首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Askew D  Harding CV 《Immunology》2008,123(3):447-455
To examine heterogeneity in dendritic cell (DC) antigen presentation function, murine splenic DCs were separated into CD4+ and CD8+ populations and assessed for the ability to process and present particulate antigen to CD4+ and CD8+ T cells. CD4+ and CD8+ DCs both processed exogenous particulate antigen, but CD8+ DCs were much more efficient than CD4+ DCs for both major histocompatibility complex (MHC) class II antigen presentation and MHC class I cross-presentation. While antigen processing efficiency contributed to the superior antigen presentation function of CD8+ DCs, our studies also revealed an important contribution of CD24. CD8+ DCs were also more efficient than CD4+ DCs in inducing naïve T cells to acquire certain effector T-cell functions, for example generation of cytotoxic CD8+ T cells and interferon (IFN)-γ-producing CD4+ T cells. In summary, CD8+ DCs are particularly potent antigen-presenting cells that express critical costimulators and efficiently process exogenous antigen for presentation by both MHC class I and II molecules.  相似文献   

2.
The suppressor of cytokine signaling (SOCS) 1 is a negative regulator in multiple cytokine-related aspects to maintain immunological homeostasis. Here, we studied a role of SOCS1 on dendritic cell (DC) maturation in the mice lacking either TCRalpha chain or CD28 in SOCS1-deficient background, and found that the SOCS1 could restore acute phase of inflammatory response in SOCS1-deficient mice. The CD11c+ CD8- DC population in freshly isolated splenic DCs from normal mice highly expressed SOCS1. However, in SOCS1-deficient environment, the proportion of CD8alpha+ DCs (CD8 DCs) noticeably increased without affecting the cell number of conventional and plasmacytoid DC populations. This population revealed the CD11cdull CD8alpha+ CD11b- CD45RA- B220- phenotype, which is a minor population in normal mice. Localization of the abnormal CD8 DCs in splenic microenvironments was mainly restricted to deep within red pulp. The CD8 DCs secrete a large amount of IFN-gamma, IL-12 and B lymphocyte stimulator/B cell activation factor of the tumor necrosis factor family in response to LPS and CpG stimulation. This is responsible for the development of DC-mediated systemic autoimmunity in the old age of SOCS1-deficient mice. Moreover, the CD8 DC subsets expressed more indoleamine 2,3-dioxygenase and IL-10, and hence inhibit the allogeneic proliferative T cell response and antigen-induced Th1 responses. Therefore, SOCS1 expression during DC maturation plays a role in surveillance in controlling the aberrant expansion of abnormal DC subset to maintain homeostasis of immune system.  相似文献   

3.
Summary: Mouse lymphoid tissues contain a subset of dendritic cells (DCs) expressing CD8α together with a pattern of other surface molecules that distinguishes them from other DCs. These molecules include particular Toll-like receptor and C-type lectin pattern recognition receptors. A similar DC subset, although lacking CD8 expression, exists in humans. The mouse CD8+ DCs are non-migrating resident DCs derived from a precursor, distinct from monocytes, that continuously seeds the lymphoid organs from bone marrow. They differ in several key functions from their CD8 DC neighbors. They efficiently cross-present exogenous cell-bound and soluble antigens on major histocompatibility complex class I. On activation, they are major producers of interleukin-12 and stimulate inflammatory responses. In steady state, they have immune regulatory properties and help maintain tolerance to self-tissues. During infection with intracellular pathogens, they become major presenters of pathogen antigens, promoting CD8+ T-cell responses to the invading pathogens. Targeting vaccine antigens to the CD8+ DCs has proved an effective way to induce cytotoxic T lymphocytes and antibody responses.  相似文献   

