首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome P450 (P450) enzymes are often used in suicide gene cancer therapy strategies to convert an inactive prodrug into its therapeutic active metabolites. However, P450 activity is dependent on electrons supplied by cytochrome P450 reductase (CPR). Since endogenous CPR activity may not be sufficient for optimal P450 activity, the overexpression of additional CPR has been considered to be a valuable approach in gene directed enzyme prodrug therapy (GDEPT). We have analysed a set of cell lines for the effects of CPR on cytochrome P450 isoform 2B1 (CYP2B1) activity. CPR transfected human embryonic kidney 293 (HEK293) cells showed both strong CPR expression in Western blot analysis and 30-fold higher activity in cytochrome c assays as compared to parental HEK293 cells. In contrast, resorufin and 4-hydroxy-ifosfamide assays revealed that CYP2B1 activity was up to 10-fold reduced in CPR/CYP2B1 cotransfected HEK293 cells as compared to cells transfected with the CYP2B1 expression plasmid alone. Determination of ifosfamide-mediated effects on cell viability allowed independent confirmation of the reduction in CYP2B1 activity upon CPR coexpression. Inhibition of CYP2B1 activity by CPR was also observed in CYP2B1/CPR transfected or infected pancreatic tumour cell lines Panc-1 and Pan02, the human breast tumour cell line T47D and the murine embryo fibroblast cell line NIH3T3. A CPR mediated increase in CYP2B1 activity was only observed in the human breast tumour cell line Hs578T. Thus, our data reveal an effect of CPR on CYP2B1 activity dependent on the cell type used and therefore demand a careful evaluation of the therapeutic benefit of combining cytochrome P450 and CPR in respective in vivo models in each individual target tissue to be treated.  相似文献   

2.
Methoxymorpholinyl doxorubicin (MMDX) is a novel liver cytochrome P450 (P450)-activated anticancer prodrug whose toxicity toward cultured tumor cells can be potentiated up to 100-fold by incubation with liver microsomes and NADPH. In the present study, a panel of human liver microsomes activated MMDX with potentiation ratios directly correlated to the CYP3A-dependent testosterone 6beta-hydroxylase activity of each liver sample. Microsome-activated MMDX exhibited nanomolar IC(50) values in growth-inhibition assays of human tumor cell lines representing multiple tissues of origin: lung (A549 cells), brain (U251 cells), colon (LS180 cells), and breast (MCF-7 cells). Analysis of individual cDNA-expressed CYP3A enzymes revealed that rat CYP3A1 and human CYP3A4 activated MMDX more efficiently than rat CYP3A2 and that human P450s 3A5 and 3A7 displayed little or no activity. MMDX cytotoxicity was substantially increased in Chinese hamster ovary cells after stable expression of CYP3A4 in combination with P450 reductase. CYP3A activation of MMDX abolished the parent drug's residual cross-resistance in a doxorubicin-resistant MCF-7 cell line that overexpresses P-glycoprotein. CYP3A-activated MMDX displayed a comparatively high intrinsic stability, with a t(1/2) of approximately 5.5 h at 37 degrees C. MMDX was rapidly activated by CYP3A at low ( approximately 1-5 nM) prodrug concentrations, with 100% tumor cell kill obtained after as short as a 2-h exposure to the activated metabolite. These findings demonstrate that MMDX can be activated by CYP3A metabolism to a potent, long-lived, and cell-permeable cytotoxic metabolite and suggest that this anthracycline prodrug may be used in combination with CYP3A4 in a P450 prodrug activation-based gene therapy for cancer treatment.  相似文献   

