首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The current study characterizes the mechanism by which mercury, a toxic metal, induces death in murine macrophages. The cytotoxic EC(50) of mercury ranged from 62.7 to 81.1 microM by various assays in J774A.1 cultures; accordingly, we employed 70 microM of mercuric chloride in most experiments. Mercury-induced intracellular calcium modulated reactive oxygen species (ROS) production, which resulted in both cell apoptosis and necrosis indicated by annexin V binding and caspase-3 activity, and propidium-iodide binding. Calcium antagonists abolished ROS production. Mercury stimulated p38 mitogen-activated protein kinase (MAPK) and additively stimulated lipopolysaccharide-activated p38. Mercury-activated p38 was decreased by pretreatment of cells with antioxidants, N-acetylcysteine (NAC) and silymarin, indicating that mercury-induced ROS were involved in p38 activation. Mercury increased the expression of tumor necrosis factor alpha (TNFalpha); antioxidants and a specific p38 inhibitor decreased this effect. Pretreatment with antioxidants, p38 inhibitor, and anti-TNFalpha antibody decreased mercury-induced necrosis; however, anti-TNFalpha antibody did not decrease mercury-induced apoptosis. Results suggest that mercury-induced macrophage death is a mix of apoptosis and necrosis employing different pathways. P38-mediated caspase activation regulates mercury-induced apoptosis and p38-mediated TNFalpha regulates necrosis in these cells. Calcium regulates ROS production and mercury-induced ROS modulate downstream p38 that regulates both apoptosis and necrosis.  相似文献   

2.
The dermatotoxicity of arsenic is well established and epidemiological studies identify an increased incidence of keratinocytic tumors (basal cell and squamous cell carcinoma) associated with arsenic exposure. Little is known about the underlying mechanisms of arsenic-mediated skin carcinogenesis, but activation of mitogen-activated protein (MAP) kinases and subsequent regulation of downstream target genes may contribute to tumor promotion and progression. In this study, we investigated activation of the extracellular signal regulated kinase (ERK) and the stress-associated kinase p38 by arsenite in HaCat cells, a spontaneously immortalized human keratinocyte cell line. Arsenite concentrations > or =100 microM stimulate rapid activation of p38 and ERK MAP kinases. However, upon extended exposure (24 h), persistent stimulation of p38 and ERK MAP kinases was detected at low micromolar concentrations of arsenite. Although ERK and p38 were activated with similar time and concentration dependence, the mechanism of activation differed for these two MAP kinases. ERK activation by arsenite was fully dependent on the catalytic activity of the epidermal growth factor (EGF) receptor and partially dependent on Src-family kinase activity. In contrast, p38 activation was independent of EGF receptor or Src-family kinase activity. Arsenite-stimulated MAP kinase signal transduction resulted in increased production of matrix metalloproteinase (MMP)-9, an AP-1 regulated gene product. MMP-9 induction by arsenite was prevented when EGF receptor or MAP kinase signaling was inhibited. These studies indicate that EGF receptor activation is a component of arsenite-mediated signal transduction and gene expression in keratinocytes and that low micromolar concentrations of arsenite stimulate key signaling pathways upon extended exposure. Stimulation of MAP kinase cascades by arsenic and subsequent regulation of genes including c-fos, c-jun, and the matrix degrading proteases may play an important role in arsenic-induced skin carcinogenesis.  相似文献   

