首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In primary hypertension, phospholipase C (PLC) is hypersensitive in several target tissues (platelets, vascular smooth muscle cells, aortic fibroblasts). Protein kinase C (PKC) and myosin light chain kinase (MLCK), which are physiologically activated by PLC-triggered second messengers (diacylglycerol and Ca2+ ions, respectively), phosphorylate specific proteins closely involved in the cell functional responses. In this study, we have examined and compared between platelets of spontaneously hypertensive rats (SHR) and their normotensive controls Wistar-Kyoto (WKY), the patterns of protein phosphorylation obtained either with the receptor-mediated agonist thrombin (i.e. which acts via PLC) or with direct activators of the protein kinases, PKC and MLCK. Activation by thrombin of 32P-prelabeled platelets induced incorporation of radioactivity into two proteins, P20 (myosin light chain) and P47. The curves obtained when platelets were challenged with either increasing doses of thrombin (0.025-0.3 U/ml) for 20 sec or with a low dose of the agent (0.1 U/ml) for up to 1 min, revealed that phosphorylation of the target proteins of PKC (P47) and of MLCK (P20) were significantly enhanced in platelets of SHR compared to WKY. In contrast, direct activation of PKC by phorbol ester and of MLCK by the calcium ionophore A23187 evoked the selective phosphorylation of the respective target proteins, P47 and P20, to a similar extent in platelets of SHR and WKY. Taken together, these results demonstrate that a physiological agonist (thrombin) induces an enhanced phosphorylation of intracellular proteins in platelets of SHR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Alpha1-adrenoceptors, norepinephrine(NE)-stimulated formation of inositol trisphosphate (IP3) and inhibitory effect on this formation by 12-o-tetradecanoyl phorbol 13-acetate (TPA) were studied in isolated myocytes of 8-week-old spontaneously hypertensive rat (SHR) and Wistar-Kyoto rat (WKY). The number of alpha1-adrenoceptors in myocytes of SHR was significantly increased than that of WKY. No significant difference in maximum response or EC50 values of NE-stimulated IP3 formation was observed between the two strains. Both norepinephrine-stimulated and GTPyS-stimulated IP3 formation was inhibited by TPA. The inhibitory effect was less in SHR than in WKY. PA did not change the number and affinity of alphal-adrenoceptors. These results suggest that myocytes of SHR may have abnormality in G protein and/or phospholipase C and that activation of protein kinase C might inhibit IP3 formation less in SHR than in WKY, a step distal to alphal -adrenoceptors, probably at a step distal to alphal -adrenoceptors.  相似文献   

3.
In order to test the hypothesis that intracellular Na+ accumulation and cellular Mg2+ deficiency may be involved in the abnormalities in Ca2+ handling and reactivity in spontaneously hypertensive rats (SHR) platelets, the metabolism of Na+, Ca2+ and Mg2+ was determined in fluorescent dye loaded platelets from 15 SHR and 15 Wistar-Kyoto rats (WKY) at 12 weeks of age. Mg2+ leak was estimated as the Mg2+ influx induced by an increase in extracellular [Mg2+] (from 1 to 5 mmol/l) and Mg2+/Na+ exchange activity was estimated as the Mg2+ influx induced by a decrease in extracellular [Na+] (from 140 to 50 mmol/l). Cellular metabolism of the fluorescent dye was similar in the two groups. Mean platelet [Ca2+]i was significantly increased under basal and thrombin (0.1 U/ml)-stimulated conditions in SHR compared to WKY, both in the presence and absence of extracellular Ca2+. Mean Ca2+ discharge capacity was similar between the two groups. There was no difference in mean [Na+]i between the two groups. Basal [Mg2+]i was also increased in SHR platelets. Mg2+ leak was higher in SHR than in WKY, while Mg2+/Na+ exchange activity was similar in the two groups. There was no difference in serum Mg2+ concentration between SHR and WKY. These data suggest that abnormal Ca2+ handling is accompanied by elevation in [Mg2+]i via increased permeability of platelet cell membranes to Mg2+ in SHR without any alteration in [Na+]i, and do not support the Mg2+ deficiency hypothesis in genetically hypertensive rats.  相似文献   

