首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: Leber congenital amaurosis (LCA) and juvenile retinitis pigmentosa (RP) cause severe visual impairment early in life. Thus far, mutations in 13 genes have been associated with autosomal recessive LCA and juvenile RP. The purpose of this study was to use homozygosity mapping to identify mutations in known LCA and juvenile RP genes. METHODS: The genomes of 93 consanguineous and nonconsanguineous patients with LCA and juvenile RP were analyzed for homozygous chromosomal regions by using SNP microarrays. This patient cohort was highly selected, as mutations in the known genes had been excluded with the LCA mutation chip, or a significant number of LCA genes had been excluded by comprehensive mutation analysis. Known LCA and juvenile RP genes residing in the identified homozygous regions were analyzed by sequencing. Detailed ophthalmic examinations were performed on the genotyped patients. RESULTS: Ten homozygous mutations, including seven novel mutations, were identified in the CRB1, LRAT, RPE65, and TULP1 genes in 12 patients. Ten patients were from consanguineous marriages, but in two patients no consanguinity was reported. In 10 of the 12 patients, the causative mutation was present in the largest or second largest homozygous segment of the patient's genome. CONCLUSIONS: Homozygosity mapping using SNP microarrays identified mutations in a significant proportion (30%) of consanguineous patients with LCA and juvenile RP and in a small number (3%) of nonconsanguineous patients. Significant homozygous regions which did not map to known LCA or juvenile RP genes and may be instrumental in identifying novel disease genes were detected in 33 patients.  相似文献   

2.
《Seminars in ophthalmology》2013,28(5-6):397-405
Abstract

Mutations in the CRB1 gene cause severe retinal degenerations, which may present as Leber congenital amaurosis, early onset retinal dystrophy, retinitis pigmentosa, or cone-rod dystrophy. Some clinical features should alert the ophthalmologist to the possibility of CRB1 disease. These features are nummular pigmentation of the retina, atrophic macula, retinal degeneration associated with Coats disease, and a unique form of retinitis pigmentosa named para-arteriolar preservation of the retinal pigment epithelium (PPRPE). Retinal degenerations associated with nanophthalmos and hyperopia, or with keratoconus, can serve as further clinical cues to mutations in CRB1. Despite this, no clear genotype-phenotype relationship has been established in CRB1 disease. In CRB1-disease, as in other inherited retinal degenerations (IRDs), it is essential to diagnose the specific disease-causing gene for the disease as genetic therapy has progressed considerably in the last few years and might be applicable.  相似文献   

3.
BACKGROUND: The purpose of this study was to describe our experience with the clinical effects of molecular genetic testing for retinitis pigmentosa (RP) and related retinal dystrophies. METHODS: Chart review of 303 consecutive patients with retinal dystrophies was done when blood was sent for molecular genetic testing between 1993 and 2001. Phenotype information was retrieved for patients with identified mutations. The yield of positive and clinically useful results was assessed. RESULTS: Participants comprised 35 patients with Leber congenital amaurosis, 18 with Usher syndrome, and 250 with isolated RP or other retinal dystrophies. Of these 303 participants, 203 (67%) received positive or negative results of molecular testing for an average of 2.7 genes. Positive results were available in 19 patients after an average time interval of 38+/-22 months (median 33 months, range 1-89 months). No results were received for 84 (28%) patients. In 16 (5%) cases, patients received partial results. Only 19 (6%) patients were found to have sequence changes in RHO, RDS, CRB1, or USH2A, 2 of which were thought to be disease-causing. Only 2 sequence changes were previously documented mutations, but several other novel changes were suspected to be disease-causing mutations also. INTERPRETATION: Molecular testing was helpful only in the minority of cases, largely because of a lack of availability, as well as the complexity of the molecular genetics of RP. Improvements in funding, infrastructure, and molecular knowledge will be necessary to improve the transformation of molecular genetic testing into a clinically relevant bedside tool.  相似文献   