3.
Evaluating the toxicity of nanoparticles is an integral aspect of basic and applied sciences, because imaging applications using traditional organic fluorophores are limited by properties such as photobleaching, spectral overlaps, and operational difficulties. This study investigated the toxicity of nanoparticles and their biological mechanisms. We found that nanoparticles, quantum dots (QDs), considerably activated the production of tumor necrosis factor (TNF)-α and CXC-chemokine ligand (CXCL) 8 through reactive oxygen species (ROS)- and mitogen-activated protein kinases (MAPKs)-dependent mechanisms in human primary monocytes. Nanoparticles elicited a robust activation of intracellular ROS, phosphorylation of p47phox, and nicotinamide adenine dinucleotide phosphate oxidase activities. Blockade of ROS generation with antioxidants significantly abrogated the QD-mediated TNF-α and CXCL8 expression in monocytes. The induced ROS generation subsequently led to the activation of MAPKs, which were crucial for mRNA and protein expression of TNF-α and CXCL8. Furthermore, confocal and electron microscopy analyses showed that internalized QDs were trapped in cytoplasmic vesicles and compartmentalized inside lysosomes. Finally, several repeated intravenous injections of QDs caused an increase in neutrophil infiltration in the lung tissues in vivo. These results provide novel insights into the QD-mediated chemokine induction and inflammatory toxic responses in vitro and in vivo.  相似文献   

4.
Mercury intoxication profoundly affects the immune system, in particular, signal transduction of immune cells. However, the mechanism of the interaction of mercury with cellular signaling pathways, such as mitogen activated protein kinases (MAPK), remains elusive. Therefore, the objective of this study is to investigate three potential ways in which Hg2+ ions could inhibit MAPK dephosphorylation in the human T-cell line Jurkat: (1) by direct binding to phosphatases; (2) by releasing cellular zinc (Zn2+); and (3) by inducing reactive oxygen species (ROS). Hg2+ causes production of ROS, measured by dihydrorhodamine 123, and triggers ROS-mediated Zn2+ release, detected with FluoZin-3. Yet, phosphatase-inhibition is not mediated by binding of Zn2+ or Hg2+. Rather, phosphatases are inactivated by at least two forms of thiol oxidation; initial inhibition is reversible with reducing agents such as Tris(2-carboxyethyl)phosphine. Prolonged inhibition leads to non-reversible phosphatase oxidation, presumably oxidizing the cysteine thiol to sulfinic- or sulfonic acid. Notably, phosphatases are a particularly sensitive target for Hg2+-induced oxidation, because phosphatase activity is inhibited at concentrations of Hg2+ that have only minor impact on over all thiol oxidation. This phosphatase inhibition results in augmented, ROS-dependent MAPK phosphorylation. MAPK are important regulators of T-cell function, and MAPK-activation by inhibition of phosphatases seems to be one of the molecular mechanisms by which mercury affects the immune system.  相似文献   

5.
We previously reported that cadmium (Cd) induced prostaglandin E2 (PGE2) biosynthesis through the activation of cytosolic phospholipase A2 (cPLA2) and induction of cyclooxygenase 2 (COX-2) in primary mouse osteoblastic cells. In the present study, we further investigated the mechanism of PGE2 production by Cd focusing on the main mitogen-activated protein kinase (MAPK) subfamilies that mediate prostaglandin synthesis, extracellular signal-regulated kinase (ERK1/2 MAPK), c-jun-amino-terminal kinase (JNK MAPK) and p38 MAPK, and protein kinase C (PKC) which is activated by Cd in several kinds of cells. Cd at 2 μM and above stimulated PGE2 production in osteoblastic cells and its production was inhibited by the kinase-specific inhibitors PD98059, SB203580, curcumin, and calphostin C. Calphostin C also inhibited the production of PGE2 by phorbol 12-myristate 13-acetate (PMA), which is a potent activator of PKC. PD98059 inhibited PGE2 production stimulated by PMA as well as Cd, indicating that activation of PKC by ERK1/2 MAPK was necessary for Cd-stimulated PGE2 production. Moreover, Cd stimulated the phosphorylation of these three MAPKs, and inhibition of the phosphorylation of ERK1/2 MAPK by calphostin C was also observed. On the other hand, Cd was found to phosphorylate cPLA2 and the phosphorylation was inhibited by PD98059, indicating that cPLA2 was activated by Cd through ERK1/2 MAPK and released arachidonic acid (AA), a substrate of COX-2, from membranous phospholipids. From these results, it was suggested that activation of each of the ERK1/2, p38, and JNK MAPK cascades in addition to that of PKC and cPLA2 played an important role in the Cd-stimulated biosynthesis of PGE2 in mouse osteoblastic cells.  相似文献   