4.
Abnormal Ca2+ handling and enhanced aggregation response have been reported in platelets from spontaneously hypertensive rats (SHR) and patients with essential hypertension, and thought to be involved in the progression of target organ damage of hypertension. It is important to examine whether antihypertensive therapy can improve the abnormal platelet response in hypertension. We investigated the effect of antihypertensive treatment such as amlodipine and cilazapril on Ca2+ handling and aggregation response in SHR platelets. Four-week-old male SHR were divided into three groups. Each group was treated with amiodipine (A: 10 mg/kg/day), cilazapril (C: 10 mg/kg/day) or vehicle (V) for 8 weeks by gavage. At 12-week-old, platelet [Ca2+]i was measured with fura-2 in each group of SHR and age-matched Wistar-Kyoto rats (WKY) as normal control. Systolic blood pressure in amlodipine and cilazapril treated groups were similar with WKY and significantly lower than vehicle treated group (A: 124 +/- 9, C: 126 +/- 9, WKY: 122 +/- 10 and V: 180 +/- 9 mmHg, respectively). The basal [Ca2+]i in the three groups of SHR were similar and higher than WKY (A: 47 +/- 1.7, C: 47 +/- 1.2, V: 48 +/- 3.9 and WKY: 40 +/- 4.0 nmol/l, respectively). There were no significant differences in thrombin (0.1 U/ml)-stimulated [Ca2+]i rise in the presence or absence of extracellular Ca2+ among the three groups of SHR and these were higher than WKY. Intracellular Ca2+ discharge capacity, assessed by the ionomycinstimulation was similar in the all groups. Thrombin-induced maximum platelet aggregation responses in the three groups of SHR were similar and higher than WKY. The antihypertensive treatment of Ca2+ antagonist or ACE inhibitor gave no change in intraplatelet Ca2+ metabolism in SHR. These results support the hypothesis that an abnormal Ca2+ handling in SHR platelet is genetically determined and not improved by hypotensive therapy.  相似文献   

5.
Thrombin-induced aggregation and serotonin release were markedly enhanced in platelets from spontaneously hypertensive rats (SHR) when compared with those from normotensive Wistar-Kyoto rats (WKY). Since phosphoinositides are involved in calcium-mediated platelet responses, the metabolism of these lipids was investigated in SHR and WKY by using 32P-labeled quiescent platelets. In unstimulated cells, both the rate and extent of 32P incorporation into individual inositol-containing phospholipids and phosphatidic acid were identical in SHR and WKY. This finding suggests that the pool size and basal turnover of phosphoinositides did not differ between the two strains. In contrast, early thrombin-induced phosphoinositide metabolism, when monitored as changes in [32P]phosphatidic acid, was significantly higher in SHR than in WKY. For example, a 20-second exposure to thrombin, 0.3 U/ml, induced the formation of 1.6 times more [32P]phosphatidic acid in SHR than in WKY. These results provide evidence for a leftward shift of the dose-response and time-course curves of thrombin-induced [32P]phosphatidic acid formation in SHR. Moreover, the extent of the difference between SHR and WKY was independent of the extracellular calcium concentration. Following thrombin stimulation, [32P]phosphatidic acid formation likely reflects the initial agonist-receptor interaction; therefore, these results suggest that phospholipase C activity is enhanced in platelets of SHR and that the hypersensitivity of phospholipase C in SHR may play a role in the overall alteration of cell calcium handling and, hence, in the platelet responses of SHR.  相似文献   