4.
PURPOSE: To test the efficiency of a microarray chip as a diagnostic tool in a cohort of northwestern European patients with Leber congenital amaurosis (LCA) and to perform a genotype-phenotype analysis in patients in whom pathologic mutations were identified. METHODS: DNAs from 58 patients with LCA were analyzed using a microarray chip containing previously identified disease-associated sequence variants in six LCA genes. Mutations identified by chip analysis were confirmed by sequence analysis. On identification of one mutation, all protein coding exons of the relevant genes were sequenced. In addition, sequence analysis of the RDH12 gene was performed in 22 patients. Patients with mutations were phenotyped. RESULTS: Pathogenic mutations were identified in 19 of the 58 patients with LCA (32.8%). Four novel sequence variants were identified. Mutations were most frequently found in CRB1 (15.5%), followed by GUCY2D (10.3%). The p.R768W mutation was found in 8 of 10 GUCY2D alleles, suggesting that it is a founder mutation in the northwest of Europe. In early childhood, patients with AIPL1 or GUCY2D mutations show normal fundi. Those with AIPL1-associated LCA progress to an RP-like fundus before the age of 8, whereas patients with GUCY2D-associated LCA still have relatively normal fundi in their mid-20s. Patients with CRB1 mutations present with distinct fundus abnormalities at birth and consistently show characteristics of RP12. Pathogenic GUCY2D mutations result in the most severe form of LCA. CONCLUSIONS: Microarray-based mutation detection allowed the identification of 32% of LCA sequence variants and represents an efficient first-pass screening tool. Mutations in CRB1, and to a lesser extent, in GUCY2D, underlie most LCA cases in this cohort. The present study establishes a genotype-phenotype correlation for AIPL1, CRB1, and GUCY2D.  相似文献   

5.
Introduction

We present two patients, the proband and the affected sibling, with biallelic CRB1 mutations leading to a macular dystrophy.

Case presentation

We present two patients, the proband and the affected sibling, with biallelic CRB1 mutations leading to a macular dystrophy. With 15 years of follow-up for the proband, we illustrate the natural history of CRB1 maculopathy based on clinical examination, multimodal imaging, and electrophysiology. In addition, we demonstrate the wide phenotypic spectrum of the condition with the affected sister harboring the same variants but with much milder phenotypic manifestations.

Conclusion

In addition to a previously described pathogenic variant, Ile167_Gly169del, one pathogenic missense variant in CRB1, Lys801Ter, not previously associated with macular dystrophy, is reported here. While CRB1 mutations have been more commonly described in retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA), we demonstrate that mutations in CRB1 can cause a maculopathy with initial features similar to fenestrated sheen macular dystrophy (FSMD) that later evolves into severe macular atrophy.

  相似文献   

6.
PURPOSE: Leber Congenital Amaurosis (LCA) is one of the most severe inherited retinal dystrophies with the earliest age of onset. This study was a mutational analysis of eight genes (AIPL1, CRB1, CRX, GUCY2D, RPE65, RPGRIP1, MERTK, and LRAT) in 299 unrelated Spanish families, containing 42 patients with initial diagnosis of LCA: 107 with early-onset autosomal recessive retinitis pigmentosa (ARRP; onset <10 years of age) and 150 with non-early-onset ARRP (onset, >10 years of age). METHODS: Samples were studied by using a genotyping microarray (Asper Biotech, Ltd., Tartu, Estonia) followed by a family study in cases with potential digenism/triallelism. RESULTS: The frequencies of alleles carrying disease-causing mutations found in the authors'cohort using the chip were 23.8% (20/84) for LCA with 13 families carrying mutations, 6.1% (13/214) for early-onset ARRP with 12 families carrying mutations, and 4.3% (13/300) for non-early-onset ARRP with 12 families carrying mutations. CRB1 was the most frequently found mutated gene in affected Spanish families. Five families with anticipated digenism or triallelism were further studied in depth. Digenism could be discarded in all these cases; however, triallelism could not be ruled out. CONCLUSIONS: CRB1 is the main gene responsible for LCA in the Spanish population. Sequence changes p.Asp1114Gly (RPGRIP1), p.Pro701Ser (GUCY2D), and p.Tyr134Phe (AIPL1) were found at similar frequencies in patients and control subjects. The authors therefore suggest that these changes be considered as polymorphism or modifier alleles, rather than as disease-causing mutations. The LCA microarray is a quick and reasonably low-cost first step in the molecular diagnosis of LCA. The diagnosis should be completed by conventional laboratory analysis as a second step. This stepwise proceeding permits detection of novel disease-causing mutations and identification of cases involving potential digenism/triallelism. Previous accurate ophthalmic diagnosis was found to be indispensable.  相似文献   

