首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The interaction between HIV gp120 and galactose-containing cell surface glycolipids such as GalCer or Gb(3) is known to facilitate HIV binding to both CD4(+) as well as CD4(-) cells. In an effort to develop small molecule HIV-1 entry inhibitors with improved solubility and efficacy, we have synthesized a series of C-glycoside analogs of GalCer and tested their anti HIV-1 activity. The analogs were tested for gp120 binding using a HIV-1 (IIIB) V3-loop specific peptide. Two of the six analogs that interfered with gp120 binding also inhibited HIV Env-mediated cell-to-cell fusion and viral entry in the absence of any significant cytotoxicity. Analogs with two side chains did not show inhibition of fusion and/or infection under identical conditions. The inhibition of virus infection seen by these compounds was not coreceptor dependent, as they inhibited CXCR4, CCR5 as well as dual tropic viruses. These compounds showed inhibition of HIV entry at early steps in viral infection since the compounds were inactive if added post viral entry. Temperature-arrested state experiments showed that the compounds act at the level of virus attachment to the cells likely at a pre-CD4 engagement step. These compounds also showed inhibition of VSV glycoprotein-pseudotyped virus. The results presented here show that the glycoside derivatives of GalCer with simple side chains may serve as a novel class of small molecule HIV-1 entry inhibitors that would be active against a number of HIV isolates as well as other enveloped viruses.  相似文献   

3.
Historically, therapeutic benefit in the treatment of human immunodeficiency virus infection (HIV-1) infection has been best achieved by targeting viral proteins like HIV protease involved in viral replication rather than host cell proteins, like CD4, which facilitate the process of viral infection. Two discoveries in 1996 presented a novel opportunity to redress this issue: 1) the understanding that heptahelical G-protein coupled chemokine receptors on the surface of T cells and macrophages functioned together with CD4 to mediate viral entry, and 2) the observation that CD4 positive T cells from individuals homozygous for the CCR5 delta 32 null allele were resistant to infection by macrophage-tropic strains of the virus in vitro and in vivo. Since that time, data demonstrating that selective blockade of two chemokine receptors, CCR5 and CXCR4, by small molecule chemokine receptor antagonists or receptor-directed biologics could robustly inhibit the infection of human peripheral blood mononuclear cells (PBMCs) by macrophage-tropic and T-cell line tropic strains respectively in vitro has validated this potential approach to therapy. Early clinical trial data now also confirms that these types of agents will have anti-viral activity in some HIV-1 infected individuals; however to date, dose limiting off-target activities have prohibited a full test of their potential clinical value. It also remains to be seen how these types of agents will fare in synergy with existing HIV-1 targeted antivirals, or those currently in development.  相似文献   

4.
Peptide T, which is derived from the V2 region of HIV-1, inhibits replication of R5 and dual-tropic (R5/X4) HIV-1 strains in monocyte-derived macrophages (MDMs), microglia, and primary CD4(+)T cells. Little to no inhibition by peptide T was observed with lab adapted X4 viruses such as IIIB, MN, or NL4-3 propagated in CD4(+) T cells or in the MAGI entry assay. The more clinically relevant R5/X4 early passage patient isolates were inhibited via either the X4 or R5 chemokine receptors, although inhibition was greater with R5 compared to X4 receptors. Virus inhibition ranged from 60 to 99%, depending on the assay, receptor target, viral isolate and amount of added virus. Peak inhibitory effects were detected at concentrations from 10(-12) to 10(-9) M. Peptide T acted to block viral entry as it inhibited in the MAGI cell assay and blocked infection in the luciferase reporter assay using HIV virions pseudotyped with ADA envelope. These results using early passage virus grown in primary cells, together with two different entry reporter assays, show that peptide T selectively inhibits HIV replication using chemokine receptor CCR5 compared to CXC4, explaining past inconsistencies of in vitro antiviral effects.  相似文献   

5.
ABSTRACT

Introduction: Rapid transmission of norovirus often occurs due to its low infectious dosage, high genetic diversity and its short incubation time. The viruses cause acute gastroenteritis and may lead to death. Presently, no effective vaccine or selective drugs accepted by the United States Food and Drug Administration (FDA) are available for the treatment of norovirus. Advances in the development of norovirus replicon cell lines, GII.4-Sydney HuNoV strain human B cells, and murine and gnotobiotic pig norovirus models have facilitated the discovery of effective small molecule inhibitors in vitro and in vivo.