4.
Retinoic acid (RA) is an active derivative of vitamin A and a key regulator of immune cell function. In dendritic cells (DCs), RA drives the expression of CD103 (integrin αE), a functionally relevant DC subset marker. In this study, we analyzed the cell type specificity and the molecular mechanisms involved in RA-induced CD103 expression. We show that RA treatment caused a significant up-regulation of CD103 in differentiated monocyte-derived DCs and blood DCs, but not in differentiated monocyte-derived macrophages or T cells. DC treatment with an RA receptor α (RARα) agonist led to an increase in CD103 expression similar to that in RA treatment, whereas RARA gene silencing with small interfering RNA blocked RA-induced up-regulation of CD103, pointing to a major role of RARα in the regulation of CD103 expression. To elucidate RA-induced signaling downstream of RARα, we used Western blot analysis of RA-treated DCs and showed a significant increase of p38 mitogen-activated protein kinase (MAPK) phosphorylation. In addition, DCs cultured with RA and a p38 MAPK inhibitor had a significantly reduced expression of CD103 compared with DCs cultured with RA only, indicating that p38 MAPK is involved in CD103 regulation. In summary, these findings suggest that the RA-induced expression of CD103 is specific to DCs, is mediated primarily through RARα and involves p38 MAPK signaling.  相似文献   

5.
The IMiDs® immunomodulatory compounds lenalidomide and pomalidomide are agents with anti‐inflammatory, immunomodulatory and anti‐cancer activity. An excellent success rate has been shown for multiple myeloma in phase I/II clinical trials leading to Food and Drug Administration approval of lenalidomide. One mechanism by which these drugs could enhance anti‐tumour immunity may be through enhanced dendritic cell (DC) function. Thalidomide, a compound structurally related to lenalidomide and pomalidomide, is known to enhance DC function, and we have investigated whether its analogues, pomalidomide and lenalidomide, also have functional effects on DCs. We used mouse bone marrow‐derived DCs treated with 5 or 10 μm pomalidomide, or lenalidomide from day 1 of culture. Treatment with IMiD® immunomodulatory compounds increased expression of Class I (H2‐Kb), CD86, and pomalidomide also increased Class II (I‐Ab) expression in bone marrow‐derived DCs, as measured by flow cytometry. Fluorescent bead uptake was increased by up to 45% when DCs were treated with 5 or 10 μm pomalidomide or lenalidomide compared with non‐treated DCs. Antigen presentation assays using DCs primed with ovalbumin, and syngeneic T cells from transgenic OTI and OTII mice (containing MHC restricted, ovalbumin‐specific, T cells) showed that both pomalidomide and lenalidomide effectively increased CD8+ T‐cell cross‐priming (by up to 47%) and that pomalidomide alone was effective in increasing CD4+ T‐cell priming (by 30%). Our observations suggest that pomalidomide and lenalidomide enhance tumour antigen uptake by DCs with an increased efficacy of antigen presentation, indicating a possible use of these drugs in DC vaccine therapies.  相似文献   

6.
《Immunity》2022,55(1):129-144.e8
  1. Download : Download high-res image (201KB)
  2. Download : Download full-size image
  相似文献   

7.
8.
Pancreatic cancer is characterized by an increasing incidence and an extremely poor prognosis. It is resistant to most of the conventional treatment modalities. Histomorphologically, it presents with a strong desmoplastic reaction around cancer cells, and lymphocytes are typically localized as aggregates in the fibrotic interstitial tissue. Using the method of multi-epitope imaging with fluorochrome-tagged specific MoAbs which allows the simultaneous localization and characterization of T cells in tissues, we studied phenotypes and distribution of tumour-infiltrating lymphocytes (TIL) in pancreatic cancer. CD3+ T cells comprised up to 90% of the tumour-infiltrating cells which were either CD4+ or CD8+, most of them being memory cells (CD45RO+). In decreasing order of frequency, T lymphocytes carried the markers for CD45RO, CD18, CD103 and TCR γδ. Very few natural killer cells (CD56+) were observed. Twenty percent of CD8+were labelled with CD103. These CD8+ CD103+T cells, analogous to the gut intraepithelial lymphocytes (IEL), were found in the fibrous interstitial tissue. Furthermore, an inverse correlation was found between the expression of CD18, the β2-integrin, which mediates adhesion of activated lymphocytes, and CD45RO in the CD8+subset of TIL (P = 0.046). In conclusion, phenotyping of T lymphocytes in pancreatic cancer raises the possibility that pancreatic cancer cells develop several strategies to escape the T cell-induced cytolysis by (i) the aggregation of cytotoxic CD8+ CD103+ T cells in the fibrous tissue distant from the tumour cells, and (ii) the presence of CD18-bearing cells which lack the expression of the activation marker CD45RO.  相似文献   

