首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1-Benzyl-1,2,3,4-tetrahydroisoquinoline (1-BnTIQ) and TIQ are endogenous substances inducing bradykinesia, one of the symptoms of parkinsonism, in rodents and primates, and 2-methyl-TIQ is postulated to be an active form of TIQ. We investigated the effect of 1-BnTIQ-, TIQ- or 2-methyl-TIQ-treatment on the binding of 2-β-carbomethoxy-3-β-(4-fluorophenyl)-[N-methyl-11C]tropane to striatal dopamine transporters (DATs) in mice. Neither 1-BnTIQ (80 mg/kg, i.p., twice per day for 10 days) nor 2-methyl-TIQ (40 mg/kg, i.p., twice per day for 10 days) affected the radioligand–DAT binding, while TIQ (80 mg/kg, i.p., twice per day for 10 days) induced a 14% decrease. These results indicate that 1-BnTIQ does not affect the density of DATs on dopaminergic neurons, and that it is not clear whether or not 2-methyl-TIQ is an active form of TIQ.  相似文献   

2.
Current concepts of Parkinson's disease (PD) postulate that interaction between neurotoxins and specific genetic background may play an important role in pathogenesis of PD. Therefore, the effect of multiple administration of 1,2,3,4-tetrahydroisoquinoline (TIQ) under conditions of CYP2D blockade on the expression of key markers of PD was studied in the rat striatum (STR) and substantia nigra (SN). TIQ administered alone (50 mg/kg i.p. twice daily for 14 days) markedly decreased the level of tyrosine hydroxylase protein (TH) in the STR; however, this effect was not accompanied by reduction of dopamine (DA) concentration and [(3)H]GBR 12,935 binding to dopamine transporter (DAT). Administration of CYP2D inhibitor, quinine, jointly with TIQ lowered the levels of TH and DA in that structure, but slightly increased DAT binding. In the SN, treatment with TIQ alone did not change TH level although it enhanced DA content and decreased [(3)H]GBR 12,935 binding to DAT in the substantia nigra pars compacta (SNc). Neither the TH level nor DA concentration was affected by the combined treatment, although DAT binding was still reduced in the SN. TIQ did not change the total DA catabolism in the STR, but caused its inhibition in the SN. It strongly depressed the levels of intraneuronal DA metabolite DOPAC and enhanced that of extraneuronal 3-MT in either structure. TIQ more weakly affected the levels of both DA metabolites in the presence of quinine. Our results suggest that endogenous TIQ may act rather as neuromodulator but not as parkinsonism-inducing neurotoxin in the rat brain.  相似文献   

3.
P450 enzymes in the CYP2D subfamily have been suggested to contribute to the susceptibility of individuals in developing Parkinson's disease. We have used specific anti-peptide antisera and peroxidase immunohistochemistry to investigate the expression of CYP2D enzymes in the rat brain and some possible factors that may affect their regulation. In male Wistar rats, CYP2D1 was not detected in the basal ganglia or in any other brain region. CYP2D2 was weakly expressed within neurones of the subthalamic nucleus, substantia nigra and interpeduncular nucleus as well as in the hippocampus, dentate gyrus, red nucleus and pontine nucleus. CYP2D3 and CYP2D4 were absent from the basal ganglia, although moderate amounts of CYP2D3 were detected within fibres of the oculomotor root, and very low levels of CYP2D4 were present in white matter tracts. In contrast, CYP2D5 was extensively expressed in the basal ganglia, including neurones in the subthalamic nucleus, substantia nigra and interpeduncular nucleus, as well as other areas of the brain, including the ventral tegmental area, piriform cortex, hippocampus, dentate gyrus, medial habenular nucleus, thalamic nucleus and pontine nucleus. Lesioning of the nigro-striatal tract to cause almost a complete loss of tyrosine hydroxylase containing neurones in the substantia nigra, also reduced the number of neurones expressing CYP2D5 by 50%, indicating that CYP2D5 is expressed in dopaminergic neurones. Castration of pre-pubertal or adult Wistar rats had no effect on the number of CYP2D5-positive neurones in the substantia nigra. Although Dark Agouti rats lack hepatic CYP2D2, expression in the midbrain was similar to that of Wistar rats; furthermore, there was no difference in expression or distribution between male and female rats. In contrast to naive rats, extensive expression of CYP2D4 was found throughout the basal ganglia and in other brain nuclei in Wistar rats treated with not only clozapine, but also saline, suggesting that CYP2D4 may be induced as a result of mild stress. The function of CYP2D enzymes in the brain remains unknown, but their selective localisation suggests a physiological role in neuronal activity and in adaptation to abnormal situations.  相似文献   

