首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Beckwith-Wiedemann syndrome (BWS) is a phenotypically and genotypically heterogeneous overgrowth syndrome characterized by somatic overgrowth, macroglossia and abdominal wall defects. Other usual findings are hemihyperplasia, embryonal tumours, adrenocortical cytomegaly, ear anomalies, visceromegaly, renal abnormalities, neonatal hypoglycaemia, cleft palate, polydactyly and a positive family history. BWS is a complex, multigenic disorder associated, in up to 90% of patients, with alteration in the expression or function of one or more genes in the 11p15.5 imprinted gene cluster. There are several molecular anomalies associated with BWS and the large proportion of cases, about 85%, is sporadic and karyotypically normal. One of the major categories of BWS molecular alteration (10-20% of cases) is represented by mosaic paternal uniparental disomy (pUPD), namely patients with two paternally derived copies of chromosome 11p15 and no maternal contribution for that. In these patients, in addition to the effects of IGF2 overexpression, a decreased level of the maternally expressed gene CDKN1C may contribute to the BWS phenotype. In this paper, we reviewed a series of nine patients with BWS because of pUPD using several methods with the aim to evaluate the percentage of mosaicism, the methylation status at both loci, the extension of the pUPD at the short arm and the breakpoints of recombination. Fine mapping of mitotic recombination breakpoints by single-nucleotide polymorphism-array in individuals with UPD and fine estimation of epigenetic defects will provide a basis for understanding the aetiology of BWS, allowing more accurate prognostic predictions and facilitating management and surveillance of individuals with this disorder.  相似文献   

2.
Beckwith–Wiedemann syndrome (BWS) is an imprinting disorder associating macroglossia, abdominal wall defects, visceromegaly, and a high risk of childhood tumor. Molecular anomalies are mostly epigenetic; however, mutations of CDKN1C are implicated in 8% of cases, including both sporadic and familial forms. We aimed to describe the phenotype of BWS patients with CDKN1C mutations and develop a functional test for CDKN1C mutations. For each propositus, we sequenced the three exons and intron–exon boundaries of CDKN1C in patients presenting a BWS phenotype, including abdominal wall defects, without 11p15 methylation defects. We developed a functional test based on flow cytometry. We identified 37 mutations in 38 pedigrees (50 patients and seven fetuses). Analysis of parental samples when available showed that all mutations tested but one was inherited from the mother. The four missense mutations led to a less severe phenotype (lower frequency of exomphalos) than the other 33 mutations. The following four tumors occurred: one neuroblastoma, one ganglioneuroblastoma, one melanoma, and one acute lymphoid leukemia. Cases of BWS caused by CDKN1C mutations are not rare. CDKN1C sequencing should be performed for BWS patients presenting with abdominal wall defects or cleft palate without 11p15 methylation defects or body asymmetry, or in familial cases of BWS.  相似文献   

3.
Beckwith–Wiedemann syndrome (BWS) is an overgrowth syndrome, caused by alterations in a cluster of imprinted genes located within the chromosome region 11p15.5. Common clinical features are overgrowth, macroglossia, lateralized overgrowth, abdominal wall defects, neonatal hypoglycemia and an increased risk of embryonal tumors, such as hepatoblastomas. Periodic screening for abdominal tumors is recommended. Vascular tumors are uncommon in BWS. Diffuse infantile hepatic hemangiomas (DIHHs) are rare vascular tumors with potentially lethal complications, in particular acquired consumptive hypothyroidism, high‐output cardiac failure, liver failure and abdominal compartment syndrome. We describe a 2‐month‐old patient with hallmark clinical features of BWS and confirmed a genetic diagnosis with mosaic paternal uniparental disomy of chromosome 11p15.5 (UPD[11]pat). The patient developed hepatomegaly and elevated alpha‐fetoprotein (AFP) and was therefore suspected of having a hepatoblastoma. Abdominal echo‐color Doppler and a CT‐scan allowed diagnosis of DIHHs. She was closely monitored and underwent treatment with propranolol. Oral propranolol was effective in reducing hepatic lesions without side effects. This report may suggest that vascular tumors can also be associated with BWS.  相似文献   

