首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: STI571 is a tyrosine kinase inhibitor which inhibits the kinase activity of kit, the receptor for stem cell factor (SCF). Because activating mutations of c-kit affecting codon 816 are associated with human mast cell neoplasms, we determined whether STI571 exerted a similar cytotoxic effect on neoplastic and normal human mast cells. METHODS: We investigated the effect of addition of STI571 in increasing concentrations (0.01 to 10 micromolar) to two HMC-1 human mast cell leukemia cell lines carrying two different activating c-kit mutations in codons 816 or 560, as well as the effect of the drug on short-term bone marrow cultures obtained from patients who carry a mutated codon 816 or wild-type c-kit. RESULTS: STI571 failed to inhibit the growth of HMC-1(560,816) cells bearing a codon 816 mutation but effectively suppressed the proliferation of HMC-1(560) carrying c-kit with the wild-type codon 816. STI571 did not induce preferential killing of neoplastic bone marrow mast cells in short-term cultures from patients bearing a codon 816 c-kit mutation. In contrast, STI571 caused a dramatic reduction in mast cells in patients without codon 816 c-kit mutations. CONCLUSION: These results suggest that STI571, while effectively killing mast cells with wild-type c-kit, did not show preferential cytotoxicity to neoplastic human mast cells and thus may not be effective in the treatment of human systemic mastocytosis associated with codon 816 c-kit mutations.  相似文献   

2.
To elucidate the role of mitogen-activated protein kinases (MAPKs) and Akt kinase in leukemogenesis caused by the breakpoint cluster region (BCR)-Abelson (ABL) tyrosine kinase oncoprotein, we examined the activities of MAPKs and Akt kinase and their roles in the action of STI571, a specific inhibitor of BCR-ABL tyrosine kinase, in chronic myelogenous leukemia (CML) cells. We found that extracellular signal-regulated kinase (ERK) 1/2 and Akt kinase are constitutively active in the chronic phase of CML, blast crisis of CML, and the CML-derived K562 cell line. Both interferon-alpha and STI571 suppressed ERK1/2 activity in K562 cells. In contrast, Akt kinase activity was inhibited only by STI571. K562 cell proliferation was markedly suppressed by LY294002, a specific inhibitor of PI3K/Akt kinase, and STI571 but not by PD98059, a specific inhibitor of MEK1/2. In addition, caspase-3 was activated by treatment of cells with STI571 and LY294002 but not with PD98059. These data indicate that Akt kinase may play a role in the proliferation of CML leukemia cells and the action of STI571. Primary leukemia cells from patients with CML blast crisis did not show inhibition of ERK1/2 or Akt kinase activity and were resistant to caspase-3-associated apoptosis after treatment with STI571. These findings suggest that STI571 does not effectively block signaling molecules downstream of the BCR-ABL tyrosine kinase in some cases of CML blast crisis.  相似文献   

3.
ARG tyrosine kinase activity is inhibited by STI571   总被引:15,自引:0,他引:15       下载免费PDF全文
Okuda K  Weisberg E  Gilliland DG  Griffin JD 《Blood》2001,97(8):2440-2448
The tyrosine kinase inhibitor STI571 inhibits BCR/ABL and induces hematologic remission in most patients with chronic myeloid leukemia. In addition to BCR/ABL, STI571 also inhibits v-Abl, TEL/ABL, the native platelet-derived growth factor (PDGF)beta receptor, and c-KIT, but it does not inhibit SRC family kinases, c-FMS, FLT3, the epidermal growth factor receptor, or multiple other tyrosine kinases. ARG is a widely expressed tyrosine kinase that shares substantial sequence identity with c-ABL in the kinase domain and cooperates with ABL to regulate neurulation in the developing mouse embryo. As described here, ARG has recently been implicated in the pathogenesis of leukemia as a fusion partner of TEL. A TEL/ARG fusion was constructed to determine whether ARG can be inhibited by STI571. When expressed in the factor-dependent murine hematopoietic cell line Ba/F3, the TEL/ARG protein was heavily phosphorylated on tyrosine, increased tyrosine phosphorylation of multiple cellular proteins, and induced factor-independent proliferation. The effects of STI571 on Ba/F3 cells transformed with BCR/ABL, TEL/ABL, TEL/PDGFbetaR, or TEL/ARG were then compared. STI571 inhibited tyrosine phosphorylation and cell growth of Ba/F3 cells expressing BCR/ABL, TEL/ABL, TEL/PDGFbetaR, and TEL/ARG with an IC(50) of approximately 0.5 microM in each case, but it had no effect on untransformed Ba/F3 cells growing in IL-3 or on Ba/F3 cells transformed by TEL/JAK2. Culture of TEL/ARG-transfected Ba/F3 cells with IL-3 completely prevented STI571-induced apoptosis in these cells, similar to what has been observed with BCR/ABL- or TEL/ABL-transformed cells. These results indicate that ARG is a target of the small molecule, tyrosine kinase inhibitor STI571.  相似文献   