9.
Two main dendritic cell (DC) subsets have been described in peripheral blood, the myeloid subset or DC1 that is characterized by the presence of CD11c and the plasmacytoid subset or DC2 negative for this marker. The two subsets may perform different functions and have been defined as immunogenic (the myeloid subset) or tolerogenic (the plasmacytoid subset). The expression of human leukocyte antigen (HLA)-DM molecules, which act as peptide editors in the antigen presentation process, was studied in freshly isolated plasmacytoid and myeloid DCs from peripheral blood. The expression of the invariant chain (Ii), the major histocompatibility complex class II (MHC-II) : class II-associated Ii peptide (CLIP) complex, and CD83 was also investigated. The results showed that intracellular expression of HLA-DM and the Ii was significantly higher in the plasmacytoid than in the myeloid DC subset. In contrast, a higher fraction of cell expressing MHC-II : CLIP complex was found in the myeloid than in the plasmacytoid DC subpopulation. CD83 was not detected in any of these two subsets. Following culture of these cells with interleukin-3 (IL-3), tumor necrosis factor-alpha (TNFalpha) and/or heat shock protein-70 (HSP-70), the expression of intracellular HLA-DM was up-regulated in the myeloid DCs to levels similar to those found in the plasmacytoid DCs, whilst the Ii was down-regulated in the plasmacytoid subset to similar levels to those expressed in the myeloid DCs. In addition, CD83 was up-regulated in the myeloid (CD11c+) but not in the plasmacytoid (CD11c-) DCs. The expression pattern of these antigen-processing molecules could be related to the immaturity and function attributed to these DC subsets.  相似文献   

10.
Conjugates of peptide antigens with antibodies specifically recognizing surface molecules on dendritic cells (DC) represent an attractive approach to target antigens to antigen-presenting cells (APC) for the induction of specific T cell responses. The present study evaluates the potential of M-DC8(+) DC, a sub-population of professional APC in the blood, for an antibody-based vaccination strategy. We prepared, by chemical cross-linking, conjugates of peptide model antigens with antibodies directed against different cell surface molecules of DC. Antigen-peptide conjugates using an anti-CD16 (FcgammaRIII) antibody were most potent in inducing in vitro activation of a specific CD4(+) T cell response. They were at least 300 times more efficient than two other antibody-antigen conjugates and approximately 500 times more efficient than unconjugated antigen peptides. Our data demonstrate that specific antigen targeting via CD16 on M-DC8(+) DC is a promising vaccination approach for the efficient induction of specific CD4(+) T cell responses ex vivo, and perhaps in vivo.  相似文献   

11.
《Immunity》2022,55(6):982-997.e8
  1. Download : Download high-res image (125KB)
  2. Download : Download full-size image
  相似文献   

12.
Macrophages and dendritic cells (DCs) in murine spleen are essential for the maintenance of immune homeostasis by elimination of blood‐borne foreign particles and organisms. It has been reported that splenic DCs, especially CD8α+ CD103+ DCs, are responsible for tolerance to apoptosis‐associated antigens. However, the molecular mechanism by which these DCs maintain immune homeostasis by blood‐borne apoptotic cell clearance remains elusive. Here, we found that the CCL22/CCR4 axis played a critical role in the maintenance of immune homeostasis during apoptotic cell clearance by splenic CD8α+ CD103+ DCs. The present results revealed that systemic administration of apoptotic cells rapidly induced a large number of CCL22 and CCR4+ regulatory T (Treg) cells in the spleen of C57BL/6J mice. Further study demonstrated that CD8α+ CD103+ DCs dominantly produce much higher CCL22 than CD8α+ CD103? DCs. Moreover, the transient deletion of CD8α+ CD103+ DCs caused a decrease in CCL22 levels together with CCR4+ Treg cell percentage. Subsequently, the levels of some pro‐inflammatory cytokines, such as interleukin‐17 and interferon‐γ in the spleen with the absence of CD8α+ CD103+ DCs increased in response to the administration of apoptotic cells. Hence, intravenous injection of apoptotic cells induced a subsequent increase in CCL22 expression and CCR4+ Treg cells, which contribute to the maintenance of immune homeostasis at least partially by splenic CD8α+ CD103+ DCs.  相似文献   