4.
We report on the prenatal diagnosis of Beckwith-Wiedemann syndrome (BWS) in a pregnancy monitored because of a previously affected child. The proposita had classical stigmata of BWS including macroglossia, omphalocele, and typical ear creases. Chromosomes were 46,XX. Both parents and the extended maternal family were clinically normal. In a subsequent pregnancy by another father, the mother had serial ultrasound monitoring at 13.5, 18, and 19 weeks gestation which showed an enlarged abdominal circumference and a 2-cm omphalocele. At termination the female fetus weighed more than two times the expected weight, had striking hypertrophy of skeletal muscles, a protuberant abdomen, and a 2-cm omphalocele and characteristic facial appearance. Autopsy confirmed generalized organomegaly. This is the first report of the prenatal diagnosis of BWS prior to 20 weeks in an at-risk family. The recurrence in this family emphasizes the difficulty in providing accurate genetic recurrence risks in BWS and suggests that ultrasonographic prenatal diagnosis should be offered to families even when the case appears to be "sporadic."  相似文献   

5.
Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder caused by genetic and epigenetic changes in the chromosome 11p15 region. The syndrome is characterized by a wide range of features including macrosomia, lateralized overgrowth, abdominal wall defects, and hypoglycemia. BWS presentation is variable across the entire patient population, but certain areas including immunology, cardiology, and behavioral differences are not well characterized. We present a case of a male patient with BWS due to the most common cause of BWS, loss of methylation at imprinting center 2 with a variable phenotype, including classical features (macrosomia, macroglossia, omphalocele, placentomegaly and mild lateralized overgrowth) in addition to uncommon features (immune deficiency, developmental delays, and pulmonary stenosis) not typically seen in BWS. This study defines a patient's clinical presentation and course and highlights the need to consider atypical organ systems in BWS as either an expansion of the phenotype or co-existing conditions to develop personalized care models.  相似文献   

6.
Beckwith-Wiedemann syndrome (BWS) is a human imprinting disorder with a variable phenotype. The major features are anterior abdominal wall defects including exomphalos (omphalocele), pre- and postnatal overgrowth, and macroglossia. Additional less frequent complications include specific developmental defects and a predisposition to embryonal tumours. BWS is genetically heterogeneous and epigenetic changes in the IGF2/H19 genes resulting in overexpression of IGF2 have been implicated in many cases. Recently germline mutations in the cyclin dependent kinase inhibitor gene CDKN1C (p57KIP2) have been reported in a variable minority of BWS patients. We have investigated a large series of familial and sporadic BWS patients for evidence of CDKN1C mutations by direct gene sequencing. A total of 70 patients with classical BWS were investigated; 54 were sporadic with no evidence of UPD and 16 were familial from seven kindreds. Novel germline CDKN1C mutations were identified in five probands, 3/7 (43%) familial cases and 2/54 (4%) sporadic cases. There was no association between germline CDKN1C mutations and IGF2 or H19 epigenotype abnormalities. The clinical phenotype of 13 BWS patients with germline CDKN1C mutations was compared to that of BWS patients with other defined types of molecular pathology. This showed a significantly higher frequency of exomphalos in the CDKN1C mutation cases (11/13) than in patients with an imprinting centre defect (associated with biallelic IGF2 expression and H19 silencing) (0/5, p<0.005) or patients with uniparental disomy (0/9, p<0.005). However, there was no association between germline CDKN1C mutations and risk of embryonal tumours. No CDKN1C mutations were identified in six non-BWS patients with overgrowth and Wilms tumour. These findings (1) show that germline CDKN1C mutations are a frequent cause of familial but not sporadic BWS, (2) suggest that CDKN1C mutations probably cause BWS independently of changes in IGF2/H19 imprinting, (3) provide evidence that aspects of the BWS phenotype may be correlated with the involvement of specific imprinted genes, and (4) link genotype-phenotype relationships in BWS and the results of murine experimental models of BWS.  相似文献   

7.
8.
Beckwith-Wiedemann syndrome (BWS) is a clinically variable disorder characterized by somatic overgrowth, macroglossia, abdominal wall defects, visceromegaly, and an increased susceptibility to childhood tumors. The disease has been linked to a large cluster of imprinted genes at human chromosome 11p15.5. A subset of BWS patients has been identified with loss-of-function mutations in p57(KIP2), a maternally expressed gene encoding a G(1) cyclin-dependent kinase inhibitor. Some patients display loss of imprinting of IGF2, a fetal-specific growth factor that is paternally expressed. To understand how the same disease can result from misregulation of two linked, but unrelated, genes, we generated a mouse model for BWS that both harbors a null mutation in p57(Kip2) and displays loss of Igf2 imprinting. These mice display many of the characteristics of BWS, including placentomegaly and dysplasia, kidney dysplasia, macroglossia, cleft palate, omphalocele, and polydactyly. Some, but not all, of the phenotypes are shown to be Igf2 dependent. In two affected tissues, the two imprinted genes appear to act in an antagonistic manner, a finding that may help explain how BWS can arise from mutations in either gene.  相似文献   