7.
PURPOSE: To identify the genetic basis of recessive inheritance of high hyperopia and Leber congenital amaurosis (LCA) in a family of Middle Eastern origin. MATERIALS AND METHODS: The patients were examined using standard ophthalmic techniques. DNA samples were obtained and genetic linkage was carried out using polymorphic markers flanking the known genes and loci for LCA. Exons were amplified and sequenced. RESULTS: All four members of this family affected by LCA showed high to extreme hyperopia, with average spherical refractive errors ranging from +5.00 to +10.00. Linkage was obtained to 1q31.3 with a maximal LOD score of 5.20 and a mutation found in exon 9 of the CRB1 gene, causing a G1103R substitution at a highly conserved site in the protein. CRB1 is a vertebrate homolog of the Drosophila crumbs gene, which is required for photoreceptor morphogenesis, and has been associated with either retinitis pigmentosa (RP) or LCA. This sequence variant has previously been reported as a compound heterozygote in one sporadic LCA patient. CONCLUSION: Although hyperopia has been associated with LCA, it is typically moderate and variable between patients with the same mutation. In addition, some CRB1 mutations can be associated with either RP or LCA. We have shown that hyperopia and LCA are linked to the mutant CRB1 gene itself and are not dependent on unlinked modifiers.  相似文献   

8.
OBJECTIVE: To investigate the clinical spectrum and molecular causes of retinal dystrophies in 3 families. DESIGN: Family molecular genetics study. PARTICIPANTS: Sixteen patients and 15 relatives in 3 families. METHODS: Members of 3 families with multiple ABCA4-associated retinal disorders were clinically evaluated. Deoxyribonucleic acid samples of all affected individuals and their family members were analyzed for variants in all 50 exons of the ABCA4 gene. MAIN OUTCOME MEASURES: ABCA4-associated retinal phenotypes and mutations in the ABCA4 gene. RESULTS: In family A, 2 sisters were diagnosed with Stargardt's disease (STGD); the eldest sister was compound heterozygous for the mild 2588G-->C and the severe 768G-->T mutation. Another patient in this family with a severe type of retinitis pigmentosa (RP) carried the 768G-->T mutation homozygously. In family B, 2 siblings presented with an RP of severity similar to that encountered in family A. Both were homozygous for the severe IVS33+1G-->A mutation. Two other family members with STGD were compound heterozygous for the 2588G-->C and IVS33+1G-->A mutations. In family C, all 5 siblings of generation II demonstrated age-related macular degeneration (AMD). In generations III and IV, 2 STGD patients and 1 cone-rod dystrophy (CRD) patient were present. In 1 STGD patient we identified a heterozygous 768G-->T mutation. Sequence analysis of the entire ABCA4 gene did not reveal the remaining 2 mutations. Nevertheless, the 2 patients with STGD, the patient with CRD, and 2 of the AMD patients shared a common haplotype spanning the ABCA4 gene. CONCLUSIONS: Different mutations in the ABCA4 gene are the cause of STGD and RP or CRD in at least 2 and, possibly, 3 families. Patients with RP caused by ABCA4 mutations are characterized by an early onset and rapid progression of their retinal dystrophy, with extensive chorioretinal atrophy resulting in a very low visual acuity. Various combinations of relatively rare retinal disorders such as STGD, CRD, and RP in one family may not be as uncommon as once believed, in view of the relatively high carrier frequency of ABCA4 mutations (about 5%) in the general population.  相似文献   