6.
B Li  C L Chik  A K Ho  E Karpinski 《Endocrinology》2001,142(7):2865-2873
Pituitary adenylate cyclase-activating polypeptide (PACAP), a vasoactive peptide, modulates the L-type Ca(2+) channel current (L channel current) in vascular smooth muscle cells (VSMC) through activation and integration of two intracellular pathways, protein kinase A and protein kinase C (PKC). In the present study we compared the effects of PACAP on the L channel current in VSMC from the spontaneously hypertensive rats (SHR) and normotensive controls, Wistar Kyoto rats (WKY). We found that compared with WKY, VSMC from SHR had a higher L channel current density. Stimulation by PACAP (10 nM) caused an increase in the amplitude of the whole cell current and prolonged open time in VSMC from SHR and WKY, with the increase greater in SHR. These effects of PACAP on the L channel current was mimicked by an activator of PKC. In contrast, PACAP caused a smaller increase in cAMP accumulation in VSMC from SHR than WKY, and there was no difference in the inhibitory effect of 8-bromo-cAMP on the L channel current from both type of cells. The greater increase in amplitude of the L channel current by PACAP in VSMC from SHR persisted in the presence of adenosine cyclic 3',5'-monophosphothioate, Rp-isomer, a cAMP antagonist, but not calphostin C, a PKC inhibitor. Taken together, our results show an increase in L channel current density and an enhanced PACAP effect on the L channel current in VSMC from SHR compared with WKY. This difference in PACAP response appears to be predominately secondary to an increased PKC sensitivity.  相似文献   

7.
Verapamil and diltiazem were equally potent (ie, similar EC50s) in relaxing potassium-contracted aortas of spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. The mechanical EC50s produced approximately 50% calcium influx blockade, suggesting a causal link between relaxation and calcium influx blockade. Nitrendipine was about 250 times more potent in relaxing aortic smooth muscle in SHR than in WKY rats (EC50s in -log [M] were 14.10 +/- 0.30 and 11.70 +/- 0.54, respectively). This difference was not affected by endothelial denudation, and was present when nitrendipine was used by preincubation rather than during established potassium chloride contractions. In spite of the different relaxant potency of nitrendipine in SHR and WKY rats, both strains showed similar EC50s for calcium influx blockade for this compound (9.21 +/- 0.36 in SHR and 8.75 +/- 0.26 in WKY). The dissociation between aortic smooth muscle relaxation and calcium influx blockade after nitrendipine was more pronounced in the SHR strain. This suggests that mechanisms other than or in addition to calcium influx blockade play a role in the relaxation of potassium-contracted vascular smooth muscle with dihydropyridine compounds, but not with other calcium antagonists.  相似文献   

