首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Through direct interaction with the voltage-dependent anion channel (VDAC), proapoptotic Bcl-2 family members such as Bax and Bak induce apoptogenic mitochondrial cytochrome c release and membrane potential (Deltapsi) loss in isolated mitochondria. Using isolated mitochondria, we showed that Bid and Bik, BH3-only proteins from the Bcl-2 family, induced cytochrome c release but not Deltapsi loss. Unlike Bax/Bak, the cytochrome c release induced by Bid/Bik was Ca(2+)-independent, cyclosporin A-insensitive, and respiration-independent. Furthermore, in contrast to Bax/Bak, Bid/Bik neither interacted with VDAC nor directly affected the VDAC activity in liposomes. Consistently, Bid/Bik induced apoptosis without Deltapsi loss, whereas Bax induced apoptosis with Deltapsi loss. These findings indicated the involvement of a different mechanism in BH3-only, protein-induced apoptogenic cytochrome c release.  相似文献   

2.
目的 研究组织金属蛋白酶抑制因子3(TIMP-3)重组蛋白对MC3T3-E1成骨细胞凋亡的影响。方法 细胞存活率和凋亡分别用MTT及ELISA检测。Fas,FasL,Bcl-2,Bax,caspase-3,caspase-8,细胞色素c的表达以及JNK,p38,细胞外信号调节激酶(ERK)1/2的磷酸化水平用Western印迹检测。结果 MTT及ELISA检测提示TIMP-3降低MC3T3-E1细胞存活率,诱导MC3T3-E1细胞凋亡。TIMP-1增加Fas、FasL蛋白表达,对Bax、Bcl-2蛋白表达无影响,但可诱导细胞色素c的释放及caspase-8、caspase-3的活化。TIMP-3促进p38和ERK磷酸化,而PD098059(ERK阻断剂)和SB203580(p38阻断剂)消除p38和ERK的促凋亡作用。结论 TIMP-3诱导MC3T3-E1细胞凋亡的信号途径为凋亡受体Fas介导,并有p38、ERK信号转导途径参与。  相似文献   

3.
Ashktorab H  Frank S  Khaled AR  Durum SK  Kifle B  Smoot DT 《Gut》2004,53(6):805-813
BACKGROUND AND AIMS: Previous in vitro and in vivo studies have revealed an association between Helicobacter pylori infection and apoptosis in gastric epithelial cells. Although involvement of the Bcl-2 family of proteins as well as cytochrome c release has been demonstrated in H pylori induced cell death, the exact role of the mitochondria during this type of programmed cell death has not been fully elucidated. Therefore, we sought to determine whether or not Bax translocation and mitochondrial fragmentation occur on exposure of gastric epithelial cells to H pylori, resulting in cell death. METHODS: Experiments were performed with human gastric adenocarcinoma (AGS) cells, AGS cells transfected with the HPV-E6 gene (which inactivates p53 function), AGS-neo cells (transfected with the backbone construct), mouse embryonic fibroblasts (MEFs), and p19(ARF) null (ARF(-/-)) MEFs. Cells were incubated with a cag positive H pylori strain for up to 24 hours, lysed, and cytoplasmic and mitochondrial membrane fractions were analysed by western blot for Bax translocation. RESULTS: Bax translocation was detected in AGS, AGS-neo, and normal MEF cells after exposure to H pylori for three hours, but not in ARF(-/-) MEFs cells. Translocation of Bax after H pylori incubation was also detected in AGS-E6 cells (inactive p53 gene) but to a lesser degree than in AGS-neo cells. In parallel studies, the mitochondrial morphology of living cells infected with H pylori was assessed by confocal microscopy. Mitochondrial fragmentation was detectable after 10 hours of H pylori incubation with AGS cells and after seven hours with MEF cells. In wild-type MEFs, mitochondrial fragmentation was significantly increased in comparison with ARF null MEFs (43% v 10.4%, respectively). Furthermore, mitochondrial depolarisation and caspase-3 activity were initiated within four hours in cells incubated with H pylori, and these events were inhibited by forced expression of Bcl-2. CONCLUSIONS: These data suggest that during H pylori induced apoptosis, Bax translocates to the mitochondria which subsequently undergo depolarisation and profound fragmentation. Functional ARF and p53 proteins may play an important role in H pylori induced mitochondrial modification.  相似文献   