4.
Summary. Immediate behavioral and biochemical effects of single doses of 1,2,3,4-tetrahydroisoquinoline (TIQ, 50 mg/kg) and salsolinol (100 mg/kg), suspected of involvement in etiology of Parkinson's disease, were investigated. Apomorphine (0.25 mg/kg) or haloperidol (1 mg/kg) were administered to TIQ or salsolinol pretreated Wistar rats. In additional experiment the displacement of [3H]apomorphine by TIQ, salsolinol and dopamine receptor agonists and antagonists was tested. Both tetrahydroisoquinolines only slightly affected behavior and dopamine metabolism in naive rats, but very effectively abolished the behavioral and biochemical effects of apomorphine (hyperactivity, depression of striatal HVA level). The behavioral and biochemical effects of haloperidol were unchanged by administration of TIQ nor salsolinol. The tetrahydroisoquinolines displaced [3H]apomorphine from its binding sites with effectiveness comparable to that of dopamine. The results support the hypothesis that endogenous tetrahydroisoquinolines may play an important role in regulation of dopaminergic activity in non-senescent organisms. Received August 12, 1999; accepted November 3, 1999  相似文献   

5.
Depletion of glutathione (GSH), nitrosative stress and chronic intoxication with some neurotoxins have been postulated to play a major role in the pathogenesis of Parkinson's disease. This study aimed to examine the effects of acute and chronic treatments with 1,2,3,4-tetrahydroisoquinoline (TIQ), an endo-/exogenous substance suspected of producing Parkinsonism in human, on the levels of nitric oxide (NO), S-nitrosothiols and glutathione (GSH) in the whole rat brain and in its dopaminergic structures. TIQ administered at a dose of 50 mg/kg i.p. significantly increased the tissue concentrations of NO and GSH in the substantia nigra (SN), striatum (STR) and cortex (CTX) of rats receiving this compound both acutely and chronically. Moreover, it decreased the level of oxidized glutathione (GSSG) and enhanced GSH:GSSG ratio affecting in this way the redox state of brain cells. TIQ also increased the level of S-nitrosothiols when measured in the whole rat brain and CTX, although it markedly decreased their level in the STR after both treatments. Inhibition of the constitutive NO synthase by l-NAME in the presence of TIQ caused decreases in GSH and S-nitrosothiol levels in the brain. The latter effect shows that the TIQ-mediated increases in GSH and S-nitrosothiol concentrations were dependent on the enhanced NO level. The above-described results suggest that TIQ can act as a modulator of GSH, NO and S-nitrosothiol levels but not as a parkinsonism-inducing agent in the rat brain.  相似文献   