9.
We report on an infant who had been prenatally diagnosed with Klinefelter syndrome associated with a "de novo" pericentric inversion of the Y chromosome. A re-evaluation at 3 years of age suggested that he was also affected by Beckwith-Wiedemann syndrome (BWS). Karyotype was repeated and fluorescence in situ hybridisation (FISH) analysis revealed trisomy for 11p15.5-->11pter and a distal monosomy 18q (18q23-->qter). Parental cytogenetic studies showed that the father carried a balanced cryptic translocation between chromosomes 11p and 18q. Furthermore, the child had an extra X chromosome and a "de novo" structural abnormality of chromosome Y. Thus, his karyotype was 47,XX, inv (Y) (p11.2 q11.23), der(18) t (11;18) (p15.5;q23) pat. ish der(18) (D11S2071+, D18S1390-). Two markers on the X chromosome showed that the extra X of the child was paternally inherited. No deletions were observed on the structurally abnormal Y chromosome from any of the microsatellites studied. Clinical findings of patients with BWS due to partial trisomy 11p reveal that there is a distinct pattern of dysmorphic features associated with an increased incidence of mental retardation when comparing patients with normal chromosomes. This fact reinforces that FISH study have to be performed in all BWS patients, specially in those with mental retardation since small rearrangements cannot be detected by conventional cytogenetic techniques.  相似文献   

10.
Mosaic uniparental disomy in Beckwith-Wiedemann syndrome.   总被引:2,自引:3,他引:2       下载免费PDF全文
Beckwith-Wiedemann syndrome (BWS) is a congenital overgrowth syndrome with variable expression. The major features are anterior abdominal wall defects, macroglossia, and gigantism and less commonly neonatal hypoglycaemia, organomegaly, congenital renal anomalies, hemihypertrophy and embryonal tumours occur. BWS is a genetically heterogeneous disorder; most cases are sporadic but approximately 15% are familial and a small number of BWS patients have cytogenetic abnormalities involving chromosome 11p15. Genomic imprinting effects have been implicated in familial and non-familial BWS, and uniparental disomy (UPD) for chromosome 11 has been reported in sporadic cases. We investigated the incidence, pathogenesis, and clinical associations of UPD in 49 patients with non-familial BWS and a normal karyotype. UPD for chromosome 11p15 was detected in nine of 32 (28%) informative patients. A further two patients appeared to be disomic at the WT1 locus in chromosome 11p13, but were uninformative at chromosome 11p15.5 loci tested. In all cases with UPD the affected person was mosaic for a paternal isodisomy and a normal cell line indicating that UPD had arisen as a postzygotic event. Compared to cases in which paternal isodisomy for chromosomes 11p15.5 had been excluded (n = 23), BWS patients with UPD was more likely to have hemihypertrophy (6/9 versus 1/23, p < 0.001) and less likely to have exomphalos (0/9 versus 13/23, p < 0.01), but there were no significant differences between disomic and non-disomic cases in the incidence of hypoglycaemia, nephromegaly, neoplasia, and developmental delay. The detection of UPD in BWS patients allows accurate genetic counselling to be provided and provides an insight into the molecular pathogenesis of BWS.  相似文献   

11.
Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome characterized by macrosomia, macroglossia, omphalocele, hemihyperplasia, and increased tumor risk. BWS can be associated with genetic and/or epigenetic alterations that modify imprinted gene expression on chromosome 11p15.5. Somatic mosaicism for paternal uniparental disomy (UPD) of chromosome 11p15, found in 20% of BWS patients, is associated with specific features of BWS including hemihyperplasia, Wilms tumor, and hepatoblastoma. The highly variable phenotypic spectrum of BWS associated with UPD may well reflect the level of UPD 11 cells in specific organs and tissues such that very high levels of UPD might produce a more severe phenotypic expression of BWS. In this regard we report on two patients with severe presentations of BWS and extremely high levels of UPD in DNA from lymphocytes. Clinically, both patients demonstrated extreme macroglossia, persistent hypoglycemia, cardiomyopathy, hemihyperplasia, renal abnormalities, abdominal organomegaly, hepatoblastoma and died in the first 6 months of life. These two patients support the hypothesis that high levels of UPD define high expressivity in BWS.  相似文献   