4.
G3139, an 18-mer phosphorothioate antisense oligonucleotide targeted to the initiation codon region of the Bcl-2 mRNA, can induce caspase-dependent apoptosis via the intrinsic mitochondrial pathway in 518A2 and other melanoma cells. G3139-mediated apoptosis appears to be independent of its ability to down-regulate the expression of Bcl-2 protein, because the release of mitochondrial cytochrome c precedes in time the down-regulation of Bcl-2 protein expression. In this study, we demonstrate the ability of G3139 and other phosphorothioate oligonucleotides to bind directly to mitochondria isolated from 518A2 cells. Furthermore, we show that this interaction leads to the release of cytochrome c in the absence of a mitochondrial membrane permeability transition. Our data further demonstrate that there is an interaction between G3139 and VDAC, a protein that can facilitate the physiologic exchange of ATP and ADP across the outer mitochondrial membrane. Evidence from the electrophysiologic evaluation of VDAC channels reconstituted into phospholipid membranes demonstrates that G3139 is capable of producing greatly diminished channel conductance, indicating a closed state of the VDAC. This effect is oligomer length-dependent, and the ability of phosphorothioate homopolymers of thymidine of variable lengths to cause the release of cytochrome c from isolated mitochondria of 518A2 melanoma cells can be correlated with their ability to interact with VDAC. Because it has been suggested that the closure of VDAC leads to the opening of another outer mitochondrial membrane channel through which cytochrome c can transit, thus initiating apoptosis, it appears that VDAC may be an important pharmacologic target of G3139.  相似文献   

5.
During apoptosis, engagement of the mitochondrial pathway involves a decisive event characterized by the release of mitochondrial intermembrane space proteins, such as cytochrome c. This permeabilization of the mitochondrial outer membrane depends on activation and oligomerization of multidomain Bcl-2-family proteins Bax or Bak. Although specific members of the Bcl-2 family can activate these proapoptotic proteins, we found that heat directly activated Bax or Bak to induce cytochrome c release. A preparation of mitochondria heated at 43 degrees C released cytochrome c in association with Bak oligomerization, and Bcl-xL prevented these events. Similarly, heat induced the oligomerization of recombinant Bax, conferring an ability to permeabilize mitochondria. Compared with wild-type cells, bax(-/-)bak(-/-) mouse embryonic fibroblasts and mitochondria isolated from these cells were resistant to heat-induced cytochrome c release. Cytosol from untreated cells inhibited heat-activated Bax or Bak; however, depletion of cytosolic Bcl-xL ablated this protection. Although mitochondria heated in the presence of cytosol did not release cytochrome c, they displayed a dramatic increase in sensitivity to permeabilization by the BH3-only protein Bid. Additionally, a peptide corresponding to the BH3 domain of Puma counteracted the inhibitory effect of cytosol and permitted heat-activated Bak to permeabilize the mitochondria. Therefore, heat represents a condition under which multidomain proapoptotic proteins are activated, and this activation is regulated by both antiapoptotic and BH3-only members of the Bcl-2 family. Our results support an emerging paradigm, wherein the activation of Bax or Bak and the blockade of antiapoptotic Bcl-2 proteins are pivotal steps in the mitochondrial pathway of apoptosis.  相似文献   

6.
A change of mitochondrial membrane permeability is essential for apoptosis, leading to translocation of apoptogenic cytochrome c and apoptosis-inducing factor into the cytoplasm. We recently showed that the Bcl-2 family of proteins regulate cytochrome c release and the mitochondrial membrane potential (Deltapsi) by directly modulating the activity of the voltage-dependent anion channel (VDAC) through binding. Here we investigated the biochemical role of the conserved N-terminal homology domain (BH4) of Bcl-x(L), which has been shown to be essential for inhibition of apoptosis, with respect to the regulation of mitochondrial membrane permeability and found that BH4 was required for Bcl-x(L) to prevent cytochrome c release and Deltapsi loss. A study using VDAC liposomes revealed that Bcl-x(L), but not Bcl-x(L) lacking the BH4 domain, inhibited VDAC activity. Furthermore, BH4 oligopeptides of Bcl-2 and Bcl-x(L), but not mutant peptides, were able to inhibit both VDAC activity on liposomes even in the presence of Bax and apoptotic Deltapsi loss in isolated mitochondria. It was also shown that the BH4 domain, fused to the protein transduction domain of HIV TAT protein (TAT-BH4), efficiently prevented apoptotic cell death. These results indicate that the BH4 of Bcl-2/Bcl-x(L) is essential and sufficient for inhibiting VDAC activity, which in turn prevents apoptotic mitochondrial changes, and for preventing apoptotic cell death. Finally, the data suggest that the TAT-BH4 peptide is potentially useful as a therapeutic agent for diseases caused by accelerated apoptosis.  相似文献   