8.
9.
Aortic smooth muscle isolated from spontaneously hypertensive rats (SHR) and normotensive, age-matched Wistar Kyoto rats (WKY) was precontracted by potassium chloride. The relaxant effect of nifedipine (NIF) was much more pronounced in SHR than in WKY, while the relaxation produced by nitroglycerin (NTG) was similar in both tissues. EC50s were (in - log [M]) NIF:SHR 13.1 +/- 0.4 and WKY 9.4 +/- 0.2 (p less than 0.05); NTG:SHR 7.35 +/- 0.3 and WKY 7.26 +/- 0.18 (NS). Aortas from SHR were less sensitive to the contractile effect of Ca2+ than their WKY controls (EC50 was 3.18 +/- 0.03 in WKY and 2.76 +/- 0.13 in SHR, p less than 0.05). The relaxant effect of NIF was dissociated from its effect on Ca2+ influx in SHR aortas. NIF 10(-10) M relaxed the muscle by 100% without producing Ca2+ influx blockage, and NIF 10(-9) and 10(-8) M induced Ca2+ influx blockage while the muscle continued in the relaxed state. Chemically skinned aortic fibers from SHR were less sensitive to the contractile effect of Ca2+ than their normotensive (NR) controls (pCa for EC50 was 5.91 +/- 0.05 in SHR and 6.20 +/- 0.03 in NR, p less than 0.05). NIF 10(-10) M depressed the contractile response to Ca2+ significantly more in SHR than in NR skinned fibers (pCa for EC50 for 5.62 +/- 0.09 in SHR and 6.07 +/- 0.07 in NR, p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A hyperreactivity to thrombin of platelets from spontaneously hypertensive rats (SHR) has been shown in vitro but no signs of platelet hyperactivation has been evidenced in vivo in these animals. Therefore, we have studied the effect of two inhibitory agents, PGE1 and magnesium, on platelet activation. The first drug is known to specifically act through adenylate cyclase stimulation, the second to have diffuse cellular effects as enzymatic cofactor. Blood of SHR and WKY adult animals was drawned by carotid catheterism. After isolation, platelets were loaded with 5-HT (either tritiated or not), then washed and incubated in a Hepes buffer, pH 7.4 with various concentrations of external calcium and magnesium, at 30 degrees C and with minimal stirring. Thrombin-induced platelet 5-HT secretion was evaluated, after preincubation in the presence of tritiated serotonin, in percentage of the initial load. Cyclic AMP content was measured by radioimmunoassay. Calcium influx was measured 30 seconds after thrombin addition by 45Ca incorporation. The inhibitory effect of PGE1 on 5-HT secretion is more important with SHR platelets than WKY ones, at 5 X 10(-8) and 10(-7)M. On the other hand, SHR platelets are less sensitive to inhibitory effect of external magnesium (1 to 10 mM). Between 10(-7) and 10(-6)M, PGE1 induces an increase of cAMP content, significantly more important in SHR, which persists in the presence of isobutylmethylxanthine (IBMX) 10(-5)M. Platelet reaction to thrombin is the more decreased as intracellular cAMP level before thrombin addition is enhanced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Considerable evidence suggests that protein kinase C activation participates in the regulation of vascular smooth muscle tone. The objective of the current study was to examine the relations between inhibition of protein kinase C (PKC) and myosin light-chain kinase (MLCK) and vasorelaxation and blood pressure regulation in spontaneously hypertensive rats (SHR). Putative PKC inhibitors from two chemical classes, staurosporinelike (staurosporine and K252A) and isoquinolinesulfonamides (H7 and HA1004), were tested for their ability to 1) inhibit PKC and MLCK from SHR aorta, 2) relax isolated SHR aorta, and 3) lower blood pressure in conscious SHR. A rank order of potency for the inhibition of PKC and MLCK was established, with the staurosporinelike compounds (staurosporine PKC IC50 = 54 nM) clearly more potent than the isoquinolinesulfonamides (H7 PKC IC50 = 128 microM). The rank order of potency for inhibition of PKC was retained for inhibition of MLCK for all compounds. Staurosporine (EC50 = 75 nM) and H7 (EC50 = 2 microM) caused concentration-dependent relaxation of SHR aorta, but only staurosporine produced vasorelaxation at concentrations consistent with the inhibition of PKC or MLCK. Dose-dependent reductions in arterial pressure of SHR were demonstrated after intravenous injection of staurosporine and HA1004. A single intravenous injection of staurosporine (0.3 mg/kg) lowered blood pressure for more than 10 hours. Staurosporine also lowered blood pressure after oral administration. The depressor response to staurosporine was unaffected by sympathetic beta-adrenergic blockade. In conclusion, the vasorelaxant and antihypertensive actions of staurosporine in SHR are consistent with the inhibition of PKC but could also be equally related to inhibition of MLCK. Not all PKC inhibitors produce vasorelaxation and lower blood pressure. Moreover, the lack of correlation between in vitro vasodilation and PKC or MLCK inhibition for the isoquinolinesulfonamide protein kinase inhibitors H7 and HA1004 suggests that these agents do not cause vasorelaxation in SHR by inhibition of these enzymes.  相似文献   

