathology. We found that childhood adversity, specifically child neglect was negatively associated with functional connectivity of the dACC within the CO network, and that this connectivity mediated the association between neglect and externalizing behaviors. Our study advances a mechanistic understanding of how childhood adversity may impact the development of psychopathology, highlighting the relevance of dACC functional networks particularly for externalizing psychopathology. 相似文献
9.
10.
《The International journal of neuroscience》2012,122(12):1150-1156
AbstractObjectives:Schizophrenia is a predominant product of pathological alterations distributed throughout interconnected neural systems. Functional connections (FCs) methodology is an effective lever to investigate macroscopic neural activity patterns underlying critical aspects of cognition and behaviour. However, region properties of brain architecture have been less investigated by special markers of dynamical graph in general mental disorders.Methods:Embracing the eigenvector centrality in holism significance, our important process is to uncover noticeable edges and regions with antagonistic stance between morbid and normal FCs of 67 healthy controls (HCs) and 53 chronic schizophrenia patients (SZs).Results: Results suggest that, there are 12 abnormal edges with significant p value of FCs weight, such as lingual gyrus L versus cuneus L, thalamus L versus middle frontal gyrus R, superior temporal gyrus R versus thalamus R. Importantly, SZs’ superior temporal gyrus R, parahippocampal gyrus L and parahippocampal gyrus R are endowed with different eigenvector centrality scores.Conclusion: Consistent with SZs’ positive symptoms of hallucinations, and negative symptoms of thinking impairment, it can be infer that the functional separation and integration are destroyed in schizophrenia. Thought the strict contrastive study, it is worth stressing that eigenvector centrality is a meaningful biological marker to excavating schizophrenic psychopathology. 相似文献
11.
Although decades of research have shown associations between early caregiving adversity, stress physiology and limbic brain volume (e.g., amygdala, hippocampus), the developmental trajectories of these phenotypes are not well characterized. In the current study, we used an accelerated longitudinal design to assess the development of stress physiology, amygdala, and hippocampal volume following early institutional care. Previously Institutionalized (PI; N = 93) and comparison (COMP; N = 161) youth (ages 4–20 years old) completed 1–3 waves of data collection, each spaced approximately 2 years apart, for diurnal cortisol (N = 239) and structural MRI (N = 156). We observed a developmental shift in morning cortisol in the PI group, with blunted levels in childhood and heightened levels in late adolescence. PI history was associated with reduced hippocampal volume and reduced growth rate of the amygdala, resulting in smaller volumes by adolescence. Amygdala and hippocampal volumes were also prospectively associated with future morning cortisol in both groups. These results indicate that adversity-related physiological and neural phenotypes are not stationary during development but instead exhibit dynamic and interdependent changes from early childhood to early adulthood. 相似文献
12.
Overlapping and segregated resting‐state functional connectivity in patients with major depressive disorder with and without childhood neglect 下载免费PDF全文
Lifeng Wang Zhengjia Dai Hongjun Peng Liwen Tan Yuqiang Ding Zhong He Yan Zhang Mingrui Xia Zexuan Li Weihui Li Yi Cai Shaojia Lu Mei Liao Li Zhang Weiwei Wu Yong He Lingjiang Li 《Human brain mapping》2014,35(4):1154-1166
Many studies have suggested that childhood maltreatment increase risk of adulthood major depressive disorder (MDD) and predict its unfavorable treatment outcome, yet the neural underpinnings associated with childhood maltreatment in MDD remain poorly understood. Here, we seek to investigate the whole‐brain functional connectivity patterns in MDD patients with childhood maltreatment. Resting‐state functional magnetic resonance imaging was used to explore intrinsic or spontaneous functional connectivity networks of 18 MDD patients with childhood neglect, 20 MDD patients without childhood neglect, and 20 healthy controls. Whole‐brain functional networks were constructed by measuring the temporal correlations of every pairs of brain voxels and were further analyzed by using graph‐theory approaches. Relative to the healthy control group, the two MDD patient groups showed overlapping reduced functional connectivity strength in bilateral ventral medial prefrontal cortex/ventral anterior cingulate cortex. However, compared with MDD patients without a history of childhood maltreatment, those patients with such a history displayed widespread reduction of functional connectivity strength primarily in brain regions within the prefrontal‐limbic‐thalamic‐cerebellar circuitry, and these reductions significantly correlated with measures of childhood neglect. Together, we showed that the MDD groups with and without childhood neglect exhibited overlapping and segregated functional connectivity patterns in the whole‐brain networks, providing empirical evidence for the contribution of early life stress to the pathophysiology of MDD. Hum Brain Mapp 35:1154–1166, 2014. © 2013 Wiley Periodicals, Inc. 相似文献
13.