9.
PURPOSE: The X-linked form of retinitis pigmentosa (XLRP) is the most severe type because of its early onset and rapid progression. Five XLRP loci have been mapped, although only two genes, RPGR (for RP3) and RP2, have been cloned. In this study, 30 unrelated XLRP Spanish families were screened to determine the molecular cause of the disease. METHODS: Haplotype analysis was performed, to determine whether the disease is linked to the RP3 or RP2 region. In those families in which the disease cosegregates with either locus, mutational screening was performed. The RP2 gene, the first 15 exons of RPGR at the cDNA level, and the open reading frame (ORF) 14 and 15 exons were screened at the genomic DNA level. RESULTS: Haplotype analysis ruled out the implication in the disease of RP2 in six families and of RPGR in four families. Among the 30 unrelated XLRP families, there 4 mutations were identified in RP2 (13%), 3 of which are novel, and 16 mutations in RPGR (53.3%), 7 of which are novel. CONCLUSIONS: In this cohort of XLRP families, as has happened in previous studies, RP3 also seems to be the most prevalent form of XLRP, and, based on the results, the authors propose a four-step protocol for molecular diagnosis of XLRP families.  相似文献   

10.
RP1 protein truncating mutations predominate at the RP1 adRP locus   总被引:3,自引:0,他引:3  
PURPOSE: Recent reports have shown that the autosomal dominant retinitis pigmentosa (adRP) phenotype linked to the pericentric region of chromosome 8 is associated with mutations in a gene designated RP1. Screening of the whole gene in a large cohort of patients has not been undertaken to date. To assess the involvement and character of RP1 mutations in adRP, the gene was screened in a panel of 266 unrelated patients of British origin and a Pakistani family linked to this locus. METHODS: Patients exhibiting the adRP phenotype were screened for mutations in the four exons of the RP1 gene by heteroduplex analysis and direct sequencing. Linkage of the Pakistani family was achieved using microsatellite markers. Polymerase chain reaction (PCR) products were separated by nondenaturing polyacrylamide gel electrophoresis. Alleles were assigned to individuals, which allowed calculation of LOD scores. Microsatellite marker haplotyping was used to determine ancestry of patients carrying the same mutation. RESULTS: In the 266 British patients and 1 Pakistani family analyzed, 21 loss-of-function mutations and 7 amino acid substitutions were identified, some of which may also be disease-causing. The mutations, many of which were deletion or insertion events, were clustered in the 5' end of exon 4. Most mutations resulted in a premature termination codon in the mRNA. Haplotype analysis of nine patients carrying an R677X mutation suggested that these patients are not ancestrally related. CONCLUSIONS: RP1 mutations account for 8% to 10% of the mutations in our cohort of British patients. The most common disease-causing mechanism is deduced to be one involving the presence of a truncated protein. Mutations in RP1 have now been described in adRP patients of four ethnically diverse populations. The different disease haplotype seen in the nine patients carrying the same mutation suggests that this mutation has arisen independently many times, possibly due to a mutation hot spot in this part of the gene.  相似文献   

11.
To map the disease loci several Pakistani families suffering from autosomal recessive retinitis pigmentosa with preserved para-arteriolar retinal pigment epithelium and Leber congenital amaurosis (LCA) were analyzed. Analysis revealed close genetic linkage between the disease phenotype of some of the families (3330RP, 111RP and 010LCA) and the microsatellite markers on chromosome 1q31. Mutation screening of the candidate gene CRB1 revealed a G to A transversion in exon 7 in arRP family 330RP and a T to C substitution in another arRP family, 111RP. In exon 9 of the CRB1 gene a T to C transversion was found in the family suffering from LCA (010LCA).The LCA phenotype of another family (011LCA) in which the CRB1 locus was excluded, showed linkage with microsatellite markers D17S1294 and D17S796 on chromosome 17p13.1. The association of the candidate gene GUCY2D (17p13.1) with the disease phenotype was excluded as no disease-associated mutation was found in any of its exons. Mutation screening of another candidate gene, AIPL1 located in the same region, showed a novel homozygous C to A substitution in exon 2. These sequence changes are unique for the Pakistani families and some of these have not been reported previously.  相似文献   