12.
Beckwith-Wiedemann syndrome (BWS) is a congenital overgrowth syndrome with variable expression. To define the range and frequency of complications in BWS, we have studied a cohort of 76 affected patients (two previously reported). The most frequent complications were microglossia (97%), abdominal wall defect (80%) and birth weight or postnatal growth > 90th centile (88%). Other common features were ear creases/pits (76%), facial naevus flammeus (62%), nephromegaly (59%) and hypoglycaemia (63%). Rarer complications included hemihypertrophy (24%), moderate/severe developmental delay (4%), congenital heart defects (6.5%), polydactyly (4%), neoplasia (4%) and cleft palate (2.5%). Pre-term labour occurred in 53% and polyhydramnios in 33% of BWS pregnancies. The six deaths all occurred in babies born pre-term, three of whom had major congenital abnormalities. Five patients (6.5%) from four kindreds had an unequivocal family history of BWS, but 15 of 68 apparently sporadic cases had a relative with possible BWS (minor features only). Incomplete penetrance may lead to familial BWS being underdiagnosed.  相似文献   

13.
14.
Beckwith-Wiedemann syndrome (BWS) is congenital disorder whose molecular etiology is related to genetic and epigenetic mutations on 11p15. The majority of cases of BWS are sporadic, but a substantial proportion are familial, with an unknown inheritance pattern, although autosomal dominant and sex-dependent inheritance have been proposed. We tested the hypothesis that in familial BWS, autosomal dominant inheritance is the primary mode of transmission underlying familial instances. Segregation analysis was performed in 291 families ascertained with an affected child. Individuals were considered to have BWS if they had two of five major features: macroglossia, macrosomia, hypoglycemia at birth, abdominal wall defect, and ear pits or creases. Models of inheritance were tested using pedigree analysis package (PAP) parameterized for a discrete trait. A total of 291 families of an affected proband were included in the study. The analysis was based on a revised general model that included a boundary solution. Sporadic and environmental models were rejected. Overall, the results suggested Mendelian inheritance but under recessive or additive mode of inheritance, which fit the data equally well rather than dominant inheritance. However, the presence of families in the cohort consistent with dominant and sex-dependent inheritance suggest familial BWS may be a heterogeneous group comprised of different inheritance patterns. Familial BWS does not appear to be consistent with autosomal dominant transmission, and is likely a complex mixture of different inheritance patterns.  相似文献   

15.
《Genetics in medicine》2019,21(11):2644-2649
PurposeBeckwith–Wiedemann syndrome (BWS) is a human genomic imprinting disorder characterized by lateralized overgrowth, macroglossia, abdominal wall defects, congenital hyperinsulinism, and predisposition to embryonal tumors. One of the molecular etiologies underlying BWS is paternal uniparental isodisomy of chromosome 11p15.5 (pUPD11). About 8% of pUPD11 cases are due to genome-wide paternal uniparental isodisomy (GWpUPD). About 30 cases of live-born patients with GWpUPD have been described, most of whom were mosaic and female. We present male patients with BWS due to GWpUPD, elucidate the underlying mechanism, and make recommendations for management.MethodsThree male patients with GWpUPD underwent clinical and molecular evaluation by single-nucleotide polymorphism (SNP) microarrays in different tissues. Previously published cases of GWpUPD were reviewed.ResultsSNP microarray demonstrated a GWpUPD cell population with sex chromosomes XX and biparental cell population with sex chromosomes XY, consistent with dispermic androgenetic chimerism.ConclusionSNP microarray is necessary to distinguish GWpUPD cases and the underlying mechanisms. The percentage of GWpUPD cell population within a specific tissue type correlated with the amount of tissue dysplasia. Males with BWS due to GWpUPD are important to distinguish from other molecular etiologies because the mechanism indicates risk for germ cell tumors and autosomal recessive diseases in addition to other BWS features.  相似文献   

16.
Beckwith–Wiedemann syndrome (BWS) is a rare overgrowth syndrome associated with an increased risk in childhood tumours. The phenotypic variability in BWS reflects its molecular heterogeneity. This syndrome is a multigenic disorder caused by dysregulation of imprinted growth regulatory genes in the 11p15.5 region. The most commonly reported tumours in this syndrome are tumours of embryologic origin such as Wilms tumours, hepatoblastomas, neuroblastomas, rhabdomyosarcomas and adrenocortical carcinomas.We report the case of a 10-year-old patient diagnosed with BWS, harbouring a CDKN1C (p57KIP2) mutation, who developed a T-type acute lymphoblastic leukaemia.To our knowledge it is the first report of an acute lymphoblastic leukaemia of T-type in a child with BWS. We discuss the possibility of a link between BWS and leukaemia via one of the few known negative regulator of hematopoiesis, the transforming growth factor beta pathway, depending upon the up-regulation of CDKN1C.  相似文献   