3.
An ideal cancer chemotherapeutic prodrug is completely inactive until metabolized by a tumour-specific enzyme, or by an enzyme that is only metabolically competent towards the prodrug under physiological conditions unique to the tumour. Human cancers, including colon, breast, lung, liver, kidney and prostate, are known to express cytochrome P450 (CYP) isoforms including 3A and 1A subfamily members. This raises the possibility that tumour CYP isoforms could be a focus for tumour-specific prodrug activation. Several approaches are reviewed, including identification of prodrugs activated by tumour-specific polymorphic CYPs, use of CYP-gene directed enzyme prodrug therapy and CYPs acting as reductases in hypoxic tumour regions. The last approach is best exemplified by AQ4N, a chemotherapeutic prodrug that is bioreductively activated by CYP3A. This study shows that freshly isolated murine T50/80 mammary carcinoma and RIF-1 fibrosarcoma 4-electron reduces AQ4N to its cytotoxic metabolite, AQ4 (T50/80 Km = 26.7 microM, Vmax = 0.43 microM/mg protein/min; RIF-1 Km = 33.5 microM, Vmax = 0.42 microM/mg protein/min) via AQM, a mono-N-oxide intermediate (T50/80 Km = 37.5 microM; Vmax = 1.4 microM/mg protein/min; RIF-1 Km = 37.5 microM; Vmax = 1.2 microM/mg protein/ min). The prodrug conversion was dependent on NADPH and inhibited by air or carbon monoxide. Cyp3A mRNA and protein were both present in T50/80 carcinoma grown in vivo (RIF-1 not measured). Exposure of isolated tumour cells to anoxia (2 h) immediately after tumour excision increased cyp3A protein 2-3-fold over a 12 h period, after which time the cyp protein levels returned to the level found under aerobic conditions. Conversely, cyp3A mRNA expression showed an initial 3-fold decrease under both oxic and anoxic conditions; this returned to near basal levels after 8-24 h. These results suggest that cyp3A protein is stabilized in the absence of air, despite a decrease in cyp3A mRNA. Such a 'stabilization factor' may decrease cyp3A protein turnover without affecting the translation efficiency of cyp3A mRNA. Confirmation of the CYP activation of AQ4N bioreduction was shown with human lymphoblastoid cell microsomes transfected with CYP3A4, but not those transfected with CYP2B6 or cytochrome P450 reductase. AQ4N is also reduced to AQ4 in NADPH-fortified human renal cell carcinoma (Km = 4 microM, Vmax = 3.5 pmol/mg protein/min) and normal kidney (Km = 4 microM, Vmax = 4.0 pmol/mg protein/min), both previously shown to express CYP3A. Germane to the clinical potential of AQ4N is that although both normal and tumour cells are capable of reducing AQ4N to its cytotoxic species, the process requires low oxygen conditions. Hence, AQ4N metabolism should be restricted to hypoxic tumour cells. The isoform selectivity of AQ4N reduction, in addition to its air sensitivity, indicates that AQ4N haem coordination and subsequent oxygen atom transfer from the active-site-bound AQ4N is the likely mechanism of N-oxide reduction. The apparent increase in CYP3A expression under hypoxia makes this a particularly interesting application of CYPs for tumour-specific prodrug activation.  相似文献   

4.
1. Little information is available about the pharmacokinetic interactions of anticancer drugs in man. However, clinically significant drug interactions do occur in cancer chemotherapy, and it is likely that important interactions have not been recognized. 2. Specific cytochrome P450 (CYP) enzymes have been recently shown to be involved in the metabolism of several essential anticancer agents. In particular, enzymes of the CYP3A subfamily play a role in the metabolism of many anticancer drugs, including epipodophyllotoxins, ifosphamide, tamoxifen, taxol and vinca alkaloids. CYP3A4 has been shown to catalyse the activation of the prodrug ifosphamide, raising the possibility that ifosphamide could be activated in tumour tissues containing this enzyme. 3. As examples of recently found, clinically significant interactions, cyclosporin considerably increases plasma doxorubicin and etoposide concentrations. Although cyclosporin and calcium channel blockers may influence the pharmacokinetics of certain anticancer agents by inhibiting their CYP3A mediated metabolism, it is more likely that these P-glycoprotein inhibitors inhibit P-glycoprotein mediated drug elimination. 4. Appropriate caution should be exercised when combining P-glycoprotein inhibitors and potential CYP3A inhibitors with cancer chemotherapy.  相似文献   