7.
AIM: To investigate whether troglitazone (TGZ), the peroxisome proliferator-activated receptor (PPAR) gamma ligand, can induce apoptosis and inhibit cell proliferation in human liver cancer cell line HepG2 and to explore the molecular mechanisms. METHODS: (3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), ((3)H) Thymidine incorporation, Hochest33258 staining, DNA ladder, enzyme-linked immunosorbent assay (ELISA), RT-PCR, Northern and Western blotting analyses were employed to investigate the effect of TGZ on HepG2 cells and related molecular mechanisms.RESULTS: TGZ was found to inhibit the growth of HepG2 cells and to induce apoptosis. During the process, the expression of COX-2 mRNA and protein and Bcl-2 protein was down-regulated, while that of Bax and Bak proteins was up-regulated, and the activity of caspase-3 was elevated. Furthermore, the level of PGE(2) was decreased transiently after 12 h of treatment with 30 microM troglitazone. CONCLUSION: TGZ inhibits cell proliferation and induces apoptosis in HepG2 cells, which may be associated with the activation of caspase-3-like proteases, down-regulation of the expression of COX-2 mRNA and protein, Bcl-2 protein, the elevation of PGE2 levels, and up-regulation of the expressions of Bax and Bak proteins.  相似文献   

8.
AIM: To investigate whether troglitazone (TGZ), theperoxisome proliferator-activated receptor (PPAR) gammaligand, can induce apoptosis and inhibit cell proliferation inhuman liver cancer cell line HepG2 and to explore themolecular mechanisms. METHODS: [3-(4,5)-dimethyithiazol-2-yl]-2,5-diphenyltetrazolium bromide (NTT), [3H] Thymidine incorporation,Hochest33258 staining, DNA ladder, enzyme-linkedimmunosorbent assay (ELISA), RT-PCR, Northern and Western blotting analyses were employed to investigate the effect of TGZ on HepG2 cells and related molecular mechanisms.RESULTS: TGZ was found to inhibit the growth of HepG2cells and to induce apoptosis. During the process, the expression of COX-2 mRNA and protein and Bcl-2 protein was down-regulated, while that of Bax and Bak proteins was up-regulated, and the activity of caspase-3 was elevated.Furthermore, the level of PGE2 was decreased transiently after 12 h of treatment with 30 gM troglitazone. CONCLUSION: TGZ inhibits cell proliferation and induces apoptosis in HepG2 cells, which may be associated with the activation of caspase-3-like proteases, down-regulation of the expression of COX-2 mRNA and protein, Bcl-2 protein,the elevation of PGE2 levels, and up-regulation of the expressions of Bax and Bak proteins.  相似文献   

9.
吴伟琪  施敏  王玉刚  王娜 《胃肠病学》2013,18(3):143-148
背景:组蛋白去乙酰基酶抑制剂(HDACi)是一类新型抗肿瘤药物。曲古霉素A(TSA)是目前研究最为广泛的HDACi之一,已发现其对多种肿瘤细胞具有明显抑制作用,但关于TSA对胃癌作用的研究尚少。目的:观察TSA对人胃癌细胞增殖、凋亡、细胞周期以及相关基因表达的影响,探讨其抑制人胃癌细胞的可能作用机制。方法:以不同浓度TSA(0—1μmol/L)处理人胃癌细胞株AGS和HGC-27。CCK-8实验检测细胞增殖抑制情况,流式细胞术检测细胞凋亡和细胞周期,realtimeRT-PCR和蛋白质印迹法检测细胞凋亡、细胞周期相关基因mRNA和蛋白水平的表达。结果:TSA能剂量依赖性地抑制AGS、HGC-27细胞增殖(P=0.000),对两者的半数致死浓度分别约为0.25μmol/L和0.5μmol/L。TSA能诱导AGS、HGC-27细胞发生G0/G1期和G2/M期阻滞,以G0/G11期阻滞更为明显。TSA对AGS细胞的诱导凋亡作用强于HGC-27细胞(P〈0.05)。TSA尚能上调p21、p53、BaxmRNA和蛋白表达,下调Bel-2、CDK2、cyelinD1mRNA和蛋白表达,作用均呈时间依赖性(P〈0.05)。结论:TSA抑制人胃癌细胞增殖、诱导细胞凋亡的作用可能是通过调节细胞凋亡、细胞周期相关分子、激活多种肿瘤相关信号通路实现的。  相似文献   