6.
Alveolar macrophages (AM) have an important role in clearing particles from the lungs. In response to different stimuli they can release reactive oxygen species (ROS) and inflammatory mediators and promote pulmonary inflammation. We exposed rat AM to carbon black (CB) particles (0.63–20 μg/ml) and measured the generation of ROS by using the fluorescent probe 2′,7′-dichlorofluorescein diacetate. Fluorescence was elevated in a concentration dependent manner in the AM exposed to CB. Follow-up experiments using a series of enzyme inhibitors indicate that the ERK MAP kinase pathway and the p38 MAP kinase pathway may be involved in the formation of ROS.  相似文献   

7.

Background and purpose:

The formation of reactive oxygen species (ROS) is increased in heart failure (HF). However, the causal and mechanistic relationship of ROS formation with contractile dysfunction is not clear in detail. Therefore, ROS formation, myofibrillar protein oxidation and p38 MAP kinase activation were related to contractile function in failing rabbit hearts.

Experimental approach and key results:

Three weeks of rapid left ventricular (LV) pacing reduced LV shortening fraction (SF, echocardiography) from 32 ± 1% to 13 ± 1%. ROS formation, as assessed by dihydroethidine staining, increased by 36 ± 8% and was associated with increased tropomyosin oxidation, as reflected by dimer formation (dimer to monomer ratio increased 2.28 ± 0.66-fold in HF vs. sham, P < 0.05). Apoptosis (TdT-mediated dUTP nick end labelling staining) increased more than 12-fold after 3 weeks of pacing when a significant increase in the phosphorylation of p38 MAP kinase and HSP27 was detected (Western blotting). Vitamins C and E abolished the increases in ROS formation and tropomyosin oxidation along with an improvement of LVSF (19 ± 1%, P < 0.05 vs. untreated HF) and prevention of apoptosis, but without modifying p38 MAP kinase activation. Inhibition of p38 MAP kinase by SB281832 counteracted ROS formation, tropomyosin oxidation and contractile failure, without affecting apoptosis.

Conclusions and implications:

Thus, p38 MAP kinase activation appears to be upstream rather than downstream of ROS, which impacts on LV function through myofibrillar oxidation. p38 MAP kinase inhibition is a potential target to prevent or treat HF.  相似文献   

8.
We investigated the effects of alpha(1)- and beta(2)-adrenergic agonists on hepatocyte growth factor (HGF)-stimulated mitogen-activated protein kinase (MAPK) isoforms in primary cultures of adult rat hepatocytes. Hepatocytes were isolated and cultured with HGF (5 ng/ml) and/or alpha- and beta-adrenergic agonists. Phosphorylated MAPK isoforms (p42 and p44 MAPK) were detected by Western blotting analysis using anti-phospho-MAPK antibody. The results show that HGF increased phosphorylation of p42 MAPK by 2.2-fold within 3 min. The HGF-induced MAPK activation was abolished by AG1478 treatment (10(-7) M). The MEK (MAPK kinase) inhibitor PD98059 (10(-6) M) completely inhibited the HGF-dependent increase in MAPK activity. Phenylephrine (10(-6) M) and metaproterenol (10(-6) M) alone had no effect in the absence of HGF, but significantly increased p42 MAPK induction by HGF. Moreover, the cell-permeable cAMP analog, 8-bromo cAMP (10(-7) M), and phorbol 12-myristate 13 acetate (10(-7) M) potentiated HGF-induced MAPK phosphorylation. The effects of these analogs were antagonized by the protein kinase A (PKA) inhibitor H-89 (10(-7) M) and the protein kinase C (PKC) inhibitor sphingosine (10(-6) M), respectively. These results suggest that direct or indirect activation of both PKA and PKC represent a positive regulatory mechanism for stimulating MAPK induction by HGF.  相似文献   