5.
Most drug metabolizing cytochrome P450s (P450) are predominantly expressed in the liver. In contrast, human CYP1B1 is an extrahepatic P450 which is overexpressed in many tumours and has been strongly implicated in the activation of carcinogens. Rare allelic variants of the CYP1B1 gene which encode an inactive protein have been identified. However, four polymorphisms which most likely do not abolish functionality have been described. In this report, we have characterized the functional consequences of these. A CYP1B1 cDNA, identical to a cDNA published previously, served as a template to introduce allelic changes either separately or in combination. The resulting effects on CYP1B1 activity were determined in membranes isolated from Escherichia coli which coexpressed CYP1B1 together with P450 reductase. None of the allelic changes affected the CYP1B1 expression level. The allelic changes Arg48 to Gly, Ala19 to Ser and Asn453 to Ser had little influence on the Vmax and the Km of the CYP1B1 mediated 2- and 4-hydroxylation of estradiol. In contrast, the Km of these metabolic pathways was increased at least three-fold by the allelic change Va432 to Leu or by simultaneously changing Val432 to Leu and Asn453 to Ser. However, these alterations had little effect on the kinetic parameters of other CYP1B1 mediated reactions such as the epoxidation of (-)-trans-(7R,8R)-benzo[a]pyrene 7,8-dihydrodiol as determined by (r-7,t-8,t-9,c-10)-benzo[a]pyrene tetraol formation, or such as the O-dealkylation of ethoxyresorufin and the 1'-hydroxylation of bufuralol. Molecular modelling suggests that amino acid residue 432 of CYP1B1 may be involved in the interaction between CYP1B1 and P450 reductase. Since 4-hydroxyestradiol has been implicated in hormonal carcinogenesis and CYP1B1 is expressed in target tissues, the data presented demonstrate that polymorphisms in CYP1B1 have the potential to affect disease susceptibility.  相似文献   

6.
In the last 16 years, more than a dozen gene-directed enzyme prodrug therapies for cancer treatment have been evaluated in preclinical studies. However, only few of them have evolved to the stage of clinical trial. This review assesses current knowledge in the area of cancer gene therapy, emphasizing cytochrome p450 (CYP)-based prodrug activation systems. This approach is intuitively highly suitable for the treatment of cancers, since several major anticancer drugs are activated by liver CYP enzymes. Important features of this strategy include: 1) use of human CYP genes to avoid immune complications that may hamper expression of therapeutic genes of non-human origin and thereby inhibit prodrug activation, 2). use of well established and clinically effective anticancer prodrugs, 3). strong bystander cytotoxic effect seen with all liver-activated CYP prodrugs, 4). the potential to inhibit liver CYP activity and expression to increase the bioavailability of prodrugs for CYP-transduced tumors, 5). possible extension to many CYP enzymes and their potential anticancer prodrug substrates, and 6). it can be used to arm therapeutic conditionally replicating viruses. Historically, this strategy utilized CYP 2B1 to activate oxazaphosphorines. It is now becoming clear that the repertoire of prodrugs is expandable and that CYP gene candidates are not limited to naturally occurring CYP genes, but may also encompass engineered CYP enzymes, improved by site directed mutagenesis or other approaches. Encouraging results from a recent phase I/II clinical trial that have implemented this strategy, as well as emerging problems related to gene delivery are discussed in this review.  相似文献   