10.
17-allylamino-demethoxy geldanamycin (17-AAG) inhibits the chaperone function of heat shock protein-90 (Hsp-90) and promotes the proteasomal degradation of its misfolded client proteins. Here, we demonstrate that treatment of the human acute myeloid leukemia HL-60 cells with 17-AAG attenuates the intracellular levels of a number of Hsp-90 client proteins, including Akt, c-Raf-1, and c-Src. Also, 17-AAG induced the mitochondrial release and cytosolic accumulation of cytochrome c (cyt c) and second mitochondria-derived activator of caspases (Smac)/DIABLO, resulting in the activation of caspase-9 and caspase-3 and apoptosis. Treatment with 17-AAG triggered the B-cell lymphoma-2 (Bcl-2)-associated X protein (Bax) conformational change associated with apoptosis, while Bax-deficient cells were resistant to 17-AAG-induced apoptosis. In addition, in HL-60/Bcl-2 and HL-60/Bcl-xL cells, which ectopically express Bcl-2 and Bcl-xL respectively, 17-AAG-induced Bax conformational change, cytosolic accumulation of cyt c and Smac/DIABLO, and apoptosis were markedly inhibited. Although the rate of 17-AAG-mediated decline in Akt, c-Raf-1, and c-Src levels was blunted, the total decline was not compromised in HL-60/Bcl-2 and HL-60/Bcl-xL cells. Cotreatment with HA14-1, a nonpeptidic ligand that can bind and inhibit the antiapoptotic activity of Bcl-2, significantly overcame the resistance to 17-AAG-induced apoptosis in HL-60/Bcl-2 cells. Together, these findings indicate that although 17-AAG treatment causes the levels of a number of survival-signaling protein kinases to decline, the downstream engagement of the mitochondrial pathway of apoptosis is regulated by the activity of the Bcl-2 family of proteins. Also, neutralizing the antiapoptotic effect of Bcl-2 would further enhance the antileukemia activity of 17-AAG.  相似文献   

11.
目的 探讨氯化甲基汞(MMC)诱导NCI-H446细胞凋亡发生的可能机制.方法 通过分子生物学方法,检测调控细胞凋亡的关键基因Bcl-2、Bax和caspase-3在mRNA水平的表达情况.结果 MMC组细胞Bcl-2 mRNA水平低于对照组,并存在着时间依赖性降低趋势,至24 h达到最低;Bax及caspase-3 mRNA水平高于对照组,并存在着时间依赖性增高趋势,至24 h达到最高.结论 MMC能够在体外诱导NCI-H446细胞发生凋亡.  相似文献   

12.
Mitochondria is believed to play a central role in p53-mediated apoptosis. However, the signal transduction pathways leading to mitochondria remain unclear. Here, we report that translocation of Bax protein from cytosol to mitochondria is required for p53-induced apoptosis. Cytosolic Bax is unable to induce apoptosis, and blocking Bax translocation inhibits cell death. Expression of Bcl-2 blocks cytochrome c release and apoptosis but has no effect on Bax translocation, suggesting that Bax translocation acts upstream of Bcl-2. We further demonstrate that Peg3/Pw1, a protein up-regulated in p53-mediated cell death process, induces Bax translocation independent of apoptosis. The results suggest that Bax translocation represents an important regulatory step in p53-mediated apoptosis, and Peg3/Pw1 functions as a modulator downstream of p53 to regulate Bax redistribution in the cells, thus favoring the cellular decision toward apoptosis over growth arrest following p53 induction.  相似文献   