6.
We presented data previously on dopamine (DA) synthesis and catabolism in the rat substantia nigra (SN) suggesting that a substantial part of the synthesized DA in this brain part is metabolized by unknown nonclassical metabolic pathways. On the basis of that a relatively high density of cytochrome P450 2E1 (CYP 2E1) has been detected in rat SN the aim of the present study was to investigate the possibility that this enzyme is involved in the metabolism of DA. Systemic administration of either phenylethyl isothiocyanate (100 mg/kg ip), diethyldithiocarbamate (500 mg/kg, ip) or diallyl sulfide (200 mg/kg, sc or ip), three different inhibitors of cytochrome P450 2E1, induced an increase of the extracellular DA concentration in the SN, measured with microdialysis in awake rats, by 130%, 90%, and 35%, respectively. A tendency to increased concentrations of the classical DA metabolites in the dialysate from the SN was also observed in some experiments. In the striatum, no profound effects were induced by the drugs on the concentrations of DA or its metabolites. The results show that CYP 2E1 activity affects dopaminergic neurotransmission in the SN, possibly by participating in DA metabolism. Other mechanisms, such as the influence on the DA transporter or the release process cannot, however, be ruled out.  相似文献   

7.
Many researchers assume that laboratory rats have poor vision, and accordingly, that they need not consider differences in the visual function of rats as a consequence of strain or experience. Currently, it is not specifically known whether rat domestication has negatively affected the visual function of laboratory rat strains, what the effects of strain albinism are on rat visual function, or whether there are strain differences in the visual function of laboratory rats that are independent of pigmentation. In order to address these questions, we measured psychophysically the vertical grating acuity of three pigmented (Dark Agouti, Fisher-Norway, Long-Evans) and three albino (Fisher-344, Sprague-Dawley, Wistar) strains of laboratory rats, and compared their acuity with that of wild rats. The grating thresholds of Dark Agouti, Long-Evans and wild strains clustered around 1.0 cycle/degree (c/d) and did not significantly differ from one another. Fisher-Norway rats, however, had a significantly higher threshold of 1.5 c/d. The grating thresholds of Fisher-344, Sprague-Dawley, and Wistar strains, which were clustered around 0.5 c/d, were significantly lower than those of the pigmented strains. These data demonstrate that there is significant strain variability in the visual function of laboratory rats. Domestication of Long-Evans and Dark Agouti strains does not appear to have compromised visual acuity, but in the case of Fisher-Norway rats, selective breeding may have enhanced their acuity. Strain selection associated with albinism, however, appears to have consistently impaired visual acuity. Therefore, a consideration of strain differences in visual function should accompany the selection of a rat model for behavioral tasks that involve vision, or when comparing visuo-behavioral measurements across rat strains.  相似文献   

8.
These studies examined the microsomal brain metabolism of phencyclidine (PCP) in male and female Sprague–Dawley rats. Several monohydroxylated metabolites of PCP were detected including cis- and trans-1-(1-phenyl-4-hydroxycyclohexyl)piperidine (c-PPC and t-PPC) and 1-(1-phenylcyclohexyl)-4-hydroxypiperidine (PCHP). The in vitro formation of these metabolites required NADPH and was inhibited by carbon monoxide. c-PPC was formed in the male and female brain microsomes at rates of 7.1±1.3 and 5.7±1.1 fmol/min per mg, respectively, while t-PPC was formed at rates of 16.2±3.3 and 16.5±4.2 fmol/min per mg. PCHP had the highest formation rate at 50.7±8.9 and 48.2±8.8 fmol/min per mg, respectively. Although previous studies with rat liver microsomes find higher levels of PCP metabolism in male rats and the formation of an irreversibly bound metabolite in male rats, the present study of brain metabolism found no sex differences in brain metabolism. The formation of PCP metabolites in male rat livers is at least partially mediated by the male-specific isozyme CYP2C11, and possibly CYP2D1. Nevertheless, the formation of the major brain metabolite, PCHP, was not inhibited by an anti-CYP2C11 or an anti-CYP2D6 antibody. However, PCHP formation was inhibited by drug inhibitors of CYP2D1-mediated metabolism, suggesting the involvement of a CYP2D isoform. These data indicate brain metabolism of PCP is significant, but unlike the liver it is not sexually dimorphic.  相似文献   