12.
The pathogenesis of diabetic micro- and macroangiopathy cannot be fully explained by hyperglycemia alone. To clarify diabetic complications mediated by increased platelet activity, we have studied platelet aggregation and its second messenger molecules such as protein kinase C (PKC), RhoA, and phosphatidylinositol 3-kinase (PI3- kinase), in six diabetic patients with diabetic retinopathy and other diabetic complications in spite of good glycemic control. Their HbA 1c levels throughout the observation period had been less than 6% with diet treatment alone, despite which diabetic retinopathy developed to the pre-proliferative stage during 2-8 years observation. Low-dose thrombin (< 0.5 U/ml)-stimulated platelet aggregation in the diabetic patients was enormously elevated compared with healthy control subjects. PKC, RhoA and PI3-kinase activities in the cytosol- and membrane-associated fractions were examined in the platelets from the two patients (Cases 2 and 4). Platelet membrane-associated RhoA and PI3-kinase activity in Case 2 were increased before the stimulation. Platelet RhoA and PI 3-kinase activities in Case 4 were increased after the stimulation with low-dose thrombin (0.01 U/ml). Membrane-associated immunoreactive PKC f , but not PKC g in Cases 2 and 4 was elevated. Although platelet hyperactivity in these four patients was observed, PKC and RhoA in mononuclear leukocytes from these patients were not different from healthy subjects. Membrane-associated PKC f and RhoA immunoreactivities also increased in the other three cases. These results suggest that hyperreactivity of PKC f may lead to increased RhoA and PI3-kinase activities and platelet hyperfunction in diabetic patients with good glycemic control, and that raised platelet PKC f may be implicated in the pathogenesis of diabetic complications.  相似文献   

13.
Na+,K+-ATPase activity, phosphorylation, and [3H]ouabain binding in sarcolemma isolated from spontaneously hypertensive rat (SHR) hearts were compared to the same parameters in sarcolemma from normotensive rat (WKY) hearts. Sarcolemma prepared from SHR heart contained significantly less ouabain-inhibitable ATPase activity than sarcolemma from WKY heart. No significant differences in sarcolemmal protein content or recovery were noted between the two groups. The numbers of phosphorylation sites and ouabain binding sites were lower for SHR hearts than for WKY hearts. The KD values for ouabain binding were the same (0.30 muM) in cardiac sarcolemma of SHR and WKY. The I50 values for inhibition by ouabain of Na+,K+-ATPase were also the same for both groups (SHR = 49 microM; WKY = 44 microM). These data suggest that the decrease of cardiac sarcolemmal Na+,K+-ATPase activity in SHR hearts is due to a decrease in the number of active sites.  相似文献   

14.
OBJECTIVE: This study examined the separate and combined effects of hypertension and diabetes on renal cortical expression of protein kinase C (PKC) isoforms -beta 1, -beta 2, -alpha and -epsilon, to determine whether albuminuria is the result of an increase in the expression of one or a combination of PKC isoforms. Corresponding changes in renal microtubules were also assessed. METHODS: Diabetes (D) was induced in Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) by streptozotocin. After 24 weeks, PKC expression was determined by Western blot and microtubules were assessed by immunohistochemistry for alpha-tubulin protein. RESULTS: Diabetes was characterized by significant increases in glycated haemoglobin (HbA1c) as compared to controls (C). There was a significant increase of three- to four-fold in PKC protein content for all four isoforms in renal cortex from SHR-C and WKY-D, and similar and significant levels of albuminuria (approximately 10 mg/24 h) observed in these groups in comparison to WKY-C (approximately 1 mg/24 h). Interestingly, PKC-alpha and -epsilon but not PKC-beta 1 and -beta 2 protein content was doubled in SHR-D, and albuminuria increased tenfold (approximately 100 mg/24 h) in comparison to SHR-C and WKY-D. These changes were paralleled by a significant decrease in alpha-tubulin protein content of approximately 50% in SHR-C and approximately 33% in WKY-D compared to WKY-C, with a further decrease of approximately 67% in SHR-D compared to WKY-C. CONCLUSION: These findings indicate that PKC expression can be increased by either diabetes or hypertension, and that there are further specific increases in the expression of PKC isoforms -alpha and -epsilon in the model of combined diabetes and hypertension. In addition, the degree of disruption in microtubular cytoskeleton appears to be correlated with PKC activation and levels of albuminuria.  相似文献   