13.
AIM: To explore the mechanisms of effects of oil A on apoptosis of human pancreatic cancer cells. METHODS: Cellular DNA content was analyzed by flow cytometry. Western blotting was used for caspase-3 and PARP, caspase-7, caspase-9, cytochrome c, Bcl-2, Bax, Mcl-1, cyclinA, cyclin B1, cyclin D1, cyclin E, CDK2, CDK4, CDK6, P21, P27, GADD45, GADD153. RESULTS: The caspase-3, caspase-7, and caspase-9 activities were significantly increased as well as the cleavage of caspase-3, downstream substrate poly-ADP ribose polymerase (PARP) was induced. The amount of cytochrome c in the cytosolic fraction was increased, while the amount of cytochrome c in the mitochondrial fraction was decreased after oil A treatment. The anti-apoptosis proteins Bcl-2 and Mcl-1 were decreased in parallel and Bax increased, indicating that Bcl-2 family proteins-mitochondria-caspase cascade was responsible for oil-induced apoptosis. The proportion of cells in the G0/G1 decreased in MiaPaCa-2 and AsPC-1 cells after the treatment of oil A for 24 hours. The number of cells in S phase was increased in two cancer cell lines at 24 hours. Therefore, cells were significantly accumulated in G2/M phase. The cells with a sub-G0/G1 DNA content, a hallmark of apoptosis, were seen at 24 hours both in MiaPaCa-2 and AsPC-1 cells following exposure to oil A. The expression of cyclin A and cyclin B1 was slightly decreased and cyclin D1 levels were markedly lowered in MiaPaCa-2 cells. The expression of cyclin A and cyclin B1 was markedly decreased and cyclin D1 levels were slightly lowered in AsPC-1 cells, while cyclin E was not affected and the levels of CDK2, CDK4, and CDK6 were unchanged in MiaPaCa-2 and AsPC-1 cells. In response to oil A, P21 expression was increased, but P27 expression was not affected. The expression of both GADD45 and GADD153 was increased in two cell lines following oil A treatment. CONCLUSION: Oil A induces apoptosis of pancreatic cancer cells via activating caspase cascade, modifying cell cycle progress and changing cell cycle-regulating proteins and GADD expression.  相似文献   

14.
目的 应用RNA干扰技术沉默胰腺癌PANC1细胞的SIRT1基因表达,观察其对细胞增殖和凋亡的影响.方法 构建靶向SIRT1基因表达的短发夹RNA(shRNA)真核表达质粒pGC-shRNA,转染胰腺癌细胞PANC1.设对照shRNA(shRNA-C)转染组和未转染对照组.实时定量PCR和免疫细胞化学法检测转染后细胞SIRT1 mRNA及蛋白的表达;MTT法检测细胞的增殖率;ELASA法检测细胞caspase-3和caspase-9活性;Western bloting检测细胞Bax、Bcl-2蛋白表达.结果 与未转染组相比,shRNA组转染后48 h,PANC1细胞SIRT1 mRNA及蛋白表达的抑制率分别为(76.2%±10.4)%和(80.1±11.6)%;细胞增殖抑制率为(45.1±6.5)%;caspase-3和caspase-9酶活性显著增高;Bax蛋白表达上调,Bcl-2蛋白表达下调.结论 应用RNA干扰技术能有效沉默PANC1细胞SIRT1基因的表达,其机制可能与caspasa酶活性升高及Bax表达上调、Bcl-2表达下调有关.  相似文献   

15.
Nicorandil has been shown to inhibit myocyte apoptosis by opening of mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels and nitrate-like effect against oxidative stress. However, the detailed mechanism of nicorandil-mediated cardioprotection under hypoxic conditions remains to be largely unknown. The present study examined whether nicorandil can inhibit apoptosis via regulation of Bcl-2 family proteins in hypoxic myocytes. Neonatal rat cardiac myocytes were exposed to hypoxia for 7 hours. Hypoxia-induced myocyte apoptosis (13.9+/-0.9%) under glucose-rich conditions. Myocyte apoptosis was accompanied by loss of mitochondrial membrane potential (Deltapsi(m)), cytochrome c release from mitochondria into cytosol, and activation of caspase-3. Hypoxia also significantly increased Bax and decreased Bcl-2 mRNA and protein expression, thereby increasing Bax/Bcl-2 ratio. Nicorandil 100 micromol/l significantly decreased the percentage of apoptotic myocytes (7.2+/-0.5%) by inhibiting loss of Deltapsi(m) and translocation of cytochrome c. These effects of nicorandil were partially but significantly inhibited by cotreatment of either 500 micromol/l 5-hydroxydecanoate, a selective mitoK(ATP) channel antagonist, or 10 micromol/l 1H-[1,2,4]oxidazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase. Moreover, nicorandil significantly inhibited the hypoxia-induced changes in Bax and Bcl-2 expression, and concomitant increased Bax and decreased Bcl-2 immunoreactivity in mitochondria. These effects of nicorandil in Bax and Bcl-2 expression were significantly blunted by cotreatment of ODQ and 5-HD, respectively. Cotreatment of KT5823, an inhibitor of protein kinase G, significantly blocked the effect of nicorandil on Bax expression and 8-bromo-cyclic guanosine 3',5' monophosphate (8-bromo-cGMP), a cGMP analog, mimicked the effect of nicorandil on Bax expression. The present study demonstrates that nicorandil regulates Bcl-2 family proteins via opening of mitoK(ATP) channels and nitric oxide-cGMP signaling and inhibits hypoxia-induced mitochondrial death pathway.  相似文献   