9.
Administration of 3,4-methylenedioxymethamphetamine (MDMA) or 3,4-methylenedioxyamphetamine (MDA) to rats produces serotonergic nerve terminal degeneration. However, they are not neurotoxic when injected directly into the brain, suggesting the requirement for peripheral metabolism of MDMA to a neurotoxic metabolite. Alpha-methyldopamine (alpha-MeDA) is a major metabolite of MDA. There are indications that a glutathione metabolite of alpha-MeDA and/or 3,4-dihydroxymethamphetamine may be responsible for the neurotoxicity and some of the behavioural effects produced by MDMA and/or MDA. The present study details the synthesis, purification and separation of the 5-(glutathion-S-yl)-alpha-MeDA and 6-(glutathion-S-yl)-alpha-MeDA regioisomers of alpha-MeDA. Incubation of MDA with human liver microsomes demonstrated that production of both glutathione adducts are related to cytochrome P450 2D6 isoform activity. Following intracerebroventricular administration (180 nmol) of either GSH adduct into Dark Agouti or Sprague-Dawley rats only 5-(glutathion-S-yl)-alpha-MeDA produced behavioural effects characterised by hyperactivity, teeth chattering, tremor/trembling, head weaving, splayed posture, clonus and wet dog shakes. Pre-treatment with a dopamine receptor antagonist (haloperidol, 0.25 mg/kg; i.p.) attenuated hyperactivity, teeth chattering, low posture and clonus and potentiated splayed postural effects. These results indicate that MDA can be converted into two glutathione regioisomers by human liver microsomes, but only the 5-(glutathion-S-yl)-alpha-MeDA adduct is behaviourally active in the rat.  相似文献   

10.
This study examined the acute effects of a variety of NMDA and non-NMDA antagonists on the activity of aromatic l-amino acid decarboxylase (AADC) in the corpus striatum (CS) and substantia nigra (SN) of the rat. Sixty min pretreatment with the high affinity NMDA receptor-channel blockers MK 801 (0.01, 0.1 and 1 mg/kg) and phencyclidine (4 mg/kg) elevated AADC activity in both the CS and SN (2- to 3-fold). Even more striking increases in AADC were noted with 40 mg/kg amantadine (3.8-fold for CS, 9.0-fold for SN), 40 mg/kg memantine (3.4-fold for CS, 3.1-fold for SN; 20 mg/kg no effect) and 40 mg/kg dextromethorphan (3.4-fold for CS, 6.2-fold for SN, in 6/10 `responders'). Similarly pronounced increases in AADC activity in CS (1.9-fold) and SN (2.8-fold) were detected after administering clonidine (2 mg/kg). R-HA 966 (5 mg/kg, not 1 mg/kg) modestly raised AADC activity in CS (0.45-fold) and not SN. Other drugs had no effect on the activity of the decarboxylase enzyme, including CGP 40116 (1 and 5 mg/g), eliprodil (10 mg/kg), NBQX (10 mg/kg, 30 min pretreatment) and atropine (1 mg/kg). These experiments indicate that blocking the NMDA receptor-channel (and to a lesser extent the glycine site) or stimulating α2-adrenoceptors, profoundly increases AADC activity, more especially in the SN than CS. By contrast, inhibiting the NMDA glutamate recognition or polyamine sites, AMPA or muscarinic receptors is without effect on AADC in either brain region. The ability of amantadine and memantine to potentiate the antiparkinsonian actions of l-DOPA in the clinic, may be due to facilitated decarboxylation of l-DOPA by the brain.  相似文献   