Areas covered: This review gives a brief discussion of the biology and replication of norovirus before highlighting the discovery of anti-norovirus molecules. The article coverage includes: an overview of the current state of norovirus drug discovery, the targeting of the norovirus life cycle, the inhibition of structural and nonstructural proteins of norovirus such as proteases and polymerase, and the blockage of virus entry into host cells. Finally, anti-norovirus drugs in the clinical development stage are described.

Expert opinion: The current approach for the counteraction of norovirus focuses on the inhibition of viral RNA polymerase, norovirus 3C-like protease and the structural proteins VP1 as well as the blockade of norovirus entry. Broad-spectrum anti-norovirus molecules, based on the inhibition of 3C-like protease, have been developed. Other host factors and ways to overcome the development of resistance through mutation are also being examined. A dual approach in targeting viral and host factors may lead to an effective counteraction of norovirus infection. Current successes in developing norovirus replicon harboring cells and norovirus infected human cells, as well as murine norovirus models and other animal models such as piglets have facilitated the discovery of effective drugs and helped our understanding of its mechanism of action.  相似文献   

6.
Human immunodeficiency virus (HIV) is the responsible causal agent of acquired immunodeficiency syndrome (AIDS), a condition in humans in which the immune system begins to fail, allowing the entry of opportunistic infections. HIV infection in humans is considered pandemic by the World Health Organization (WHO). HIV needs to use a protein as a co-receptor to enter its target cells. Several chemokine receptors can in principle act as viral co-receptors, but the chemokine (C-C motif) receptor 5 (CCR5) is likely the most physiologically important co-receptor during natural infection. For this reason the development of new CCR5 inhibitors like anti-HIV agents, constitutes a challenge for the scientific community. The present review will focus on the current state of the design of novel anti-HIV drugs, and how the existing computer aided-drug design methodologies, have been effective in the search of new anti-HIV agents. In addition, a QSAR model based on substructural descirptors is presented as a rapid, rational and promising alternative for the discovery of anti-HIV agents through the inhibition of the CCR5.  相似文献   

7.
A series of sulfonamide derivatives, incorporating azabicyclo[3.2.1]octane and phenyl-propyl scaffolds, were prepared by a succession of original steps. The compounds are claimed to act as antagonists of the C-C chemokine receptor 5 (CCR5) involved in the entry of HIV-1 to cells, but only semi-quantitative antiviral data are provided. HIV entry inhibitors, including CCR5 antagonists, are clinically used for the treatment of this viral infection; the compounds claimed in the patent, possessing a new and original scaffold, seem to be of interest for developing novel antiviral agents belonging to this class.  相似文献   

8.
A series of sulfonamide derivatives, incorporating azabicyclo[3.2.1]octane and phenyl-propyl scaffolds, were prepared by a succession of original steps. The compounds are claimed to act as antagonists of the C-C chemokine receptor 5 (CCR5) involved in the entry of HIV-1 to cells, but only semi-quantitative antiviral data are provided. HIV entry inhibitors, including CCR5 antagonists, are clinically used for the treatment of this viral infection; the compounds claimed in the patent, possessing a new and original scaffold, seem to be of interest for developing novel antiviral agents belonging to this class.  相似文献   

9.
10.
The HIV entry inhibitors revisited   总被引:2,自引:0,他引:2  
  相似文献   

11.
12.
13.
14.
15.
SARS-CoV-2 entry into host cells relies on the spike (S) protein binding to the human ACE2 receptor. In this study, we investigated the structural dynamics of the viral S protein at the fusion peptide (FP) domain and small molecule binding for therapeutics development. Following comparative modeling analysis and docking studies of our previously identified fusion inhibitor chlorcyclizine, we performed a pharmacophore-based virtual screen and identified two novel chemotypes of entry inhibitors targeting the FP. The compounds were evaluated in the pseudoparticle viral entry assay and SARS-CoV-2 cytopathic effect assay and showed single-digital micromole inhibition against SARS-CoV-2 as well as SARS-CoV-1 and MERS. The characterization of the FP binding site of SARS-CoV-2 S protein provides a promising target for the structure-based development of small molecule entry inhibitors as drug candidates for the treatment of COVID-19.  相似文献   