16.
The purpose of this study was to determine whether anti-apoptotic proteins of the Bcl-2 family such as Bcl-2 and Bcl-x(L), proteins that confer resistance to apoptotic death from some stimuli, block apoptotic cell death in RAW264.7 cells upon treatment with Trichomonas vaginalis. In this study, the expression level of Bcl-2 was unchanged throughout the course of apoptotic cell death, and overexpressed Bcl-2 did not prevent release of cytochrome c, the significant change of the membrane potential, activation of caspases, and PARP cleavage in T. vaginalis-treated RAW264.7 cells. On the other hand, Bcl-x(L)expression was decreased after T. vaginalis treatment accompanied with Bax activation. Furthermore, we showed that release of mitochondrial cytochrome c, cleavage of caspase-9 and PARP during apoptosis in T. vaginalis-treated RAW264.7 cells were considerably diminished by transfection with overexpressed Bcl-x(L), and overexpressed Bcl-x(L)could inhibit T. vaginalis-induced apoptosis in RAW264.7 cells. In addition, interestingly, pre-treatment with caspase inhibitors, Boc-D-FMK and Z-DEVD-FMK, significantly abolished T. vaginalis-induced down-regulation of Bcl-x(L), suggesting that caspase-3 may play a pivotal role in the process of apoptosis as well as the down-regulation of Bcl-x(L)by T. vaginalis. Therefore, these results suggest that T. vaginalis-induced apoptosis in RAW264.7 cells can occur via a Bcl-x(L)-dependent apoptotic mechanism.  相似文献   

17.
Jia L  Macey MG  Yin Y  Newland AC  Kelsey SM 《Blood》1999,93(7):2353-2359
It has been suggested that the ratio of Bcl-2 family proapoptotic proteins to antiapoptotic proteins determines the sensitivity of leukemic cells to apoptosis. However, it is believed that Bcl-2 family proteins exert their function on apoptosis only when they target to the mitochondrial outer membrane. The vinblastine-resistant T-lymphoblastic leukemic cell line CEM/VLB100 has increased sensitivity to tumor necrosis factor-alpha (TNF-alpha)-induced cytochrome c release, mitochondrial respiratory inhibition, and consequently apoptosis, compared with parental CEM cells. However, there was no difference between the two cell lines in the expression of Bcl-2 family proteins Bcl-2, Bcl-XL, Bcl-XS, Bad, and Bax at the whole cell level, as analyzed by Western blotting. Bcl-2 mainly located to mitochondria and light membrane as a membrane-bound protein, whereas Bcl-XL was located in both mitochondria and cytosol. Similar levels of both Bcl-2 and Bcl-XL were present in the resting mitochondria of the two cell lines. Although the proapoptotic proteins Bcl-XS, Bad, and Bax were mainly located in the cytosol, CEM/VLB100 mitochondria expressed higher levels of these proapoptotic proteins. Subcellular redistribution of the Bcl-2 family proteins was detected in a cell-free system by both Western blotting and flow cytometry after exposure to TNF-alpha. The levels of Bcl-2 family proteins were not altered at the whole cell level by TNF-alpha. However, after exposure to TNF-alpha, Bax, Bad, and Bcl-XS translocated from the cytosol to the mitochondria of both cell lines. An increase in Bcl-2 levels was observed in CEM mitochondria, which showed resistance to TNF-alpha-induced cytochrome c release. By contrast, decreased mitochondrial Bcl-2 was observed in CEM/VLB100 cells, which released cytochrome c from the mitochondria and underwent apoptosis as detected by fluorescence microscopy. We conclude that mitochondrial levels of Bcl-2 family proteins may determine the sensitivity of leukemic cells to apoptosis and that, furthermore, these levels may change rapidly after exposure of cells to toxic stimuli.  相似文献   