11.
3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") causes long-term disturbance of the serotonergic system. We examined the temporal, spatial, and cellular distribution of three molecular chaperones, Hsp27, Hsp72, and Hsp90, 3 and 7 days after treatment with 7.5, 15, and 30 mg/kg single intraperitoneal (i.p.) doses of MDMA in Dark Agouti rat brains. Furthermore, we compared the immunostaining patterns of molecular chaperones with serotonergic axonal-vulnerability evaluated by tryptophan-hydroxylase (TryOH) immunoreactivity and with astroglial-activation detected by GFAP-immunostaining. There was a marked reduction in TryOH-immunoreactive axon density after MDMA treatment in all examined areas at both time points. Three days after treatment, a significant dose-dependent increase in Hsp27-immunoreactive protoplasmic astrocytes was found in the cingulate, frontal, occipital, and pyriform cortex, and in the hippocampus CA1. However, there was no increase in astroglial Hsp27-immunoreactivity in the caudate putamen, lateral septal nucleus, or anterior hypothalamus. A significant increase in the GFAP immunostaining density of protoplasmic astrocytes was found only in the hippocampus CA1. In addition, numerous strong Hsp72-immunopositive neurons were found in some brain areas only 3 days after treatment with 30 mg/kg MDMA. Increased Hsp27-immunoreactivity exclusively in the examined cortical areas reveals that Hsp27 is a sensitive marker of astroglial response to the effects of MDMA in these regions of Dark Agouti rat brain and suggests differential responses in astroglial Hsp27-expression between distinct brain areas. The co-occurrence of Hsp27 and GFAP response exclusively in the hippocampus CA1 may suggest the particular vulnerability of this region. The presence of strong Hsp72-immunopositive neurons in certain brain areas may reflect additional effects of MDMA on nonserotonergic neurons.  相似文献   

12.
The authors investigated the impact of the CYP2D6 genotypes on the plasma concentration of paroxetine (PAX) in 55 Japanese psychiatric patients. They were administered 10 to 40 mg/day (24+/-10.0 mg/day) of PAX and maintained at the same daily dose for at least two weeks to obtain the steady-state concentrations. The plasma levels of PAX were 15.8+/-15.0, 47.4+/-32.0, 101.2+/-59.9 and 177.5+/-123.6 ng/ml at the daily dose of 10, 20, 30 and 40 mg, respectively, which suggested dose dependent kinetics of PAX. The allele frequencies of the CYP2D65, CYP2D610 and CYP2D641 were 1.8%, 41.8% and 1.8%, respectively. Significantly higher PAX concentrations were observed in the patients having one functional allele compared with those with two functional alleles (150.9+/-20.6 vs. 243.6+/-25.2 ng/ml mg(-1) kg(-1), p<0.05, Newman-Keuls multiple comparison test) or no functional (243.6+/-25.2 vs. 76.7+/-6.1 ng/ml mg(-1) kg(-1), p<0.05, Newman-Keuls multiple comparison test) in the subjects with 30 mg/day of paroxetine. The same trend of findings as in the subjects treated with 30 mg/day were observed in the subjects with 40 mg/day of PAX. The present results suggest that having one non-functional allele is the marker for high plasma concentration of PAX when relatively high daily dose of PAX is administered.  相似文献   

13.
3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) is a popular party drug known to cause selective serotonergic damage. Here we examined the long-term recovery and aging of serotonergic fibers and levels of brain-derived neurotrophic factor (BDNF) after intermittent MDMA administration (15 mg kg(-1) i.p. every 7th day for 4 weeks, MDMA ×4) and a single-dose treatment (15 mg kg(-1) i.p., MDMA ×1) in adolescent/young adult male Dark Agouti rats. After MDMA treatment, tryptophan hydroxylase-immunoreactive fiber density decreased and then recovered in all brain regions. Recovery was more pronounced in the MDMA ×4 group compared with the MDMA ×1 group, but similar long-term BDNF responses were found after both treatments. Twenty-two months after treatment, there were fewer clusters of aberrant serotonergic fibers in the parietal cortex in the MDMA ×4 group compared with the MDMA ×1 group. There was no difference in the density of microglial cells or astrocytes in treated groups versus the control 22 months after the treatments. These results indicate that recovery of serotonergic fibers is faster after intermittent MDMA treatment than after single-dose administration, and differences in BDNF levels per se are unlikely to account for this difference. Moreover, it seems that intermittent MDMA treatment attenuates the morphological signs of aging in serotonergic fibers. In addition, neither intermittent nor single-dose MDMA exposition of young animals induces accelerated aging processes or neurodegeneration in senescence, as indicated by the unaltered densities of microglial cells and astrocytes in the treated groups compared with the control.  相似文献   