12.
PURPOSE: To identify the clinical findings in a Japanese family with X-linked retinitis pigmentosa associated with mutation in codon 253 (Leu253Arg) in the RP2 gene. METHODS: Case reports included clinical features and results of fluorescein angiography, electroretinogram, kinetic visual field testing, and DNA analysis. Two affected hemizygotes with retinitis pigmentosa associated with transversion mutations in codon 253 (Leu253Arg) of the RP2 gene and the obligate carriers were examined. RESULTS: A novel Leu253Arg mutation of the RP2 gene was found to cosegregate with retinal degeneration in two affected males and two carriers in female heterozygote in a Japanese family. The ophthalmic findings in hemizygote showed severe retinal degeneration. In the obligate carrier, mild chorioretinal degeneration was observed in both eyes but a tapetal-like reflex of the fundus was not apparent. CONCLUSIONS: The mutation at codon 253 of the RP2 gene is the first mutation reported in a Japanese family. It is concluded that the mutation of the RP2 gene also causes the X-linked retinitis pigmentosa in Japanese patients.  相似文献   

13.
Purpose: To identify the genetic basis of recessive inheritance of high hyperopia and Leber congenital amaurosis (LCA) in a family of Middle Eastern origin. Materials and methods: The patients were examined using standard ophthalmic techniques. DNA samples were obtained and genetic linkage was carried out using polymorphic markers flanking the known genes and loci for LCA. Exons were amplified and sequenced. Results: All four members of this family affected by LCA showed high to extreme hyperopia, with average spherical refractive errors ranging from +5.00 to +10.00. Linkage was obtained to 1q31.3 with a maximal LOD score of 5.20 and a mutation found in exon 9 of the CRB1 gene, causing a G1103R substitution at a highly conserved site in the protein. CRB1 is a vertebrate homolog of the Drosophila crumbs gene, which is required for photoreceptor morphogenesis, and has been associated with either retinitis pigmentosa (RP) or LCA. This sequence variant has previously been reported as a compound heterozygote in one sporadic LCA patient. Conclusion: Although hyperopia has been associated with LCA, it is typically moderate and variable between patients with the same mutation. In addition, some CRB1 mutations can be associated with either RP or LCA. We have shown that hyperopia and LCA are linked to the mutant CRB1 gene itself and are not dependent on unlinked modifiers.  相似文献   

14.
目的:研究常染色体显性遗传视网膜色素变性(autosomal dominant retinitis pigmentosa,ADRP)家系中视网膜色素变性1(retinitis pigmentosa-1,RP1)基因的突变特征及其在RP发病机制中的作用。方法:运用聚合酶链反应和直接测序方法,对6个ADRP家系的47例成员和50例对照者进行了RP1基因全编码区和邻近剪切位点的内含子区域序列突变的筛选与检测。运用单因素分析、多因素Logistic回归分析研究RP1基因点突变在RP发病中的作用。结果:ADRP家系成员和对照组RP1基因第4外显子上检测出2个变异位点。在1691和1725密码子存在杂合的两种类型的密码子(S1691P,Ser-Pro,TCT→CCT;Q1725Q,Gln-Gln,CAA→CAG)。ADRP家系成员中Ser-1691-Pro及Gln-1725-Gln位点突变率显著高于正常对照组(χ2=11.202,P<0.05)。结论:RP1基因Ser-1691-Pro及Gln-1725-Gln位点多态性可增高RP的危险性,具有潜在的致病性,考虑为ADRP家系的易感基因。  相似文献   