15.
Angiotensin II (Ang-II) and endothelin 1 (ET-1) are important peptides that induce a prolonged vasoconstriction and enhance proliferation of vascular smooth muscle cells (VSMC). These substances may have an important role in the development of hypertension and atherosclerosis. Our objectives were to determine whether there are inborn differences in the proliferation patterns of VSMC obtained from spontaneously hypertensive (SHR) and Wistar-Kyoto rats (WKY) by studying the effects of Ang-II and ET-1 on VSMC from those strains before the onset of hypertension, and to evaluate the roles of protein kinase C (PKC) and intracellular Ca2+ in the mechanism of action of ET-1 and Ang-II.

VSMC from aortas of young (1- to 2-week–old) SHR and WKY rats were grown as primary cultures in plates for 48 h. The cells were incubated with Ang-II (0.1 to 1000 nmol/L) or ET-1 (0.1 to 100 nmol/L). VSMC were also incubated in the presence of various concentrations of a PKC inhibitor, chelerythrine (0.1–10 nmol/L). Thymidine incorporation into DNA was measured as an indicator of DNA synthesis. Intracellular free Ca2+ was determined by using FURA-2AM.

ET-1 and Ang-II caused a marked dose-dependent enhancement of thymidine incorporation into DNA. The responses of VSMC from WKY and SHR to Ang-II and ET-1 were similar. In both strains, chelerythrine caused a dose-dependent suppression in the activity of ET-1 and Ang-II. However, VSMC from SHR incubated in the presence of ET-1 were more susceptible to the inhibitory effect of chelerythrine. Both Ang-II and ET-1 induced an increase of intracellular free Ca2+. ET-1 induced a larger increase than Ang-II (190% and 100% greater than baseline free Ca2+ levels, respectively), in spite of a lower concentration of ET-1 (ET-1 = 30 nmol/L; Ang-II = 100 nmol/L).

Ang-II and ET-1 exerted a similar mitogenic effect on primary cultures of VSMC obtained from young SHR before the development of hypertension, compared with WKY. The mitogenic activity of Ang-II and ET-1 was accompanied by an increase of intracellular free Ca2+. The effect of ET-1 upon intracellular Ca2+ was stronger than that of Ang-II. VSMC cultures of SHR stimulated with ET-1 were more susceptible to PKC inhibition than those of WKY. The similarity of the effects of Ang- II and ET-1 on SHR and WKY does not exclude their role in the pathogenesis of hypertension and atherosclerosis, and further studies should be carried out to determine their role.  相似文献   


16.
The mechanism of platelet dysfunctions in stroke-prone spontaneously hypertensive rats (SHRSP) was investigated. Platelet aggregation was inversely correlated with blood pressure or heart weight/body weight ratios in various strains of spontaneously hypertensive rats (SHR), indicating genetic defects. Thrombin-induced 47 kDa protein phosphorylation was markedly reduced in platelets of SHRSP compared with that in Wistar-Kyoto (WKY) rat platelets, accompanying reduced aggregation and secretion, but in 20 kDa protein phosphorylation was unchanged. Ca2+ ionophore A23187-induced responses were also significantly decreased in SHRSP, and the degrees of the changes were greater than those by thrombin. However, 12-O-tetradecanoylphorbol 13-acetate-induced responses in SHRSP were similar to those in WKY rats, suggesting that protein kinase C activity and its substrate were normally present in SHRSP platelets. Phosphatidylinositol content in platelets of SHRSP was 20% less than that in WKY rat platelets, but the contents of other phospholipids, including phosphatidylinositol-4-monophosphate and phosphatidylinositol-4,5-bisphosphates, were unaltered. Thrombin-induced formation of diacylglycerols and phosphatidic acid did not differ from each other at the low concentrations. In the absence of Ca2+, thrombin-induced responses occurred to a similar degree in both platelets, whereas the enhancements by Ca2+ were much greater in WKY rats than in SHRSP. These results suggested that defective Ca2+ functions in receptor-mediated activation of protein kinase C and postkinase-mediated events appear to be an underlying mechanism for the hypofunctions in SHRSP platelets.  相似文献   