7.
Cytochrome P450s (P450 or CYPs) comprise a superfamily of enzymes that catalyze the oxidation of a wide variety of xenobiotic chemicals. Although most of P450 inhibitors decrease the metabolic activities mediated by the corresponding P450 forms, unexpected phenomena, which are called as activation or heterotropic cooperativity, have been often observed. We summarize Michaelis-Menten constants (K(m)), maximal velocities (V(max)), V(max)/K(m) (intrinsic clearance) values, and/or metabolic activities for 22 activators and 24 substrates (30 reactions) mainly mediated by CYP3A4 among human P450 forms. Although an allosteric mechanism has been invoked to explain the cooperativity, the activation patterns or phenomena are dependent on substrates and selected enzyme sources in vitro. Interestingly, recent studies have been shown that human P450 forms other than CYP3A4, such as CYP1A2, CYP2C8, CYP2C9, CYP2D6, and CYP3A7, are also activated by some compounds, whereas there are few reports on CYP3A5. Several models describing interaction among substrates, effectors, and enzymes have been proposed, however, the detailed mechanism for the activation is still generally unknown even though some crystal structures have been shown. A few cases of the cooperativity of CYP3A in experimental animals have been presented, whereas the clinical significance of P450 cooperativity is still unclear. The collective findings provide fundamental and useful information for the activation of P450s by chemicals despite some contradictive kinetic parameters for the same reactions reported. To understand causal factor(s) and mechanism(s) for such different reports summarized here is still one of the hot research topics to be solved in current activation reactions.  相似文献   

8.
P450 and carcinogenesis   总被引:2,自引:0,他引:2  
Multiple forms of cytochrome P450 play important roles in metabolic activation of a variety of environmental procarcinogens. Large species differences in substrate specificities between experimental animals and humans are critical factors in evaluation of chemical safety. To study the role of human P450s in genotoxic activation of environmental chemicals, transgenic bacteria expressing both human P450s and P450 reductase have been developed for the mutagenicity test. Mice lacking CYP1A2, and CYP1B1, and CYP2E1 were prepared to investigate the mechanism of procarcinogen activation in vivo. The first human transgenic animals were mice carrying human fetus-specific CYP3A7. Using these transgenic mice, mutagenic activation of a natural mycotoxin, aflatoxin B1, catalyzed by CYP3A7 in vivo was demonstrated. This observation was clear in extrahepatic tissues that did not express mouse CYP3A enzymes. In conclusion, P450s are key factors involved in metabolic activation of environmental procarcinogens for their biological actions.  相似文献   

9.
Molecular epidemiological studies are now a powerful tool to determine differential genetic susceptibilities to cancer-causing agents, and to obtain information on potential mechanisms. Cytochrome P450 (CYP) allelic variants are considered biomarkers of susceptibility to cancer. Such variants have an influence on the bioactivation and thereby on the potency of chemical carcinogens. This is very much straight forward for tobacco smoke-related human cancers. A new aspect is the implication of CYP1B1 in tobacco smoke-related cancers at several organ sites. On this basis, the present review is focused on lung, breast, urinary bladder and head and neck cancer. The CYP profile of the human lung includes CYP1A1, -1B1, -2A6, -2A13, -2B6, -2C18, -2E1, -2F1, -3A5 and -4B1. Polycyclic aromatic hydrocarbons (PAHs) and nitrosamines, as active components of tobacco smoke, appear as primary chemical factors for lung malignancies. For human mammary cancer, the use of hormone replacement therapy (HRT) has been shown to be associated with an increase of breast cancer risk, and there seems to be a link between risks caused by HRT use and modifying polymorphisms of drug/xenobiotic enzymes. Specifically, an association of the CYP1B1*3/*3 genotype with increased breast cancer risks has been postulated. Cigarette smoking is a major cause of human urinary bladder cancer. Arylamines, PAHs and nitrosamines are locally activated within the urothelium. Important CYPs in the bladder epithelium of experimental animals and man are CYP1B1 and -4B1. Alcohol consumption and tobacco smoking are known as the major causes of head and neck cancers. Recently, it appears that a polymorphic variant CYP1B1*3/*3 relates significantly to the individual susceptibility of smokers to head and neck cancer, supporting the view that PAH are metabolically activated through CYP1B1. It appears that CYP1B1 plays a key role for the activation of carcinogens at several organ targets, with a likelihood of complex gene-environment interactions implying Phase II enzymes.  相似文献   