18.
The proapoptotic Bcl-2 family proteins Bak and Bax serve as an essential gateway to the mitochondrial pathway of apoptosis. When activated by BH3-only proteins, Bak/Bax triggers mitochondrial outer membrane permeabilization leading to release of cytochrome c followed by activation of initiator and then effector caspases to dismantle the cells. Hepatocytes are generally considered to be type II cells because, upon Fas stimulation, they are reported to require the BH3-only protein Bid to undergo apoptosis. However, the significance of Bak and Bax in the liver is unclear. To address this issue, we generated hepatocyte-specific Bak/Bax double knockout mice and administered Jo2 agonistic anti-Fas antibody or recombinant Fas ligand to them. Fas-induced rapid fulminant hepatocyte apoptosis was partially ameliorated in Bak knockout mice but not in Bax knockout mice, and was completely abolished in double knockout mice 3 hours after Jo2 injection. Importantly, at 6 hours, double knockout mice displayed severe liver injury associated with repression of XIAP, activation of caspase-3/7 and oligonucleosomal DNA breaks in the liver, without evidence of mitochondrial disruption or cytochrome c-dependent caspase-9 activation. This liver injury was not ameliorated in a cyclophilin D knockout background nor by administration of necrostatin-1, but was completely inhibited by administration of a caspase inhibitor after Bid cleavage. CONCLUSION: Whereas either Bak or Bax is critically required for rapid execution of Fas-mediated massive apoptosis in the liver, delayed onset of mitochondria-independent, caspase-dependent apoptosis develops even in the absence of both. The present study unveils an extrinsic pathway of apoptosis, like that in type I cells, which serves as a backup system even in type II cells.  相似文献   

19.
Melatonin is an indoleamine that is synthesized in the pineal gland and has an extensive repertoire of biological activities. In the present study, we found that melatonin reduced the growth of the human myeloid leukemia cells HL-60, inhibiting progression from G(1) to S phase of the cell cycle and increasing apoptotic cell death. Furthermore, melatonin treatment elevated cytochrome c release from mitochondria and augmented caspase-3 and caspase-9 activities. Upregulation of Bax and downregulation of Bcl-2 was also observed upon melatonin treatment. The effects of melatonin were found not to be mediated by membrane receptors for the indoleamine. Together, our results suggest that melatonin reduces the viability of HL-60 cells via induction of apoptosis primarily through regulation of Bax/Bcl-2 expression.  相似文献   

20.
OBJECTIVE: The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, lovastatin, induces apoptosis in the thyroid cell line TAD-2 and in proliferating normal human thyroid cells in culture, through a p53-independent mechanism involving caspase-3-like proteases. The combination of lovastatin with other anti-neoplastic drugs potentiates chemotherapy of tumors. This drug has been suggested for the chemotherapy of tumors and is potentially useful in the treatment of thyroid proliferative diseases. Based on this premise, we analyzed in more detail the role of some molecular effectors and the role of the caspase family proteases in the lovastatin-induced apoptotic pathway in TAD-2 cells. METHODS: TAD-2 cells were treated with lovastatin to induce apoptosis, and expression of p53, Bc1-2, Bcl-XL and Bax was analyzed by Western blot. Caspase activation was evaluated by the assay of enzymatic activity with chromogenic peptides and Western blot. Nuclear, cytosolic and mitochondrial fractions were prepared by differential centrifugation and the presence of cytochrome c and lamin B was evaluated by Western blot. RESULTS: p53, Bc1-2, Bcl-XL and Bax protein expression were unchanged during apoptosis. Cytochrome c was released from mitochondria into the cytosol, a pivotal event in the activation of caspase-3. Caspase-3 and -6 but not caspase-2 were activated, and proteolysis of PARP and lamin B, a caspase-6 substrate located in the inner nuclear membrane, was demonstrated by Western blot. The nuclear localization of lamin B was also inhibited by lovastatin. CONCLUSIONS: These data demonstrate that, in TAD-2 thyroid cells, lovastatin induces lamin B proteolysis and inhibits its nuclear localization and induces cytochrome c release from mitochondria into the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号