17.
Experiments were conducted to determine whether a difference in receptor-induced phosphatidylinositol hydrolysis occurred in aorta from spontaneously hypertensive rats (SHR) v Wistar-Kyoto (WKY) rats, and whether such a difference was correlated with contractile response. Basal incorporation of 32P into phosphatidylinositol (PI), phosphatidylinositol phosphate (PIP), phosphatidylinositol diphosphate (PIP2) and phosphatidic-acid (PA) was not different between SHR and WKY groups. However, after five minutes of norepinephrine (NE; 10 mumol) exposure, increases in 32P labeling were markedly lower in SHR arteries. The percentage decrease amounted to 45% for PI, 68% for PIP, 100% for PIP2 and 58% for PA. Basal incorporation of 3H-myo-inositol into inositol monophosphate (IP) was similar for SHR and WKY groups. However, after 30 minutes of NE (10 mumol), SHR arteries failed to show an increase in 3H-IP levels, whereas labeling was increased 219% in WKY arteries. The contractile response of SHR arteries to 10 mumol NE showed a marked reduction in the rate of development of the tonic phase that has previously been shown to be supported by activity of protein kinase C. Higher Ca2+ levels failed to augment the SHR response, whereas WKY responses were significantly increased. Contractions in the presence of the phorbol ester tetradecanoylphorbolacetate exhibited a similar reduction in NE-induced tonic phase tension. These results indicate an impairment in SHR arteries at the level of receptor-induced formation of inositol cycle second messengers, possibly due to elevated basal levels of protein kinase C. These differences may be important in explaining altered vascular responses in primary hypertension.  相似文献   

18.
We compared renal interlobar arteries of spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) in terms of cytochrome P450 (CYP) 4A and CYP2E1 protein expression; levels of 20-HETE, 19-HETE, and 18-HETE; and responsiveness to phenylephrine in the absence and presence of N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS; 30 mumol/L), a CYP4A inhibitor. Relative to data in WKY, arteries of SHR exhibited diminished (P<0.05) CYP2E1 and levels of 19-HETE (66.7+/-6.0 versus 44.9+/-2.8 pmol/mg) and 18-HETE (13.8+/-1.6 versus 7.9+/-0.5 pmol/mg), whereas CYP4A and 20-HETE levels (99.3+/-9.1 versus 98.9+/-12.8 pmol/mg) were unchanged. Phenylephrine contracted vascular rings of SHR and WKY; the R(max) was similar in both strains, but SHR vessels were more sensitive as denoted by the lower (P<0.05) EC50 (0.28+/-0.07 versus 0.71+/-0.12 mumol/L). DDMS decreased 20-HETE and, to a lesser extent, 19-HETE, while increasing (P<0.05) the EC50 for phenylephrine by 475% and 54% in vessels of SHR and WKY, respectively. The desensitizing effect of DDMS was reversed by 20-HETE. Notably, the minimal concentration of 20-HETE that decreased the EC50 for phenylephrine in DDMS-treated vessels was smaller in SHR (0.1 micromol/L) than WKY (10 micromol/L), and the sensitizing effect of 20-HETE was blunted (P<0.05) by the (R) stereoisomers of 19-HETE and 18-HETE. We conclude that the increased sensitivity to phenylephrine in arteries of SHR is attributable to a vasoregulatory imbalance produced by a deficit in vascular CYP2E1-derived products, most likely 19(R)-HETE and 18(R)-HETE, which condition amplification of the sensitizing action of 20-HETE.  相似文献   