14.
15.
S Ohta 《Clinical neurology》1989,29(12):1504-1506
Tetrahydroisoquinoline (TIQ) derivatives have been assumed to be substances closely related to parkinsonism because of their structural similarity to MPTP, which induces parkinsonism. TIQ and 1-methyltetrahydroisoquinoline (1MeTIQ) could be detected in human brains. The 1MeTIQ content in the frontal lobe of parkinsonian cases was markedly reduced than in non-parkinsonian cases. In addition, it could be recognized that 1MeTIQ content was decreased with aging both in the control and parkinsonians. It can be presumed that 1MeTIQ plays a role in protecting the brain from parkinsonism or aging processes. TIQ and 1MeTIQ were also present in a number of foods. It can be pointed out the possibility of TIQ intake from some foods. Metabolism of TIQ was defective in female DA, rat an animal model of a poor debrisoquine metabolizer. The female DA rat showed significantly higher brain accumulation of TIQ. These results suggest that the metabolic detoxication process is depressed and TIQ accumulation in the brain is enhanced in a poor debrisoquine metabolizer, which may be one possible explanation for poor debrisoquine metabolizers being susceptible to Parkinson's disease.  相似文献   

16.
Animal models are widely used to study antidepressant-like effect in rodents. However, it should be mentioned that pharmacological models do not always take into account the complexity of the disease process. In the present paper, we demonstrated that repeated but not acute treatment with a low dose of reserpine (0.2 mg/kg i.p.) led to a pharmacological model of depression which was based on its inhibitory effect on the vesicular monoamine transporter 2, and monoamines depleting action in the brain. In fact, we observed that chronic treatment with a low dose of reserpine induced a distinct depressive-like behavior in the forced swim test (FST), and additionally, it produced a significant decrease in the level of dopamine, noradrenaline, and serotonin in the brain structures. 1,2,3,4-Tetrahydroisoquinoline (TIQ) and its close methyl derivative, 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) are exo/endogenous amines present naturally in the mammalian brain which demonstrated a significant antidepressant-like effect in the FST and the reserpine model of depression in the rat. Both compounds, TIQ and 1MeTIQ, administered chronically in a dose of 25 mg/kg (i.p.) together with reserpine completely antagonized reserpine-produced depression as assessed by the immobility time and swimming time. Biochemical data were in agreement with behavioral experiments and demonstrated that chronic treatment with a low dose of reserpine in contrast to acute administration produced a significant depression of monoamines in the brain structures and impaired their metabolism. These neurochemical effects obtained after repeated reserpine (0.2 mg/kg i.p.) in the brain structures were completely antagonized by joint TIQ or 1MeTIQ (25 mg/kg i.p.) administration with chronic reserpine. A possible molecular mechanism of action of TIQ and 1MeTIQ responsible for their antidepressant action is discussed. On the basis of the presented behavioral and biochemical studies, we suggest that both compounds may be effective for the therapy of depression in clinic as new antidepressants which, when administered peripherally easily penetrate the blood–brain barrier, and as endogenous compounds may not have adverse side effects.  相似文献   

17.
1. The analgesic effect of quinine and the influence of some dopaminergic agents on it were studied in mice. 2. Quinine (25-130mg/kg, ip) effectively elicited antinociceptive effect in a dose related manner. 3. D-Amphetamine (2.5-4mg/kg, ip), L-dopa (25mg/kg, sc), L-dopa (25mg/kg, sc) plus benserazide (12.5mg/kg, sc), alpha-methyl-p-tyrosine (50mg/kg, ip) plus L-dopa (25mg/kg, sc) and pargyline (50mg/kg, ip) significantly attenuated the antinociceptive effect of quinine (50mg/kg, ip), while DOPS (4mg/kg, ip) did not affect quinine antinociception. 4. Pimozide (4mg/kg, ip), L-sulpiride (40mg/kg, ip), SCH 23390 (0.2mg/kg, sc) and alpha-methyl-p-tyrosine (50mg/kg, ip) effectively potentiated the antinociceptive effects of quinine (50mg/kg, ip). 5. Pimozide (4mg/kg, ip) also antagonised the antagonistic effect of d-amphetamine (4mg/kg, ip) on the antinociceptive effect of quinine (50mg/kg, ip). 6. These data indicate that quinine elicited antinociception dose dependently. Furthermore, the influence of pimozide, L-sulpiride and SCH 23390 on quinine antinociception suggests the involvement of dopaminergic mechanisms.  相似文献   