4.
The 2-phenylaminopyrimidine derivative STI571 is a selective inhibitor of c-Abl, c-kit, and platelet-derived growth factor-receptor tyrosine kinases and is presently in phase II-III clinical studies. Here, this study reports on a novel pharmacologic activity of the compound, ie, enhancement of the cyto-differentiating, growth-inhibitory, and apoptogenic actions of all-trans-retinoic acid (ATRA). Whereas STI571 is not a cytodifferentiating agent by itself, the compound interacts with ATRA and enhances the myeloid maturation program set in motion by the retinoid in the PML-RARalpha(+) acute promyelocytic leukemia NB4 and the PML-RARalpha(-) myeloblastic HL60 and U937 cell lines. In addition, STI571 relieves the cyto-differentiation block observed in the ATRA-resistant cell lines, NB4.R1, NB4.306, and NB4.007. In NB4 promyelocytes, a RARalpha agonist, but not an RXR agonist, can substitute for ATRA and interact with STI571. By contrast, STI571 is unique among c-Abl-specific tyrosine kinase inhibitors in modulating the pharmacologic activity of ATRA. In NB4 cells, enhanced cyto-differentiation results in increased up-regulation of the expression of a number of genes coding for myeloid differentiation markers, including CD11b, CD11c, and some of the components of the nicotinamide adenine dinucleotide phosphate-oxidase enzymatic complex. All this is accompanied by inhibition of c-Abl tyrosine phosphorylation and retardation of the retinoid-dependent degradation of PML-RARalpha and RARalpha. Stabilization of the 2 retinoic acid receptors is likely to be the result of augmented and accelerated inhibition of the proteasome-dependent proteolytic activity observed on ATRA treatment.  相似文献   

5.
The c-kit receptor tyrosine kinase (KIT) is constitutively activated by 2 types of naturally occurring mutations, the Val559-->Gly (G559) mutation in the juxtamembrane domain and the Asp814-->Val (V814) mutation in the catalytic domain. We evaluated the effects of the tyrosine kinase inhibitors STI571 and AG1296 on BaF3 cells expressing wild-type KIT (KIT(WT)) or activating mutants of KIT (KIT(G559) and KIT(V814)) in the presence or absence of the KIT ligand, stem cell factor (SCF). Both STI571 and AG1296 inhibited SCF-dependent activation of KIT(WT) and SCF-independent activation of KIT(G559) more efficiently, whereas SCF-independent activation of KIT(V814) was scarcely affected. Furthermore, both inhibitors inhibited SCF-dependent growth of BaF3-KIT(WT) cells and, with higher potencies, SCF-independent growth of BaF3-KIT(G559) cells through the induction of apoptosis. In contrast, the inhibitors had little or no effect on SCF-independent growth of BaF3-KIT(V814) cells or on IL-3-dependent growth of BaF3-Mock cells. These results suggested that both inhibitors may be effective therapeutic agents for oncogenic KIT with the juxtamembrane domain mutation, but not with the catalytic domain mutation, and that the activation mechanism of the catalytic domain mutant KIT is complex and entirely different from that of the wild-type KIT or the juxtamembrane domain mutant KIT.  相似文献   