9.
10.
Zhang Y  Qi X  Gong L  Li Y  Liu L  Xue X  Xiao Y  Wu X  Ren J 《Toxicology》2008,249(1):62-68
Toosendanin (Tsn), a triterpenoid extracted from Melia toosendan Sieb et Zucc, possesses different pharmacological effects in human and important values in agriculture. However, liver injury has been reported when toosendanin or Melia-family plants, which contain toosendanin are applied. The mechanism by which toosendanin induces liver injury remains largely unknown. Here we reported that toosendanin induced primary rat hepatocytes death by mitochondrial dysfunction and caspase activation. Toosendanin led to decrease of mitochondrial membrane potential, fall in intracellular ATP level, release of cytochrome c to cytoplasm, activation of caspase-8, 9, and 3 and ultimately cell death. Level of reactive oxygen species (ROS) was also increased in hepatocytes after incubation with toosendanin. Catalase, the H2O2-decomposing enzyme, can prevent the reduction in ATP level and protect hepatocytes from toosendanin-induced death. The ERK1/2 (p44/42 MAP kinases) and JNK (c-Jun N-terminal kinase) were activated, but p38 MAPK was not activated by toosendanin. Inhibition of ERK1/2 activation sensitized hepatocytes to death and increased activity of caspase-9 and 3 in response to toosendanin. Inhibition of JNK attenuated toosendanin-induced cell death. These results suggested that toosendanin causes death of primary rat hepatocytes by mitochondrial dysfunction and caspase activation. Generation of ROS and MAP kinases activation might be involved in this process.  相似文献   

11.
We examined cytotoxic effects of nicotine/tar-free cigarette smoke extract (CSE) on C6 glioma cells. The CSE induced plasma membrane damage (determined by lactate dehydrogenase leakage and propidium iodide uptake) and cell apoptosis {determined by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] reduction activity and DNA fragmentation}. The cytotoxic activity decayed with a half-life of approximately 2 h at 37°C, and it was abolished by N-acetyl-l-cysteine and reduced glutathione. The membrane damage was prevented by catalase and edaravone (a scavenger of ?OH) but not by superoxide dismutase, indicating involvement of ?OH. In contrast, the CSE-induced cell apoptosis was resistant to edaravone and induced by authentic H2O2 or O2? generated by the xanthine/xanthine oxidase system, indicating involvement of H2O2 or O2? in cell apoptosis. Diphenyleneiodonium [NADPH oxidase (NOX) inhibitor] and bisindolylmaleimide I [BIS I, protein kinase C (PKC) inhibitor] abolished membrane damage, whereas they partially inhibited apoptosis. These results demonstrate that 1) a stable component(s) in the CSE activates PKC, which stimulates NOX to generate reactive oxygen species (ROS), causing membrane damage and apoptosis; 2) different ROS are responsible for membrane damage and apoptosis; and 3) part of the apoptosis is caused by oxidants independently of PKC and NOX.[Supplementary methods and Figure: available only at http://dx.doi.org/10.1254/jphs.11166FP]  相似文献   

12.
In the present study we have examined the effects of hydrocarbons on the formation of reactive oxygen species (ROS) in human neutrophil granulocytes in vitro. We found that hydrocarbons induce ROS formation in a concentration-dependent manner and that the ROS-inducing potency increases with increasing number of carbon atoms in the structure. In general, aromatic hydrocarbons were less potent inducers of ROS than aliphatic and cyclic hydrocarbons. The most potent compound in each group, t-butylcyclohexane, n-decane, and n-butylbenzene, were chosen for mechanistic studies. ROS formation was inhibited by the MEK1/2 inhibitor U0126, the tyrosine kinase inhibitor erbstatin-A, and the phosphatidylinositol-3 kinase inhibitor wortmannin. The involvement of the ERK1/2 pathway was confirmed by Western blot analysis of phosphorylated ERK1/2. The study revealed only small differences in the mechanisms involved for the three compounds. The responses were not affected by Pertussis toxin, indicating that Gi-protein coupled receptors are not involved in neutrophil activation after hydrocarbon exposure. Based on these findings we propose a mechanism involving tyrosine kinases, PI3 kinase, and the ERK1/2 pathway, leading to activation of the NADPH oxidase and production of ROS in neutrophils stimulated by organic solvents.  相似文献   