18.
The etiology of Parkinson’s disease (PD) may involve endogenous and exogenous factors. 1-Benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ), which was shown to be neurotoxic for dopaminergic neurons, is one of such factors, thus it can be used to construct an animal model of PD. In contrast, 1,2,3,4-tetrahydroisoquinoline (TIQ) and 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) produce neuroprotective effects acting as monoamino oxidase (MAO) inhibitors and free radical scavengers that reduce oxidative stress in the mammalian brain. In this study, we aimed to investigate the effects of neuroprotective compounds, TIQ and 1MeTIQ, on the dopamine release in vivo in an animal model of PD induced by chronic administration of 1BnTIQ (25 mg/kg i.p.). Using an in vivo microdialysis methodology, we measured the impact of both acute and chronic treatment with TIQ and 1MeTIQ (50 mg/kg i.p.) on 1BnTIQ-induced changes in dopamine release in the rat striatum. Additionally, the behavioral test was carried out to check the influence of repeated administrations of the investigated compounds on the locomotor activity of rats. The behavioral studies showed that the chronic administration of 1BnTIQ produced a significant elevation of exploratory locomotor activity, and both the investigated amines, TIQ and 1MeTIQ, administered together with 1BnTIQ completely prevented 1BnTIQ-produced hyperactivity. The in vivo microdialysis studies demonstrated that the chronic treatment with 1BnTIQ caused a significant and long-lasting increase in the dopamine release (approximately 300 %) to the extracellular space in the rat striatum, which was demonstrated in the basal samples 24 h after 1BnTIQ injection. The combined chronic administration of 1BnTIQ and the investigated compounds, TIQ or 1MeTIQ, completely antagonized the 1BnTIQ-induced essential disturbances of the dopamine releasing to the extracellular space in the striatum. In conclusion, we suggest that higher concentrations of 1BnTIQ in the brain produced distinct impairment in the dopamine release, whereas TIQ and 1MeTIQ (compounds with previously revealed neuroprotective properties) completely prevented 1BnTIQ-induced abnormalities in the function of dopamine neurons and restored the dopamine release to the control values.  相似文献   

19.
20.
Summary The role of DNA alkylation by the neurooncogenic agent 3,3-dimethyl-1-phenyltriazene (DMPT) was investigated perinatally and in adult rats. Following a single subcutaneous injection of14C-DMPT (100 mg/kg) on the 21st day of gestation, the concentration of methylated purines was similar in both fetal liver and brain whereas during postnatal growth this treatment resulted in an increasingly preferential methylation of liver DNA. In 30-day-old and adult rats the concentration of 7-methylguanine in liver was about 8 times higher in brain DNA, suggesting that during prenatal development both liver and brain DNA are transplacentally methylated by a proximate carcinogen produced by maternal organs. Multiple doses of14C-DMPT (50 mg/kg) to adult rats led to a preferential accumulation of O6-methylguanine in cerebral DNA. This supports the hypothesis that the deficient repair excision capacity of the central nervous system is a significant factor in the organ-specific carcinogenicity of DMPT and related carcinogens.Supported by the Deutsche Forschungsgemeinschaft (Kl 351/2). Part of this work is submitted by E. H. as M. D. thesis to the Medical Faculty, University of Freiburg  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号