15.
Purpose: To describe new disease-causing RP2 and RPGR-ORF15 mutations and their corresponding clinical phenotypes in Swedish families with X-linked retinitis pigmentosa (XLRP) and to establish genotype-phenotype correlations by studying the clinical spectrum of disease in families with a known molecular defect. Methods: Seventeen unrelated families with RP and an apparent X-linked pattern of disease inheritance were identified from the Swedish RP registry and screened for mutations in the RP2 and RPGR (for the RP3 disease) genes. These families had been previously screened for the RPGR exons 1–19, and disease-causing mutations were identified in four of them. In the remaining 13 families, we sequenced the RP2 gene and the newly discovered RPGR-ORF exon. Detailed clinical evaluations were then obtained from individuals in the three families with identified mutations. Results: Mutations in RP2 and RPGRORF15 were identified in three of the 13 families. Clinical evaluations of affected males and carrier females demonstrated varying degrees of retinal dysfunction and visual handicap, with early onset and severe disease in the families with mutations in the ORF15 exon of the RPGR gene. Conclusions: A total of seven mutations in the RP2 and RPGR genes have been discovered so far in Swedish XLRP families. All affected individuals express a severe form of retinal degeneration with visual handicap early in life, although the degree of retinal dysfunction varies both in hemizygous male patients and in heterozygous carrier females. Retinal disease phenotypes in patients with mutations in the RPGR-ORF15 were more severe than in patients with mutations in RP2 or other regions of the RPGR .  相似文献   

16.
PURPOSE: A comprehensive screening was conducted for RP2 and retinitis pigmentosa GTPase regulator (RPGR) gene mutations including RPGR exon ORF15 in 58 index patients. The frequency of RPGR mutations was assessed in families with definite X-linked recessive disease (xlRP), and a strategy for analyzing the highly repetitive mutational hot spot in exon ORF15 is provided. METHODS: Fifty-eight apparently unrelated index-patients were screened for mutations in all coding exons of the RP2 and the RPGR genes, including splice-sites, by single-strand conformation polymorphism (SSCP) analysis, except for RPGR exon ORF15. A strategy for directly sequencing the large repetitive stretch of exon ORF15 from a 1.6-kb PCR-product was developed. According to pedigree size and evidence for X linkage, families were subdivided into three categories. RESULTS: Screening of 58 xlRP families revealed RP2 mutations in 8% and RPGR mutations in 71% of families with definite X-linked inheritance. Mutations clustered within a approximately 500-bp stretch in exon ORF15. In-frame sequence alterations in exon ORF15 ranged from the deletion of 36 bp to the insertion of 75 bp. CONCLUSIONS: Mutations in the RPGR gene are estimated to cause 15% to 20% of all cases of RP, higher than any other single RP locus. This report provides a detailed strategy to analyze the mutational hot spot in RPGR exon ORF15, which cannot be screened by standard procedures. The discrepancy of the proportion of families linked to the RP3 locus and those having RPGR mutations is resolved in a subset of families with definite X linkage.  相似文献   

17.
PURPOSE: To describe the ophthalmic and genetic findings in a family with X-linked retinitis pigmentosa (RP) and Coats'-like exudative vasculopathy. DESIGN: Observational case series. METHODS: Family members underwent comprehensive ophthalmologic examination. Leukocyte genomic DNA samples were obtained and screened for RPGR (RP3) mutations by direct polymerase chain reaction sequencing. RESULTS: The proband had RP with bilateral Coats'-like vasculopathy and was treated with fluorescein-potentiated argon laser therapy. The findings in two other affected male patients and three obligate carrier female patients were within the clinical spectrum of a typical X-linked-recessive RP. A novel nonsense RPGR exon ORF15 mutation (912G>T) was found to segregate with RP in this family. CONCLUSIONS: This report expands the clinical heterogeneity spectrum caused by RPGR mutations and our knowledge concerning the molecular pathologic condition that pertains to Coats'-like RP. Consistent with the literature, Coats' response was not observed in all family members who were affected by RP, which suggests the involvement of other genetic and/or environmental factors.  相似文献   