Individuals with schizophrenia consistently display deficits in a multitude of cognitive domains, but the neurobiological source of these cognitive impairments remains unclear. By analyzing the functional connectivity of resting-state functional magnetic resonance imaging (rs-fcMRI) data in clinical populations like schizophrenia, research groups have begun elucidating abnormalities in the intrinsic communication between specific brain regions, and assessing relationships between these abnormalities and cognitive performance in schizophrenia. Here we review studies that have reported analysis of these brain–behavior relationships. Through this systematic review we found that patients with schizophrenia display abnormalities within and between regions comprising (1) the cortico-cerebellar-striatal-thalamic loop and (2) task-positive and task-negative cortical networks. Importantly, we did not observe unique relationships between specific functional connectivity abnormalities and distinct cognitive domains, suggesting that the observed functional systems may underlie mechanisms that are shared across cognitive abilities, the disturbance of which could contribute to the “generalized” cognitive deficit found in schizophrenia. We also note several areas of methodological change that we believe will strengthen this literature. 相似文献
14.
Childhood abuse confers risk for psychopathology and pathophysiology in midlife through intermediate pathways that remain unclear. Systemic inflammation was tested in the present study as one pathway that may link physical abuse in childhood to the adult functioning of corticolimbic brain circuits broadly implicated in risk for poor mental and physical health. Midlife adults (N = 303; 30–51 years of age; 149 women) without psychiatric, immune, or cardiovascular diagnoses provided retrospective reports of childhood physical abuse. Functional connectivity between corticolimbic brain areas (amygdala, hippocampus, ventromedial prefrontal cortex [vmPFC], anterior cingulate cortex [ACC]) was measured at rest using functional magnetic resonance imaging. Circulating levels of interleukin(IL)-6, a pro-inflammatory cytokine previously linked to childhood abuse and corticolimbic functionality, were measured via blood draw. Consistent with prior studies, retrospectively reported childhood physical abuse was associated positively with circulating IL-6, and negatively with connectivity between the amygdala and vmPFC. IL-6 was also associated negatively with several corticolimbic functional connections, including amygdala-vmPFC connectivity. Moreover, path analyses revealed an indirect effect of IL-6 that partially explained the association between childhood physical abuse and adult amygdala-vmPFC connectivity. Consistent with recent neurobiological models of early life influences on disease risk across the lifespan, associations between childhood physical abuse and adulthood corticolimbic circuit functionality may be partially explained by inflammatory processes. 相似文献
15.