16.
The CCR5 chemokine receptor is expressed on a wide range of immune cell types and binding to this receptor mediates cellular entry by the majority of HIV isolates. Blocking viral entry via this receptor reduces the viral load in patients infected with HIV, suggesting that a CCR5 antagonist could become a key component in the treatment of HIV-compromised patients. A number of CCR5 antagonists are currently in clinical trials. This review details the status of leading agents and highlights recent advances in the development of new CCR5 antagonists.  相似文献   

17.
Human immunodeficiency virus type 1 (HIV-1) requires a chemokine receptor (CCR5 or CXCR4) as a coreceptor not only for initiate viral entry but also protecting highly conserved neutralization epitopes from the attack of neutralizing antibodies. Over the past decade, many studies have provided new insights into the HIV entry mechanism and have focused on developing an effective vaccine strategy. However, to date, no vaccine that can provide protection from HIV-1 infection has been developed. One reason for the disappointing results has been the inability of current vaccine candidates to elicit a broadly reactive immunity to viral proteins such as the envelope (env) protein. Here, we propose that chemokine receptors are attractive targets of vaccine development because their structures are highly conserved and that our synthetic cycloimmunogens can mimic conformational-specific epitopes of undecapeptidyl arches (UPAs: R(168)-C(178) in CCR5, N(176)-C(186) in CXCR4) and be useful for HIV-1 novel vaccine development.  相似文献   

18.
HIV-1 entry is an attractive target for anti-HIV-1 therapy. However, there are no entry inhibitors approved for the clinical treatment of HIV-1 infection. This is likely to be changed in the near future since promising HIV-1 entry inhibitors, such as T20 and some chemokine receptor antagonists, are in the pipeline to join the repertoire of anti-HIV-1 therapeutics. This review will focus on what might be potential targets on the key components of the viral entry machinery, gp120 and gp41. These two molecules are the viral proteins responsible for HIV-1 entry. Binding to CD4 induces a series of structural changes in gp120 and allows it to interact with chemokine receptors. The receptor binding eventually triggers conformational changes in gp41, which result in the formation of a fusion active molecule to attack the cell membrane. The structural and functional motifs that operate this delicate fusion machinery could become the Achilles' heel of the virus.  相似文献   

19.
Highly active antiretroviral therapy (HAART) has led to major declines in morbidity and mortality of HIV-1-infected individuals, but the increasing prevalence of drug-resistant viral isolates, combined with the toxicity and other limitations of current treatments, make the development of new therapies a high priority. As knowledge of viral entry has expanded, this step of the viral life cycle has become a target for novel therapeutic strategies. An emerging group of antiretrovirals, known collectively as entry inhibitors, targets several distinct steps in viral entry including CD4 binding, chemokine receptor engagement and the structural changes in the viral envelope required for fusion between viral and cellular membranes. Many entry inhibitors are in various stages of clinical development, with one already licensed for use. This review will provide an overview of the mechanisms involved in the entry process, highlight promising entry blockers under development and discuss several considerations related to treatment that are unique to this class of antiretroviral drugs.  相似文献   

20.
Highly active antiretroviral therapy (HAART) has led to major declines in morbidity and mortality of HIV-1-infected individuals, but the increasing prevalence of drug-resistant viral isolates, combined with the toxicity and other limitations of current treatments, make the development of new therapies a high priority. As knowledge of viral entry has expanded, this step of the viral life cycle has become a target for novel therapeutic strategies. An emerging group of antiretrovirals, known collectively as entry inhibitors, targets several distinct steps in viral entry including CD4 binding, chemokine receptor engagement and the structural changes in the viral envelope required for fusion between viral and cellular membranes. Many entry inhibitors are in various stages of clinical development, with one already licensed for use. This review will provide an overview of the mechanisms involved in the entry process, highlight promising entry blockers under development and discuss several considerations related to treatment that are unique to this class of antiretroviral drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号