13.
《Human immunology》2020,81(10-11):634-643
The interaction of tolerogenic CD103+ dendritic cells (DCs) with regulatory T (Tregs) cells modulates immune responses by inducing immune tolerance. Hence, we determined the proportion of these cells in the peripheral blood mononuclear cells (PBMC) of asthmatic patients. We observed lower trends of CD11b-CD103+ DCs and CD86 within CD11b-CD103+ DCs, while increased levels of Foxp3 expressing CD25+/-TNFR2+ cells in asthmatics. There was a positive correlation in the expression of Foxp3 within CD3+CD4+CD25+TNFR2+ Tregs and CD11b-CD103+ as well as the expression of CD86 within HLA-DR+CD11c+CD11b-CD103+ DCs. In conclusion, we suggest that the increased levels of Tregs in blood could continuously suppress the T helper 2 (Th2) cells activation in the circulation which is also supported by the increase of anti-inflammatory cytokines IL-10 and TNF. Overall, functional immunoregulation of the regulatory cells, particularly Tregs, exhibit immune suppression and induce immune tolerance linked with the immune activation by the antigen presenting cells (APC).  相似文献   

14.
Dendritic cells (DC) are the main immune mediators inducing primary immune responses. DC generated from monocytes (MoDC) are a model system to study the biology of DC in vitro, as they represent inflammatory DC in vivo. Previous studies on the generation of MoDC in horses indicated that there was no distinct difference between immature and mature DC and that the expression profile was distinctly different from humans, where CD206 is expressed on immature MoDC whereas CD83 is expressed on mature MoDC. Here we describe the kinetics of equine MoDC differentiation and activation, analysing both phenotypic and functional characteristics. Blood monocytes were first differentiated with equine granulocyte–macrophage colony‐stimulating factor and interleukin‐4 generating immature DC (iMoDC). These cells were further activated with a cocktail of cytokines including interferon‐γ) but not CD40 ligand to obtain mature DC (mMoDC). To determine the expression of a broad range of markers for which no monoclonal antibodies were available to analyse the protein expression, microarray and quantitative PCR analysis were performed to carry out gene expression analysis. This study demonstrates that equine iMoDC and mMoDC can be distinguished both phenotypically and functionally but the expression pattern of some markers including CD206 and CD83 is dissimilar to the human system.  相似文献   

15.
Dendritic cells (DC), in their role in initiation of the adaptive immune response, have been extensively studied for their capacity to interact and stimulate naive T cells. Subsets of mature murine DC isolated directly from the spleen have been shown to differ in their ability to induce proliferative responses in both primary CD4(+) and primary CD8(+) T cells; the myeloid-related CD8alpha(-) DC induce a more intense or prolonged proliferation of naive T cells than do the lymphoid-related DC bearing CD8alpha despite similar expression of MHC and co-stimulatory molecules. Here we examine the interaction of these DC subpopulations with T cells already in the activated or memory state which are known to have greater sensitivity to antigen stimulation and bear receptors with increased capacity for signal transduction. We show that influenza virus-specific CD4(+) T cell clones and splenic T cells from peptide-primed animals proliferated in response to antigen presented by separated splenic CD8(-) DC. In contrast, these T cells showed only weak, if any, proliferation in response to CD8(+) DC despite observable cluster formation in the cultures. The differential between the two DC types in inducing proliferation was even more pronounced than previously seen with primary T cells and did not reflect differential longevity of the DC in culture, altered response kinetics or deviation from IL-2 to IL-4 induction with CD8(+) DC, but was related to the levels of IL-2 induced. The deficiency in the CD8(+) DC was not overcome by using infectious virus rather than synthetic peptide as the antigen source. These results show that lymphoid-related CD8(+) splenic DC, despite their mature phenotype, fail to provide appropriate signals to secondary CD4(+) T cells to sustain their proliferation.  相似文献   