13.
Although spleen tyrosine kinase (Syk) has crucial roles in various cells, its function on vascular smooth muscle contraction has not been determined. In the present study, we performed experiments to determine if Syk contributes to the endothelin-1 (ET-1)-mediated contraction in rat aortic smooth muscle. ET-1-induced contraction of aortic strips was inhibited by piceatannol, PD98059, and SB203580, inhibitors of Syk, extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 mitogen-activated protein kinase (MAPK), respectively. Piceatannol also attenuated high K(+)-induced contraction. ET-1 dose-dependently enhanced the activity of Syk and this was inhibited by piceatannol in both rat aortic strip and rat aortic smooth muscle cells. The phosphorylation of p38 MAPK and heat shock protein 27 (HSP27), but not that of ERK1/2, in response to ET-1 was inhibited by both piceatannol and SB203580. These results suggest that Syk may play an important role in the regulation of aortic smooth muscle contraction induced by ET-1, which may be mediated by the p38 MAPK/HSP27 signaling pathway.  相似文献   

14.
Urotensin II, a cyclic dodecapeptide, has recently been demonstrated to play an important role in cardiac remodeling and fibrosis. Cardiac fibroblast is the cell type known to proliferate during cardiac fibrosis and to produce the excess matrix proteins characteristic of cardiac remodeling. However, the effect of urotensin II on cardiac fibroblast proliferation and the intracellular mechanisms remain to be clarified. Cultured neonatal rat cardiac fibroblasts were stimulated with urotensin II, cell proliferation and the reactive oxygen species generation were examined. We also examined the effects of antioxidant pretreatment on urotensin II-induced cell proliferation, extracellular signal-regulated kinase phosphorylation, and the tyrosine phosphorylation of epidermal growth factor receptor, to elucidate the redox-sensitive pathway in urotensin II-induced cell proliferation. Urotensin II-increased cell proliferation and intracellular reactive oxygen species levels which were inhibited by antioxidants N-acetylcysteine, and the flavin inhibitor diphenyleneiodonium. Urotensin II potently activated the tyrosine phosphorylation of epidermal growth factor receptors and extracellular signal-regulated kinase. Pretreatment of cells with U0126, an inhibitor of the upstream activator of mitogen-activated protein kinase kinase, or with AG1478, a selective epidermal growth factor receptor kinase inhibitor, reduced the urotensin II-increased extracellular signal-regulated kinase phosphorylation. Antioxidants, U0126, and AG1478, all significantly inhibited urotensin II-increased cell proliferation in cardiac fibroblasts. Our data suggest that the redox-sensitive intracellular signaling pathway plays a role in urotensin II-induced proliferation in rat cardiac fibroblasts.  相似文献   

15.
Cholestasis results when excretion of bile acids from the liver is interrupted. Liver injury occurs during cholestasis, and recent studies showed that inflammation is required for injury. Our previous studies demonstrated that early growth response factor-1 (Egr-1) is required for development of inflammation in liver during cholestasis, and that bile acids upregulate Egr-1 in hepatocytes. What remains unclear is the mechanism by which bile acids upregulate Egr-1. Bile acids modulate gene expression in hepatocytes by activating the farnesoid X receptor (FXR) and through activation of mitogen-activated protein kinase (MAPK) signaling. Accordingly, the hypothesis was tested that bile acids upregulate Egr-1 in hepatocytes by FXR and/or MAPK-dependent mechanisms. Deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) stimulated upregulation of Egr-1 to the same extent in hepatocytes isolated from wild-type mice and FXR knockout mice. Similarly, upregulation of Egr-1 in the livers of bile duct-ligated (BDL) wild-type and FXR knockout mice was not different. Upregulation of Egr-1 in hepatocytes by DCA and CDCA was prevented by the MEK inhibitors U0126 and SL-327. Furthermore, pretreatment of mice with U0126 prevented upregulation of Egr-1 in the liver after BDL. Results from these studies demonstrate that activation of MAPK signaling is required for upregulation of Egr-1 by bile acids in hepatocytes and for upregulation of Egr-1 in the liver during cholestasis. These studies suggest that inhibition of MAPK signaling may be a novel therapy to prevent upregulation of Egr-1 in liver during cholestasis.  相似文献   