6.
Chronic myelogenous leukemia (CML), a malignancy of a hematopoietic stem cell, is caused by the Bcr-Abl tyrosine kinase. STI571(formerly CGP 57148B), an Abl tyrosine kinase inhibitor, has specific in vitro antileukemic activity against Bcr-Abl-positive cells and is currently in Phase II clinical trials. As it is likely that resistance to a single agent would be observed, combinations of STI571 with other antileukemic agents have been evaluated for activity against Bcr-Abl-positive cell lines and in colony-forming assays in vitro. The specific antileukemic agents tested included several agents currently used for the treatment of CML: interferon-alpha (IFN), hydroxyurea (HU), daunorubicin (DNR), and cytosine arabinoside (Ara-C). In proliferation assays that use Bcr-Abl-expressing cells lines, the combination of STI571 with IFN, DNR, and Ara-C showed additive or synergistic effects, whereas the combination of STI571 and HU demonstrated antagonistic effects. However, in colony-forming assays that use CML patient samples, all combinations showed increased antiproliferative effects as compared with STI571 alone. These data indicate that combinations of STI571 with IFN, DNR, or Ara-C may be more useful than STI571 alone in the treatment of CML and suggest consideration of clinical trials of these combinations.  相似文献   

7.
Targeting the tyrosine kinase activity of Bcr-Abl with STI571 is an attractive therapeutic strategy in chronic myelogenous leukemia (CML). A few CML cell lines and primary progenitors are, however, resistant to this compound. We investigated the mechanism of this resistance in clones of the murine BaF/3 cells transfected with BCR-ABL and in 4 human cell lines from which sensitive (s) and resistant (r) clones were generated by various methods. Although the resistant cells were able to survive in the presence of STI571, their proliferation was approximately 30% lower than that of their sensitive counterparts in the absence of the compound. The concentration of STI571 needed for a 50% reduction in viable cells after a 3-day exposure was on average 10 times higher in the resistant (2-3 micromol/L) than in the sensitive (0.2-0.25 micromol/L) clones. The mechanism of resistance to STI571 varied among the cell lines. Thus, in Baf/BCR-ABL-r, LAMA84-r, and AR230-r, there was up-regulation of the Bcr-Abl protein associated with amplification of the BCR-ABL gene. In K562-r, there was no Bcr-Abl overexpression, but the IC(50) for the inhibition of Bcr-Abl autophosphorylation was increased in the resistant clones. Sequencing of the Abl kinase domain revealed no mutations. The multidrug resistance P-glycoprotein (Pgp) was overexpressed in LAMA84-r, indicating that at least 2 mechanisms of resistance operate in this cell line. KCL22-r showed neither Bcr-Abl up-regulation nor a higher threshold for tyrosine kinase inhibition by STI571. We conclude that BCR-ABL-positive cells can evade the inhibitory effect of STI571 by different mechanisms, such as Bcr-Abl overexpression, reduced intake mediated by Pgp, and, possibly, acquisition of compensatory mutations in genes other than BCR-ABL.  相似文献   

8.
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors. The molecular etiology is the result of mutations in the c-Kit gene. The mutant c-Kit proteins, which are activated without a stem cell factor, contribute to the tumor development. STI571 selectively inhibits c-Kit, BCR-ABL, and PDGFR tyrosine kinases. Based on this potential to inhibit critical c-Kit function in GISTs, case studies have reported effective outcomes following treatment with STI571. This case report describes a highly effective use of STI571 in a 54-year-old woman with multiple liver metastases from a GIST originating in the duodenum.  相似文献   