10.
1. The effects of nicardipine and three other calcium channel antagonists, nifedipine, diltiazem and verapamil, on hepatic gene expression of cytochrome P450s (P450), CYP1A1, CYP1A2, CYP2B1, CYP2B2, CYP3A1 and CYP3A2 in male rats were examined by an RT-PCR method. 2. Treatment of rats with nicardipine resulted in a significant increase in hepatic expression of all the P450 genes examined. Other calcium channel antagonists, nifedipine, diltiazem and verapamil, also enhanced the gene expression of CYP2B1, CYP2B2, CYP3A1 and CYP3A2, although these showed no capacity for activating CYP1A1 and CYP1A2 genes. 3. We have demonstrated for the first time that nicardipine activated not only the genes of CYP2B1, CYP2B2, CYP3A1 and CYP3A2, but also those of CYP1A1 and CYP1A2 in the rat liver and have further suggested that calcium channel antagonists may show a common capacity for activating the genes of CYP2B1, CYP2B2, CYP3A1 and CYP3A2. Furthermore, this increased expression of P450 genes was demonstrated to contribute to increase in the protein level of the corresponding P450s.  相似文献   

11.
12.
The chemotherapeutic prodrug dacarbazine (DTIC) has limited efficacy in human malignancies and exhibits numerous adverse effects that arise from systemic exposure to the cytotoxic metabolite. DTIC is activated by CYP1A1 and CYP1A2 catalyzed N-demethylation. However, structural features of these enzymes that confer DTIC N-demethylation have not been characterized. A validated homology model of CYP1A1 was employed to elucidate structure-activity relationships and to engineer CYP1A1 enzymes with altered DTIC activation. In silico docking demonstrated that DTIC orientates proximally to Ser122, Phe123, Asp313, Ala317, Ile386, Tyr259, and Leu496 of human CYP1A1. The site of metabolism is positioned 5.6 ? from the heme iron at an angle of 105.3°. Binding in the active site is stabilized by H-bonding between Tyr259 and the N(2) position of the imidazole ring. Twenty-seven CYP1A1 mutants were generated and expressed in Escherichia coli in yields ranging from 9 to 225 pmol P450/mg. DTIC N-demethylation by the E161K, E256K, and I458V mutants exhibited Michaelis-Menten kinetics, with decreases in K(m) (183-249 μM) that doubled the catalytic efficiency (p < 0.05) relative to wild-type CYP1A1 (K(m), 408 ± 43 μM; V(max), 28 ± 4 pmol · min(-1) · pmol of P450(-1)). The generation of enzymes with catalytically enhanced DTIC activation highlights the potential use of mutant CYP1A1 proteins in P450-based gene-directed enzyme prodrug therapy for the treatment of metastatic malignant melanoma.  相似文献   

13.
Monkeys, especially macaques, including cynomolgus (Macaca fascicularis) and rhesus monkeys (Macaca mulatta), are frequently used in drug metabolism studies due to their evolutionary closeness to humans. Recently, numerous cytochrome P450 (P450 or CYP) cDNAs have been identified and characterized in cynomolgus and rhesus monkeys and were named by the P450 Nomenclature Committee. However, recent advances in genome analysis of cynomolgus and rhesus monkeys revealed that some monkey P450s are apparently orthologous to human P450s and thus need to be renamed corresponding to their human orthologs. In this review, we focus on the P450s identified in cynomolgus and rhesus monkeys and present an overview of the identity and functional characteristics of each P450 cDNA in the CYP1-4 families. Information on the Japanese monkey (Macaca fuscata), African green monkey (Cercopithecus aethiops), and marmoset (Callithrix jacchus), primate species used in some drug metabolism studies, are also included. We compared the genomic structure of the macaque P450 genes to those of human and rat P450 genes in the CYP1-4 families. Based on sequence identity, phylogeny, and genomic organization of monkey P450s, we determined orthologous relationships of monkey P450s and, in this article, propose a revised nomenclature: CYP2B17/CYP2B30 to CYP2B6, CYP2C20/CYP2C74 to CYP2C8, CYP2C43/CYP2C83 to CYP2C9, CYP2C75 to CYP2C19, CYP2F6 to CYP2F1, CYP3A8/CYP3A21/CYP3A64 to CYP3A4, CYP3A66 to CYP3A5, and CYP4F45 to CYP4F2. The information presented in this review is expected to promote a better understanding of monkey P450 genes through comparative genomics and thereby make it more feasible to use monkeys in drug metabolism studies.  相似文献   