19.
OBJECTIVES: We sought to examine the hypothesis that a pharmacologic up-regulation of endothelial nitric oxide synthase (eNOS) combined with a reversal of eNOS uncoupling provides a protective effect against cardiovascular disease. BACKGROUND: Many cardiovascular diseases are associated with oxidant stress involving protein kinase C (PKC) and uncoupling of eNOS. METHODS: Messenger ribonucleic acid (mRNA) expression was analyzed with RNase protection assay or quantitative real-time polymerase chain reaction, vascular nitric oxide (NO) with spin trapping, and reactive oxygen species (ROS) with dihydroethidium fluorescence. RESULTS: Aortas of spontaneously hypertensive rats (SHR) showed an elevated production of ROS when compared with aortas of Wistar-Kyoto rats (WKY). The aortic expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits (Nox1, Nox2, Nox4, and p22phox) was higher in SHR compared with WKY. In SHR, aortic production of ROS was reduced by the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME), indicating eNOS "uncoupling" in hypertension. Oral treatment with the PKC inhibitor midostaurin reduced aortic Nox1 expression, diminished ROS production, and reversed eNOS uncoupling in SHR. Aortic levels of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) were significantly reduced in SHR compared with WKY. Midostaurin normalized BH4 levels in SHR. In both WKY and SHR, midostaurin increased aortic expression of eNOS mRNA and protein, stimulated bioactive NO production, and enhanced relaxation of the aorta to acetylcholine. Midostaurin lowered blood pressure in SHR and, to a lesser extent, in WKY; the compound did not change blood pressure in WKY made hypertensive with L-NAME. CONCLUSIONS: Pharmacologic interventions that combine eNOS up-regulation and reversal of eNOS uncoupling can markedly increase bioactive NO in the vasculature and produce beneficial hemodynamic effects such as a reduction of blood pressure.  相似文献   

20.
E Mills  J W Bruckert 《Hypertension》1988,11(5):427-432
To identify genetic factors linked obligatorily to hypertension in the rat, pithed spontaneously hypertensive rats (SHR) were compared with genetically similar (Wistar-Kyoto rats; WKY) and different (Sprague-Dawley) normotensive strains. The only variables that distinguished SHR from both WKY and Sprague-Dawley rats were a greater maximum pressor response to electrical stimulation of sympathetic outflow and decreased sensitivity to submaximal doses of the alpha 1-adrenergic agonist methoxamine (i.e., higher ED50). SHR had in common with Sprague-Dawley rats basal blood pressure after pithing plus adrenalectomy and the maximum pressor response to methoxamine; both these values were higher than those in WKY. All strains demonstrated equal sensitivity of the vasoconstrictor response to endogenous norepinephrine released by electrical simulation at submaximal frequency, even though sensitivity to the alpha 1-adrenergic receptor agonist was lower in SHR. The alpha 2-adrenergic receptor antagonist rauwolscine attenuated the pressor response to electrical stimulation in SHR and WKY but increased it in Sprague-Dawley rats. The alpha 1-adrenergic receptor antagonist prazosin attenuated the response more in SHR and WKY than in Sprague-Dawley rats. We conclude that 1) sympathetic hyperactivity is linked obligatorily to hypertension in SHR; 2) increased basal blood pressure and noradrenergic vasoconstrictor response are present in SHR, but they are not obligatorily linked to hypertension; 3) feedback inhibition of norepinephrine release is comparable in SHR or WKY and poorly developed compared with that in Sprague-Dawley rats; 4) decreased sensitivity of the pressor response to stimulation of vascular alpha 1-adrenergic receptors in SHR compensates partially for increased sympathetic activity or hyperinnervation, or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号