18.
PURPOSE: To identify the molecular basis of Leber's congenital amaurosis (LCA) in a cohort of Italian patients and to perform genotype-phenotype analysis. METHODS: DNA samples from 95 patients with LCA were analyzed by using a microarray chip containing disease-associated sequence variants in eight LCA genes. In addition, all patients in whom no mutations were identified by microarray were subjected to sequence analysis of the CEP290 gene. Patients with mutations identified underwent a detailed ophthalmic evaluation. RESULTS: Disease-causing mutations were identified in 28% of patients, and twelve novel variants were identified. Mutations occurred more frequently in the RPE65 (8.4%), CRB1 (7.4%), and GUCY2D (5.2%) genes. Mutations in CEP290 were found in only 4.2% of the patients analyzed. Clinical assessment of patients carrying RPE65 or CRB1 mutations revealed the presence of retained visual capabilities in the first decade of life. RPE65 mutations were almost always associated with normal macular thickness, as assessed by optical coherence tomography (OCT), whereas CRB1 mutations were associated with reduced retinal thickness and a coarsely laminated retina. Fundus autofluorescence was mostly observed in patients with RPE65 and GUCY2D mutations and was not elicitable in patients carrying CRB1. CONCLUSIONS: RPE65 gene mutations represented a significant cause of LCA in the Italian population, whereas GUCY2D and CEP290 mutations had a lower frequency than that found in other reports. This finding suggests that the genetic epidemiology of LCA in Italy is different from that reported in the United States and in northern European countries. Autofluorescence in patients with RPE65 mutations was more frequently associated with preserved retinal thickness, which suggests that these mutations are not associated with progression of retinal degeneration. Therefore, normal retinal thickness (identified with OCT) and fundus autofluorescence may be the means with which to identify patients with LCA who carry RPE65 mutations, which are expected to be a potential gene therapy target in the near future.  相似文献   

19.
PURPOSE: Leber congenital amaurosis (LCA) is an early-onset inherited disorder of childhood blindness characterized by visual impairment noted soon after birth. Variants in at least six genes (AIPL1, CRB1, CRX, GUCY2D, RPE65, and RPGRIP1) have been associated with a diagnosis consistent with LCA or early-onset retinitis pigmentosa (RP). Genetically heterogeneous inheritance complicates the analyses of LCA cases, especially in patients without a family history of the disorder, and conventional methods are of limited value. METHODS: To overcome these limitations, arrayed primer extension (APEX) technology was used to design a genotyping microarray for early-onset, severe retinal degenerations that includes all of the >300 disease-associated variants currently described in eight genes (in addition to the six just listed, the early-onset RP genes LRAT and MERTK were added). The resultant LCA array allows simultaneous detection of all known disease-associated alleles in any patient with early-onset RP. The array was validated by screening 93 confirmed patients with LCA who had known mutations. Subsequently, 205 novel LCA cases were screened on the array, followed by segregation analyses in families, if applicable. RESULTS: The microarray was >99% effective in determining the existing genetic variation and yielded at least one disease-associated allele in approximately one third of the novel patients. More than two (expected) variants were discovered in a substantial fraction (22/300) of the patients, suggesting a modifier effect from more than one gene. In support of the latter hypothesis, the third allele segregated with a more severe disease phenotype in at least five families. CONCLUSIONS: The LCA genotyping microarray is a robust and cost-effective screening tool, representing the prototype of a disease chip for genotyping patients with a genetically heterogeneous condition. Simultaneous screening for all known LCA-associated variants in large LCA cohorts allows systematic detection and analysis of genetic variation, facilitating prospective diagnosis and ultimately predicting disease progression.  相似文献   

20.
BACKGROUND: Leber congenital amaurosis (LCA) usually describes patients with severely reduced vision due to a retinal dystrophy in early childhood. METHODS: In 135 families in a case series with severely reduced vision due to a retinal dystrophy in early childhood a complete ophthalmologic examination was extended by two-color threshold perimetry, fundus autofluorescence (FAF), und optical coherence tomography (OCT). Mutation screening included AIPL1, CRB1, CRX, GUCY2D, LRAT, RPE65, RPGRIP, and TULP1. RESULTS: GUCY2D mutations caused the most severe phenotype with severely reduced vision from birth but unremarkable fundus appearance. RPE65 mutations were correlated with an obvious lack of FAF. CRB1 mutations showed a significantly thickened retina on OCT. CRX mutations were associated with a progressive form of cone-rod dystrophy. CONCLUSION: A genotype-phenotype correlation for selected genes allows an optimized strategy for the molecular genetic work-up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号