9.
Donato NJ  Wu JY  Stapley J  Gallick G  Lin H  Arlinghaus R  Talpaz M 《Blood》2003,101(2):690-698
Clinical studies have shown that the tyrosine kinase inhibitor STI571 effectively controls BCR-ABL-positive chronic myelogenous leukemia (CML). However, disease progression while on STI571 therapy has been reported, suggesting de novo or intrinsic resistance to BCR-ABL-targeted therapy. To investigate possible mediators of acquired STI571 resistance, K562 cells resistant to 5 microM STI571 (K562-R) were cloned and compared to the parental cell population. K562-R cells had reduced BCR-ABL expression and limited activation of BCR-ABL signaling cascades (Stat 5, CrkL, MAPK). STI571 failed to activate caspase cascades or to suppress expression of survival genes (bcl-xL) in resistant cells. Gene sequencing and tyrosine kinase activity measurements demonstrated that K562-R cells retained wild-type and active BCR-ABL tyrosine kinase that was inhibitable by in vitro incubation with STI571, suggesting that BCR-ABL was not coupled to proliferation or survival of K562-R cells. The src-related kinase LYN was highly overexpressed and activated in K562-R cells, and its inhibition reduced proliferation and survival of K562-R cells while having limited effects of K562 cells. Specimens taken from patients with advanced CML that progressed on STI571 therapy also were analyzed for LYN kinase expression, and they were found to be elevated to a level similar to that of K562-R cells. Comparison of samples from patients taken prior to and following STI571 failure suggested that expression and/or activation of LYN/HCK occurs during disease progression. Together, these results suggest that acquired STI571 resistance may be associated with BCR-ABL independence and mediated in part through overexpression of other tyrosine kinases.  相似文献   

10.
Kano Y  Akutsu M  Tsunoda S  Mano H  Sato Y  Honma Y  Furukawa Y 《Blood》2001,97(7):1999-2007
The BCR/ABL tyrosine kinase has been implicated in the pathogenesis of chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive (Ph(+)) acute lymphoblastic leukemia (ALL). STI571 is a novel anticancer agent that selectively inhibits the BCR/ABL tyrosine kinase. The cytotoxic effects of STI571 were studied in combination with antileukemic agents against Ph(+) leukemia cell lines, KU812, K-562, TCC-S, and TCC-Y. The cells were exposed to STI571 and to other agents simultaneously for 5 or 7 days. Cell growth inhibition was determined by MTT assay. The cytotoxic effects in combinations at the inhibitory concentration of 80% level were evaluated by the isobologram. STI571 produced synergistic effects with recombinant and natural alpha-interferons in 2 of 3 and 3 of 3 cell lines, respectively. STI571 produced additive effects with hydroxyurea, cytarabine, homoharringtonine, doxorubicin, and etoposide in all 4 cell lines. STI571 with 4-hydroperoxy-cyclophosphamide, methotrexate, or vincristine produced additive, antagonistic, and synergistic effects in 3 of 4 cell lines, respectively. These findings suggest that the simultaneous administration of STI571 with other agents except methotrexate would be advantageous for cytotoxic effects against Ph(+) leukemias. Among them, the simultaneous administration of STI571 and alpha-interferons or vincristine would be highly effective against Ph(+) leukemias and these combinations would be worthy of clinical trials. In contrast, the simultaneous administration of STI571 with methotrexate would have little therapeutic efficacy. Although there are gaps between in vitro studies and clinical trials, the present findings provide useful information for the establishment of clinical protocols involving STI571. (Blood. 2001;97:1999-2007)  相似文献   