16.
The present communication investigates the effects of different perfluoroalkylated compounds (PFCs) on formation of reactive oxygen species (ROS) and cell death in cultured cerebellar granule cells. This allows direct comparison with similar effects found for other environmental contaminants like polychlorinated biphenyls and brominated flame-retardants. The increase in ROS formation and cell death was assayed using the fluorescent probe 2,7-dichlorofluorescin diacetate (DCFH-DA) and the trypan blue exclusion assay. The effects of the PFCs were structure dependent. Cell death was induced at relatively low concentrations by perfluorooctyl sulfonate (PFOS), perfluorooctane sulfonylamide (PFOSA) and the fluorotelomer alcohol 1H, 1H, 2H, 2H-perfluorodecanol (FTOH 8:2) with EC50-values of 62 ± 7.6, 13 ± 1.8 and 15 ± 4.2 μM (mean ± SD) respectively. PFOS, perfluorooctanoic acid (PFOA) and PFOSA induced a concentration dependent increase in ROS formation with EC50-values of 27 ± 9.0, 25 ± 11 and 57 ± 19 μM respectively. Reduced cell viability and ROS formation were observed at concentration level close to what is found in serum of occupationally exposed workers. The effect of PFCs on ROS formation and cell viability was compared with other halogenated compounds and future investigations should emphasize effects of mixtures and how physical chemical properties of the compounds influence their toxicity.  相似文献   

17.
Studies in our laboratory have demonstrated that subchronic 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) exposure of adult mice results in hypertension, cardiac hypertrophy, and reduced nitric oxide (NO)-mediated vasodilation. Moreover, increased superoxide anion production was observed in cardiovascular organs of TCDD-exposed mice and this increase contributed to the reduced NO-mediated vasodilation. Since cytochrome P4501A1 (CYP1A1) can contribute to some TCDD-induced toxicity, we tested the hypothesis that TCDD increases reactive oxygen species (ROS) in endothelial cells by the induction of CYP1A1. A concentration-response to 24 h TCDD exposure (10 pM-10 nM) was performed in confluent primary human aortic endothelial cells (HAECs). Oxidant-sensitive fluorescent probes dihydroethidium (DHE) and 2′,7′-dichlorofluorescin diacetate (DCFH-DA), were used to measure superoxide anion, and hydrogen peroxide and hydroxyl radical, respectively. NO was also measured using the fluorescent probe diaminofluorescein-2 diacetate (DAF-2DA). These assessments were conducted in HAECs transfected with siRNA targeting the aryl hydrocarbon receptor (AhR), CYP1A1, or CYP1B1. TCDD concentration-dependently increased CYP1A1 and CYP1B1 mRNA, protein, and enzyme activity. Moreover, 1 nM TCDD maximally increased DHE (Cont = 1.0 ± 0.3; TCDD = 5.1 ± 1.0; p = 0.002) and DCFH-DA (Cont = 1.0 ± 0.2; TCDD = 4.1 ± 0.5; p = 0.002) fluorescence and maximally decreased DAF-2DA fluorescence (Cont = 1.0 ± 0.4; TCDD = 0.68 ± 0.1). siRNA targeting AhR and CYP1A1 significantly decreased TCDD-induced DHE (siAhR: Cont = 1.0 ± 0.1; TCDD = 1.3 ± 0.2; p = 0.093) (siCYP1A1: Cont = 1.0 ± 0.1; TCDD = 1.1 ± 0.1; p = 0.454) and DCFH-DA (siAhR: Cont = 1.0 ± 0.2; TCDD = 1.3 ± 0.3; p = 0.370) (siCYP1A1: Cont = 1.0 ± 0.1; TCDD = 1.3 ± 0.2; p = 0.114) fluorescence and increased DAF-2DA fluorescence (siAhR: Cont = 1.00 ± 0.03; TCDD = 0.97 ± 0.03; p = 0.481) (siCYP1A1: Cont = 1.00 ± 0.03; TCDD = 0.92 ± 0.03; p = 0.034), while siRNA targeting CYP1B1 did not. These data suggest that TCDD-induced increase in ROS is AhR-dependent and may be mediated, in part, by CYP1A1 induction.  相似文献   