16.
Summary: Langerhans cells (LCs) are antigen-presenting dendritic cells (DCs) that reside in epithelia. The best studied example is the LC of the epidermis. By electron microscopy, their identifying feature is the unique rod- or tennis racket-shaped Birbeck granule. The phenotypic hallmark is their expression of the C-type lectin receptor langerin/CD207. Langerin, however, is also expressed on a recently discovered population of DC in the dermis and other tissues of the body. These ‘dermal langerin+ dendritic cells’ are unrelated to LCs. The complex field of langerin-negative dermal DCs is not dealt with here. In this article, we briefly review the history, ontogeny, and homeostasis of LCs. More emphasis is laid on the discussion of functional properties in vivo. Novel models using genetically engineered mice are contributing tremendously to our understanding of the role of LCs in eliciting adaptive immune responses against pathogens or tumors and in inducing and maintaining tolerance against self antigens and innocuous substances in vivo. Also, innate effector functions are increasingly being recognized. Current activities in this area are reviewed, and possibilities for future exploitation of LC in medicine, e.g. for the improvement of vaccines, are contemplated.  相似文献   

17.
CD4+CD56+ hematodermic neoplasms (HNs) with initial presentation in the skin are characterized by highly aggressive behavior and poor prognosis. Recent studies indicate that malignant cells, which are devoid of common T-, B-, NK-, and myeloid lineage markers, may be of plasmacytoid dendritic cell (pDC) origin. We undertook a study to assess the expression of several pDC-associated molecules on a series of 5 CD4+CD56+ HN cases. CD123 was expressed in all 5 cases, with some heterogeneity in individual cases. All but one case revealed fine membranous BDCA-2 staining of the dermal infiltrate. pDC-like phenotype of the malignant infiltrating cells was confirmed by costaining of BDCA-2+ cells with CD123 and CD4. MxA protein, representing the surrogate marker for lesional type I interferon activity, was expressed in 4 of 5 evaluated cases. Our findings further substantiate the putative pDC origin of CD4+CD56+ HNs.  相似文献   

18.
CD4+CD25+调节性T细胞(Tr)是同时具有免疫低反应性和免疫抑制性功能两大特征的T细胞.研究证实,CD4+ CD25+ Tr在抑制器官特异性自身免疫性疾病及GVHD是抗原特异性的,因此,应用器官特异性而不是多克隆性的Tr将大大促进以Tr为基础的免疫治疗.而具有调节活性的CD4+ CD25+ Tr仅占人类外周血CIM+ T细胞的1%~2%,因此,研究体外大量扩增的方法 对于以Tr基础的治疗至关重要.研究表明,树突状细胞(DC)作为机体强有力的专职抗原递呈细胞可以扩增具有抗原特异性的CD4+ CD25+ Tr且能增加后者的抑制活性,这为治疗自身免疫性疾病及GVHD提供了新的治疗前景.  相似文献   

19.
20.
Drinking a lot is good for dendritic cells   总被引:7,自引:0,他引:7  
Norbury CC 《Immunology》2006,117(4):443-451
Macropinocytosis is the actin-dependent formation of large vesicles, which allow the internalization of large quantities of fluid-phase solute. In the majority of cells examined, an exogenous stimulus is required to induce the initiation of this endocytic pathway. However, dendritic cells are thought to constitutively macropinocytose large quantities of exogenous solute as part of their sentinel function. In this review we discuss the evidence that dendritic cells macropinocytose exogenous solute and subsequently present antigenic peptides derived from internalized material to T cells. In addition, we put these data into the context of immune surveillance in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号