11.
Receptor tyrosine kinases are known to be important in growth and differentiation. We have recently found that c-kit, the tyrosine kinase receptor for steel factor, also regulates cell-matrix adhesion. Because Steel factor helps regulate cell migration and localization, this may be an important biologic function. Integrin adhesiveness is regulated within minutes by c-kit. The signaling pathways for tyrosine kinase stimulation of integrin adhesiveness and their relation to pathways that regulate growth and differentiation over much longer time periods remain uncharacterized. We have studied the effector pathways by which receptor tyrosine kinases regulate cell-matrix adhesion using wild-type and mutant forms of the platelet-derived growth factor (PDGF) receptor, which is closely related to c-kit. The PDGF receptor expressed in mast cells is as potent as c-kit in stimulating adhesion to fibronectin. We show that induction of adhesion is regulated through two independent pathways of phosphatidylinositol 3 kinase (PI3K) and phospholipase C- gamma 1 (PLC gamma)-protein kinase C by elimination of autophosphorylation sites required for activation of PI3K and PLC gamma or in combination with downregulation of protein kinase C or wortmannin. By contrast, a receptor mutated in both the PI3K and PLC gamma association sites can still stimulate mast cell growth, indicating a crucial role of these effector molecules in regulating adhesion rather than cell growth.  相似文献   

12.
Human interleukin-9 (IL-9) was originally identified and cloned based on its stimulatory effect on proliferation of human myeloid cell line, M07e. IL-9 synergized with Steel factor, the ligand for the c-kit product, to stimulate M07e cell proliferation. To investigate potential mechanisms for this, IL-9 was assessed for effects on protein tyrosine kinase activities in M07e cells by immunoblotting with anti-phosphotyrosine monoclonal antibody; results were compared with those of Steel factor alone and in combination with IL-9, and those of 12-0-tetradecanoyl phorbol-13-acetate (TPA). Recombinant human IL-9 (10 ng/mL) rapidly and transiently induced or enhanced at least four tyrosine phosphorylated protein bands with molecular weights of 105, 97, 85, and 81 Kd. This tyrosine phosphorylation pattern was different from that generated by recombinant murine Steel factor or TPA stimulation and the combination of IL-9 and Steel factor did not change the IL-9-induced pattern. IL-9-induced tyrosine phosphorylated bands were completely blocked by treatment of IL-9 with anti-IL-9 antibody under conditions that also neutralized the synergistic effect of IL-9 with Steel factor on M07e cell proliferation. Genistein, a tyrosine kinase inhibitor, blocked phosphorylation of IL-9 and Steel factor-induced bands. Unlike Steel factor or TPA, IL-9 did not appear to stimulate phosphorylation of 42-Kd mitogen-activated protein (MAP) kinase or Raf-1, or enhance MAP kinase activity. MAP kinase and Raf-1 are serine/threonine kinases that are phosphorylated and activated by many growth factors and by agonists for protein kinase C. While the combination of IL-9 plus SLF did not appear to induce phosphorylation of new bands not already seen with either IL-9 or SLF alone, or enhance the phosphorylation of those bands seen with either cytokine alone, the results suggest that IL-9 activates specific and unique signal transduction pathways.  相似文献   

13.
N C Wolff  R L Ilaria 《Blood》2001,98(9):2808-2816
The murine bone marrow retroviral transduction and transplantation model of chronic myelogenous leukemia (CML) imperfectly mimics human CML because the murine CML-like disease causes death of all animals from an overwhelming granulocytosis within 3 to 4 weeks. In this report, mice reconstituted with P210(BCR/ABL)-transduced bone marrow cells received posttransplantation therapy with either the tyrosine kinase inhibitor STI571 or placebo. Compared with the rapidly fatal leukemia of placebo-treated animals, 80% of the STI571-treated mice were alive on day 74, with marked improvement in peripheral white blood counts and splenomegaly. There was decreased tyrosine phosphorylation of STAT5, Shc, and Crk-L in leukemic cells from STI571-treated animals, consistent with STI571-mediated inhibition of the Bcr/Abl tyrosine kinase in vivo. In some STI571-treated animals Bcr/Abl messenger RNA and protein expression were markedly increased. In contrast to the polyclonal leukemia of placebo-treated mice, STI571-treated murine CML was generally oligoclonal, suggesting that STI571 eliminated or severely suppressed certain leukemic clones. None of the STI571-treated mice were cured of the CML-like myeloproliferative disorder, however, and STI571-treated murine CML was transplanted to secondary recipients with high efficiency. These results demonstrate the utility of this murine model of CML in the evaluation of novel therapeutic agents against Bcr/Abl-induced leukemias. This improved murine chronic-phase CML model may be a useful tool for the study of STI571 resistance, CML progression, and the anti-CML immune response.  相似文献   