Posttraumatic stress disorder (PTSD) has been associated with altered resting-state functional connectivity (rs-FC) of several brain regions within the salience (SN) and default-mode (DMN) networks, including the hippocampus. However, most rs-FC studies have not focused primarily on the hippocampus, nor have they appreciated its structural heterogeneity, despite clear evidence for a dissociation between posterior and anterior hippocampal connectivity. Here, we examine rs-FC of anterior and posterior hippocampus with key regions in the SN (amygdala, insula, and dorsal anterior cingulate cortex/pre-supplementary motor area) and DMN (ventromedial prefrontal cortex, posterior cingulate cortex, and precuneus) previously implicated in PTSD, using a seed-based approach. Resting-state magnetic resonance images were obtained from 48 PTSD patients and 34 trauma-exposed healthy participants (TEHC). Results indicated no group differences when examining the hippocampus as a whole. However, examining the anterior and posterior hippocampus revealed a loss of anterior to posterior connectivity differentiation in PTSD patients. The PTSD group also demonstrated lower negative connectivity of the posterior hippocampus-precuneus pathway compared with the TEHC group. Finally, as differences in anterior and posterior hippocampus connectivity have been also related to age, we performed a secondary analysis exploring the association between age and posterior- and anterior-hippocampus connectivity in both groups. Results showed that among PTSD patients, increased age had the effect of normalizing posterior hippocampus-precuneus and hippocampus-posterior cingulate cortex connectivity, whereas no such effect was noted for the control group. These findings highlight the need for PTSD connectivity research to consider sub-parts of the hippocampus and to account for age-related connectivity differences. 相似文献
16.
Relatively little is known about associations between peripheral inflammation and neural function in humans. Neuroimaging studies in adults have suggested that elevated peripheral inflammatory markers are associated with altered resting state functional connectivity (rsFC) in several brain networks associated with mood and cognition. Few studies have examined these associations in adolescents, yet scarce data from adolescents point to different networks than adult studies. The current study examined the associations between peripheral inflammation and rsFC in a community sample of adolescents (n = 70; age, 12–15 years; 32 female, 36 male, 2 nonbinary). After blood sampling, an fMRI scan was performed to assess rsFC. Assay for serum inflammatory markers, including interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and C-reactive protein (CRP), was performed. Results indicated that higher TNF-α was associated with altered rsFC between the right amygdala and left striatum and between the right inferior frontal gyrus and left parietal cortex (p < 0.05 whole-brain corrected). Associations with IL-6 and CRP were not significant. In contrast with findings in adults, inflammation may have unique links with the connectivity of the developing adolescent brain. Results have implications for understanding how peripheral inflammation may influence connectivity during adolescence, when neural networks are undergoing major developmental changes. 相似文献
17.
Zhou Y Shu N Liu Y Song M Hao Y Liu H Yu C Liu Z Jiang T 《Schizophrenia Research》2008,100(1-3):120-132
Hippocampus has been implicated in participating in the pathophysiology of schizophrenia. However, the functional and anatomical connectivities between hippocampus and other regions are rarely concurrently investigated in schizophrenia. In the present study, both functional magnetic resonance imaging (fMRI) during rest and diffusion tensor imaging (DTI) were performed on 17 patients with paranoid schizophrenia and 14 healthy subjects. Resting-state functional connectivities of the bilateral hippocampi were separately analyzed by selecting the anterior hippocampus as region of interest. The fornix body was reconstructed by diffusion tensor tractography, and the integrity of this tract was evaluated using fractional anisotropy (FA). In patients with schizophrenia, the bilateral hippocampi showed reduced functional connectivities to some regions which have been reported to be involved in episodic memory, such as posterior cingulate cortex, extrastriate cortex, medial prefrontal cortex, and parahippocampus gyrus. We speculated that these reduced connectivity may reflect the disconnectivity within a neural network related to the anterior hippocampus in schizophrenia. Meanwhile the mean FA of the fornix body was significantly reduced in patients, indicating the damage in the hippocampal anatomical connectivity in schizophrenia. The concurrence of the functional disconnectivity and damaged anatomical connectivity between the hippocampus and other regions in schizophrenia suggest that the functional–anatomical relationship need to be further investigated. 相似文献
18.