17.
We report on a young woman admitted to our Cardiology Unit because of an episode of cardiac arrest related to a long-QT syndrome (LQTS). This manifestation was part of a broader phenotype, which was recognized as a mild form of Beckwith-Wiedemann syndrome (BWS). Molecular analysis confirmed the diagnosis of BWS owing to a maternally inherited deletion of the centromeric imprinting center, or ICR2, an extremely rare genetic mechanism in BWS. The deletion interval (198 kb) also included exons 11–16 of the KCNQ1 gene, known to be responsible for LQTS at locus LQT1. No concomitant mutations were found in any other of the known LQT genes. The proposita''s mother carries the same deletion in her paternal chromosome and shows manifestations of the Silver-Russell syndrome (SRS). This report describes the smallest BWS-causing ICR2 deletion and provides the first evidence that a paternal deletion of ICR2 leads to a SRS-like phenotype. In addition, our observation strongly suggests that in cases of LQTS due to mutation of the KCNQ1 gene (LQT1), an accurate clinical genetic evaluation should be done in order to program the most appropriate genetic tests.  相似文献   

18.
Beckwith-Wiedemann syndrome (BWS) is clinically and molecularly very heterogenous. Molecular findings characteristic of BWS have been reported in individuals with no or few associated features. We report on a child with isolated cardiac tumor and a constitutional H19 hypermethylation with none of the features of BWS.  相似文献   

19.
Genetically heterogeneous imprinting disorders include Beckwith-Wiedemann syndrome (BWS) and multiple maternal hypomethylation syndrome (MMHS). Using DNA sequencing, quantitative PCR, SNuPE, pyrosequencing, and hybridization to the Illumina GoldenGate Methylation Cancer Panel 1 array, we characterized the genomic DNA of two brothers with BWS who were discordant for loss of methylation at several differentially methylated regions (DMR), including imprinting center 2 (IC2) on chromosome band 11p15.5, which is often hypomethylated in BWS. In keeping with MMHS, the elder child had hypomethylation of SGCE and PLAGL1 as well as of IC2, whereas the younger brother demonstrated no loss of methylation at these DMRs. Although this discordance is consistent with the observation that 15-20% of individuals with BWS do not have detectable genetic or epigenetic alterations of 11p15.5, this is the first report of familial recurrence of BWS with discordance for chromosomal 11p15.5 alterations. We hypothesize that this apparent discordance arises either from mosaicism precluding identification of IC2 hypomethylation in blood or buccal mucosa DNA of the younger child, or from hypomethylation at a site not interrogated by our molecular studies.  相似文献   

20.
Beckwith-Wiedemann syndrome (BWS) is an overgrowth disorder with variability in clinical manifestations and molecular causes. In most cases, patients with BWS have normal development. Cases with developmental delay are usually attributed to neonatal hypoglycemia or chromosome abnormalities involving copy number variation for genes beyond the critical BWS region at 11p15.5. Brain abnormalities have not previously been recognized within the BWS phenotypic spectrum. We report on seven cases of BWS associated with posterior fossa abnormalities. Of these, two cases presented with Blake's pouch cyst, two with Dandy-Walker variant (DWV; hypoplasia of the inferior part of the vermis), one with Dandy-Walker malformation (DWM) and one with a complex of DWM, dysgenesis of the corpus callosum and brain stem abnormality. In all these cases, molecular findings involved the centromeric imprinted domain on chromosome locus 11p15.5, which includes imprinting center 2 (IC2) and the imprinted growth suppressor gene, CDKN1C. Three cases had loss of methylation at IC2, two had CDKN1C mutations, and one had loss of methylation at IC2 and a microdeletion. In one case no mutation/methylation abnormality was detected. These findings together with previously reported correlations suggest that genes in imprinted domain 2 at 11p15.5 are involved in normal midline development of several organs including the brain. Our data suggest that brain malformations may present as a finding within the BWS phenotype when the molecular etiology involves imprinted domain 2. Brain imaging may be useful in identifying such malformations in individuals with BWS and neurodevelopmental issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号