14.
Cytochromes P450 in the bioactivation of chemicals   总被引:1,自引:0,他引:1  
The initial view that the cytochrome P450 enzyme system functions simply in the deactivation of xenobiotics is anachronistic on the face of mounting evidence that this system can also transform many innocuous chemicals to toxic products. However, not all xenobiotic-metabolising cytochrome P450 subfamilies show the same propensity in the bioactivation of chemicals. For example, the CYP2C, 2B and 2D subfamilies play virtually no role in the bioactivation of toxic and carcinogenic chemicals, whereas the CYP1A, 1B and 2E subfamilies are responsible for the bioactivation of the majority of xenobiotics. Electronic and molecular structural features of organic chemicals appear to predispose them to either bioactivation by one cytochrome P450 enzyme or deactivation by another. Consequently, the fate of a chemical in the body is largely dependent on the cytochrome P450 profile at the time of exposure. Any factor that modulates the enzymes involved in the metabolism of a certain chemical will also influence its toxicity and carcinogenicity. For example, many chemical carcinogens bioactivated by CYP1, on repeated administration, selectively induce this family, thus exacerbating their carcinogenicity. CYP1 induction potency by chemicals appears to be determined by a combination of their molecular shape and electron activation. The function of cytochromes P450 in the bioactivation of chemicals is currently being exploited to design systems that can be used clinically to facilitate the metabolic conversion of prodrugs to their biologically-active metabolites in cells that poorly express them, such as tumour cells, in the so-called gene-directed prodrug therapy.  相似文献   

15.
Alcohol consumption and tobacco smoking are major causes of head and neck cancers, and regional differences point to the importance of research into gene-environment interactions. Much interest has been focused on polymorphisms of CYP1A1 and of GSTM1 and GSTT1, but a number of studies have not demonstrated significant effects. This has mostly been ascribed to small sample sizes. In general, the impact of polymorphisms of metabolic enzymes appears inconsistent, with some reports of weak-to-moderate associations, and with others of no elevation of risks. The classical cytochrome P450 isoenzyme considered for metabolic activation of polycyclic aromatic hydrocarbons (PAH) is CYP1A1. A new member of the CYP1 family, CYP1B1, was cloned in 1994, currently representing the only member of the CYP1B subfamily. A number of single nucleotide polymorphisms of the CYP1B1 gene have been reported. The amino acid substitutions Val432Leu ( CYP1B1*3) and Asn453Ser ( CYP1B1*4), located in the heme binding domain of CYP1B1, appear as likely candidates to be linked with biological effects. CYP1B1 activates a wide range of PAH, aromatic and heterocyclic amines. Very recently, the CYP1B1 codon 432 polymorphism ( CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squamous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has pointed to interactive effects. This provides new molecular evidence that tobacco smoke-specific compounds relevant to head and neck carcinogenesis are metabolically activated through CYP1B1 and is consistent with a major pathogenetic relevance of PAH as ingredients of tobacco smoke.  相似文献   

16.
  1. Phenobarbitone and related compounds induce hepatic microsomal cytochrome P450 (CYP) 2B forms (mediated by the constitutive androstane receptor), whereas peroxisome proliferators induce CYP4A forms (mediated by the peroxisome proliferator-activated receptor alpha) in rats and mice.

  2. A number of non-genotoxic CYP2B and CYP4A inducers have been shown to produce liver tumours in rats and mice.

  3. The hepatic effects of CYP2B and CYP4A inducers are reviewed and evaluated with respect to their established modes of action for rodent liver tumour formation and species differences in response. While CYP2B and CYP4A inducers stimulate replicative DNA synthesis in rodent liver, they do not appear to be mitogenic agents in human hepatocytes.

  4. Epidemiological studies have demonstrated that phenobarbitone and rodent peroxisome proliferators do not increase the incidence of liver tumours in humans.