18.
白藜芦醇诱导K562细胞凋亡过程中活性氧水平的改变   总被引:3,自引:2,他引:3  
目的:探讨白藜芦醇对K562细胞的凋亡诱导效应和对K562细胞内活性氧水平的影响。方法:应用噻唑蓝(MTr)比色法、光镜、DNA琼脂糖凝胶电泳和流式细胞术(FCM)检测细胞凋亡;FCM测定细胞内活性氧(ROS)水平。结果:白藜芦醇显著抑制K562细胞增殖,并呈现典型的凋亡形态学改变;DNA电泳可见梯状条带出现;FCM分析显示S期细胞数明显增多,出现S/G,期阻滞,ROS水平升高。结论:白藜芦醇诱导K562细胞凋亡与细胞内活性氧水平升高有关。  相似文献   

19.
目的 :探讨脊髓损伤后使用白藜芦醇 (resvera trol,Res)对脊髓损伤 (SCI)早期脂质过氧化反应和活性氧水平的抑制作用。方法 :采用重物下落撞击法制备成年大鼠的SCI模型 ,于损伤后即刻腹腔注射给予Res 5 0 ,1 0 0mg·kg-1和甲基强的松龙 (MPSS)1 0 0mg·kg-1,测定SCI后 1 ,2 4,48h时Res组受损脊髓组织超氧化物歧化酶 (SOD)和脂质过氧化反应产物丙二醛 (MDA)及活性氧 (ROS)水平 ,并与MPSS组进行疗效对比。结果 :Res 5 0mg·kg-1与 1 0 0mg·kg-1均能够显著提高SCI后损伤部位SOD水平和抑制MDA产生 (P <0 .0 1 ) ,以 48h为最明显 ;显著降低ROS水平 (P <0 .0 1 ) ,也以 48h最大 ,抑制率大于40 % ;且有明显剂量依赖性 ,作用与MPSS相当或更优。结论 :Res可以有效抑制脊髓损伤后早期受损局部脂质过氧化反应和活性氧水平 ,对脊髓损伤有潜在的保护与治疗作用  相似文献   

20.
The roles of Src homology domain 2-containing protein tyrosine phosphatase 2 (SHP-2) and its signaling in atherosclerosis have not been explored. Therefore, we investigated the roles of SHP-2 in the movement of rat aortic smooth muscle cells (RASMCs) and in the neointima formation of the carotid artery. Platelet-derived growth factor (PDGF)-BB (1 - 20 ng/ml) increased the activity and phosphorylation of SHP-2 and migration in RASMCs and these were suppressed by SHP-2 inhibitor NSC-87877 (30 μM) and small interfering RNA of SHP-2. PDGF-BB increased the phosphorylations of spleen tyrosine kinase (Syk) and p38 mitogen-activated protein kinase (MAPK), which were recovered by inhibition of SHP-2. Moreover, PDGF-BB increased the levels of reactive oxygen species (ROS) and ROS inhibitors decreased PDGF-BB-increased migration. Treatment of RASMCs with H(2)O(2) (100 μM) increased cell migration and SHP-2 phosphorylation and also enhanced the phosphorylation levels of Syk and p38 MAPK. Oral administration of NSC-87877 (10 mg/kg) significantly suppressed neointima formation in a rat model of carotid artery injury. These results suggest that the activity of SHP-2 is controlled by ROS and is positively involved in the regulation of PDGF-BB-induced RASMC migration and neointima formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号