Adam X. Gorka Annchen R. Knodt Ahmad R. Hariri 《Social cognitive and affective neuroscience》2015,10(4):501-507
Animal studies reveal that the amygdala promotes attention and emotional memory, in part, by driving activity in downstream target regions including the prefrontal cortex (PFC) and hippocampus. Prior work has demonstrated that the amygdala influences these regions directly through monosynaptic glutamatergic signaling, and indirectly by driving activity of the cholinergic basal forebrain and subsequent downstream acetylcholine release. Yet to date, no work has addressed the functional relevance of the cholinergic basal forebrain in facilitating signaling from the amygdala in humans. We set out to determine how blood oxygen level-dependent signal within the amygdala and cholinergic basal forebrain interact to predict neural responses within downstream targets. Here, we use functional connectivity analyses to demonstrate that the cholinergic basal forebrain moderates increased amygdala connectivity with both the PFC and the hippocampus during the processing of biologically salient stimuli in humans. We further demonstrate that functional variation within the choline transporter gene predicts the magnitude of this modulatory effect. Collectively, our results provide novel evidence for the importance of cholinergic signaling in modulating neural pathways supporting arousal, attention and memory in humans. Further, our results may shed light on prior association studies linking functional variation within the choline transporter gene and diagnoses of major depression and attention-deficit hyperactivity disorder. 相似文献
19.
Whitwell JL Avula R Master A Vemuri P Senjem ML Jones DT Jack CR Josephs KA 《Parkinsonism & related disorders》2011,17(8):599-605
Progressive supranuclear palsy (PSP) is associated with pathological changes along the dentatorubrothalamic tract and in premotor cortex. We aimed to assess whether functional neural connectivity is disrupted along this pathway in PSP, and to determine how functional changes relate to changes in structure and diffusion. Eighteen probable PSP subjects and 18 controls had resting-state (task-free) fMRI, diffusion tensor imaging and structural MRI. Functional connectivity was assessed between thalamus and the rest of the brain, and within the basal ganglia, salience and default mode networks (DMN). Patterns of atrophy were assessed using voxel-based morphometry, and patterns of white matter tract degeneration were assessed using tract-based spatial statistics. Reduced in-phase functional connectivity was observed between the thalamus and premotor cortex including supplemental motor area (SMA), striatum, thalamus and cerebellum in PSP. Reduced connectivity in premotor cortex, striatum and thalamus were observed in the basal ganglia network and DMN, with subcortical salience network reductions. Tract degeneration was observed between cerebellum and thalamus and in superior longitudinal fasciculus, with grey matter loss in frontal lobe, premotor cortex, SMA and caudate nucleus. SMA functional connectivity correlated with SMA volume and measures of cognitive and motor dysfunction, while thalamic connectivity correlated with degeneration of superior cerebellar peduncles. PSP is therefore associated with disrupted thalamocortical connectivity that is associated with degeneration of the dentatorubrothalamic tract and the presence of cortical atrophy. 相似文献
20.
Lijing Niu Xiaoqi Song Qian Li Lanxin Peng Haowei Dai Jiayuan Zhang Keyin Chen Tatia M. C. Lee Ruibin Zhang 《Human brain mapping》2024,45(2):e26621
Recent studies have suggested that emotional reactivity changes with age, but the neural basis is still unclear. The insula may be critical for the emotional reactivity. The current study examined how ageing affects emotional reactivity using the emotional reactivity task data from a human sample (Cambridge Center for Age and Neuroscience, N = 243, age 18–88 years). The resting-state magnetic resonance measurements from the same sample were used to investigate the potential mechanisms of the insula. In the initial analysis, we conducted partial correlation assessments to examine the associations between emotional reactivity and age, as well as between the gray matter volume (GMV) of the insula and age. Our results revealed that emotional reactivity, especially positive emotional reactivity, decreased with age and that the GMV of the insula was negatively correlated with age. Subsequently, the bilateral insula was divided into six subregions to calculate the whole brain resting-state functional connectivity (rsFC). The mediating effect of the rsFC on age and emotional reactivity was then calculated. The results showed that the rsFC of the left anterior insula (AI) with the right hippocampus, and the rsFCs of the right AI with the striatum and the thalamus were mediated the relationship between positive emotional reactivity and age. Our findings suggest that attenuating emotional reactivity with age may be a strategic adaptation fostering emotional stability and diminishing emotional vulnerability. Meanwhile, the findings implicate a key role for the AI in the changes in positive emotional reactivity with age. 相似文献