  5. It is concluded that rodent CYP2B and CYP4A inducers do not pose a hepatocarcinogenic hazard for humans.

  相似文献   

17.
Cytochrome P450 gene-directed enzyme prodrug therapy (GDEPT) for cancer   总被引:1,自引:0,他引:1  
Several commonly used cancer chemotherapeutic prodrugs, including cyclophosphamide and ifosfamide, are metabolized in the liver by a cytochrome P450 (CYP)-catalyzed prodrug activation reaction that is required for therapeutic activity. Preclinical studies have shown that the chemosensitivity of tumors to these prodrugs can be dramatically increased by P450 gene transfer, which confers the capability to activate the prodrug directly within the target tissue. This P450 gene-directed enzyme prodrug therapy (P450 GDEPT) greatly enhances the therapeutic effect of P450-activated anti-cancer prodrugs without increasing host toxicity associated with systemic distribution of active drug metabolites formed by the liver. The efficacy of P450 GDEPT can be enhanced by further increasing the partition ratio for tumor:liver prodrug activation in favor of increased intratumoral metabolism. This can be achieved by co-expression of P450 with the flavoenzyme NADPH-P450 reductase, which increases P450 metabolic activity, by localized prodrug delivery, or by the selective pharmacologic inhibition of liver prodrug activation. P450 GDEPT prodrug substrates are diverse in their structure, mechanism of action, and optimal prodrug-activating P450 gene; they include both established and investigational anticancer prodrugs, as well as bioreductive drugs that can be activated by P450/P450 reductase in a hypoxic tumor environment. Several strategies may be employed to achieve the tumor-selective gene delivery that is required for the success of P450 GDEPT; these include the use of tumor-targeted cellular vectors and tumor-selective oncolytic viruses. Overall, P450-based GDEPT presents several important, practical advantages over other GDEPT strategies that should facilitate the incorporation of P450 GDEPT into existing cancer treatment regimens. A recent report of clinical efficacy in a P450-based phase I/II gene therapy trial for pancreatic cancer patients supports this conclusion.  相似文献   

18.
Inhibition of cytochromes P450 by antifungal imidazole derivatives.   总被引:7,自引:0,他引:7  
The interactions of a panel of antifungal agents with cytochromes P450 (P450s), as a means of predicting potential drug-drug interactions, have not yet been investigated. The objective of this study was to evaluate the specificity and selectivity of five antifungal agents using selective probe reactions for each of the eight major P450s. The index reactions used were phenacetin O-deethylation (for CYP1A2), coumarin 7-hydroxylation (CYP2A6), diclofenac 4'-hydroxylation (CYP2C9), omeprazole 5-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), 7-ethoxy-4-trifluoromethylcoumarin deethylation (CYP2B6), chlorzoxazone 6-hydroxylation (CYP2E1), and omeprazole sulfonation (CYP3A4). Five antifungal agents that include an imidazole moiety (clotrimazole, miconazole, sulconazole, tioconazole, and ketoconazole) were examined in cDNA-expressing microsomes from human lymphoblast cells or human liver microsomes. All inhibitors studied demonstrated nonselective inhibition of P450s. Ketoconazole seemed to be the most selective for CYP3A4, although it also inhibited CYP2C9. High-affinity inhibition was seen for CYP1A2 (sulconazole and tioconazole K(i), 0.4 microM), CYP2B6 (miconazole K(i), 0.05 microM; sulconazole K(i), 0.04 microM), CYP2C19 (miconazole K(i), 0.05 microM; sulconazole K(i), 0.008 microM; tioconazole K(i), 0.04 microM), CYP2C9 (sulconazole K(i), 0.01 microM), CYP2D6 (miconazole K(i), 0.70 microM; sulconazole K(i), 0.40 microM), CYP2E1 (tioconazole K(i), 0.4 microM), and CYP3A4 (clotrimazole K(i), 0.02 microM; miconazole K(i), 0.03 microM; tioconazole K(i), 0.02 microM). Therefore, this class of compounds is likely to result in significant drug-drug interactions in vivo.  相似文献   

19.
Cytochrome P450 (P450)-dependent metabolism of all-trans-retinoic acid (atRA) is important for the expression of its biological activity. Because the human P450s involved in the formation of the principal atRA metabolites have been only partially identified, the purpose of this study was to identify the human P450s involved in atRA metabolism. The use of phenotyped human liver microsomes (n = 16) allowed the identification of the following P450s: 2B6, 2C8, 3A4/5, and 2A6 were involved in the formation of 4-OH-RA and 4-oxo-RA; 2B6, 2C8, and 2A6 correlated with the formation of 18-OH-RA; and 2A6, 2B6, and 3A4/5 activities correlated with 5, 6-epoxy-RA formation (30-min incubation, 10 microM atRA, HPLC separation, UV detection 340 nm). The use of 15 cDNA-expressed human P450s from lymphoblast microsomes, showed the formation of 4-OH-RA by CYP3A7 > CYP3A5 > CYP2C18 > CYP2C8 > CYP3A4 > CYP2C9, whereas the 18-OH-RA formation involved CYPs 4A11 > 3A7 > 1A1 > 2C9 > 2C8 > 3A5 > 3A4 >2C18. Kinetic studies identified 3A7 as the most active P450 in the formation of three of the metabolites: for 4-OH-retinoic acid, 3A7 showed a V(max)/K(m) of 127.7, followed by 3A5 (V(max)/K(m) = 25.6), 2C8 (V(max)/K(m) = 24.5), 2C18 (V(max)/K(m) = 15.8), 3A4 (V(max)/K(m) = 5.7), 1A1 (V(max)/K(m) = 5.0), and 4A11 (V(max)/K(m) = 1.9); for 4-oxo-RA, 3A7 showed a V(max)/K(m) of 13.4, followed by a 10-fold lower activity for both 2C18 and 4A11 (V(max)/K(m) = 1.2); and for 18-OH-RA, 3A7 showed a V(max)/K(m) of 10.5 compared with a V(max)/K(m) of 2.1 for 4A11 and 2.0 for 2C8. 5,6-Epoxy-RA was only detected at high substrate concentrations in this system (>10 microM), and P450s 2C8, 2C9, and 1A1 were the most active in its formation. The use of embryonic kidney cells (293) stably transfected with human P450 cDNA confirmed the major involvement of P450s 3A7, 1A1, and 2C8 in the oxidation of atRA, and to a lesser extent, 1A2, 2C9, and 3A4. In conclusion, several human P450s involved in atRA metabolism have been identified, the expression of which was shown to direct atRA metabolism toward the formation of specific metabolites. The role of these human P450s in the biological and anticancer effects of atRA remains to be elucidated.  相似文献   

20.
Aliphatic amine N-oxides have long been identified as non-toxic metabolites of a large number of tertiary amines drugs. Bioreduction of such N-oxides will generate the active parent amine. This principle has been adopted to develop AQ4N, a di-N-oxide anticancer prodrug with little intrinsic cytotoxicity. However, AQ4N is bioreduced in hypoxic regions of solid tumors and micrometastatic deposits to generate a cytotoxic alkylaminoanthraquinone metabolite. The 4-electron reduction metabolite of AQ4N has high affinity for DNA and is a potent inhibitor of topoisomerase II, a DNA processing enzyme crucial to cell division. The development of AQ4N has proceeded on many fronts in order to establish this unique anticancer prodrug opportunity. Preclinical studies in vivo have demonstrated that although AQ4N has little or no intrinsic cytotoxic activity per se it (i) enhances the antitumor effects of radiation and conventional chemotherapeutic agents, (ii) is pharmacokinetically stable, and (iii) is a substrate for cytochrome P450 (CYP). A study of AQ4N metabolism in vitro and ex vivo using purified CYP enzymes, phenotyped human livers and CYP transfected cell lines shows that CYP3A, 1A and 1B1 family members contribute to AQ4N bioreduction in the absence of oxygen. Importantly AQ4N is shown to be metabolized by tumors known to express CYP isoforms. AQ4N is currently in Phase I clinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号