14.
OBJECTIVE: Angiogenesis, the process of new blood vessel formation, is a critical process during growth and metastasis of solid tumors and might also represent a promising therapeutical target in patients with acute myeloid leukemia (AML). METHODS: In this study, we analyzed the expression of vascular endothelial growth factor receptors (VEGFR)-1/2 and its ligand VEGF in AML cell lines and characterized the inhibitory activity of the protein tyrosine kinase (PTK) inhibitor SU5614 on human endothelial and leukemic cells. RESULTS: Intracellular VEGF expression was detected in 9 of 10 leukemic cell lines. In contrast, VEGFR-1 and VEGFR-2 expression was restricted to 6 and 2 out of 10 cell lines, respectively. Although SU5614 was a potent inhibitor of the VEGF-induced endothelial cell sprouting in vitro, the sensitivity of leukemic cells toward the growth inhibitory activity of the compound was determined by the c-kit, but not by the VEGFR-1/2 expression. SU5614 induced growth arrest and apoptosis in c-kit-expressing Kasumi-1, UT-7, and M-07e cells and inhibited the stem cell factor (SCF)-induced tyrosine phosphorylation of c-kit. The sensitivity of Kasumi-1 cells towards the growth inhibitory activity of SU5614 was caused by an autocrine production of SCF, but not by transforming mutations of c-kit. CONCLUSIONS: Our data provide strong evidence that SU5614 has a dual mode of action, and by direct inhibition of c-kit in AML cells and by inhibition of VEGFR-2 in endothelial cells, it might represent a novel treatment option for patients with c-kit+ AML.  相似文献   

15.
Alternative splicing of exon 6 results in the production of two isoforms of Steel factor (SLF): the membrane-bound and soluble forms. To investigate differences in the kinetics of c-kit tyrosine kinase activated by these two isoforms, we used a stromal cell line (SI/SI4) established from SI/SI homozygous murine embryo fetal liver and its stable transfectants containing either hSCF248 cDNA (including exon 6; secreted form) or hSCF220 cDNA (lacking exon 6; membrane-bound form) as the source of each isoform. Interaction of factor dependent myeloid cell line MO7e with stromal cells producing either isoform resulted in activated c-kit tyrosine kinase and induction of the same series of tyrosine phosphorylated cellular proteins in MO7e cells. However, SI4- h220 (membrane-bound form) induced more persistent activation of c-kit kinase than SI4-h248 (soluble form) did. Flow cytometric analysis and pulse-chase studies using [35S]methionine showed that SI4-h248 induced rapid downmodulation of cell-surface c-kit expression and its protein degradation in MO7e cells, whereas SI4-h220 induced more prolonged life span of c-kit protein. Addition of soluble recombinant human SLF to SI4- h220 cultures enhanced reduction of cell-surface c-kit expression and its protein degradation. Because the kinetics of c-kit inactivation strikingly fits with the protein degradation rates of c-kit under the conditions described above, rapid proteolysis of c-kit protein induced by soluble SLF stimulation may function as a "turn-off switch" for activated c-kit kinase.  相似文献   

16.
Anzai N  Lee Y  Youn BS  Fukuda S  Kim YJ  Mantel C  Akashi M  Broxmeyer HE 《Blood》2002,99(12):4413-4421
The transmembrane 4 superfamily (TM4SF) has come into prominence for its association with a wide range of cell surface molecules, especially integrins. We report that TM4SF molecules CD9, CD63, and CD81 are physically associated with c-kit receptor tyrosine kinase in the human factor-dependent myeloid cell line, MO7e. We characterized this complex using coimmunoprecipitation and colocalization methods. The c-kit coimmunoprecipitated with anti-TM4SF antibodies showed several distinct phenotypes compared to the total c-kit immunoprecipitated with anti-c-kit antibody. These included: (1) higher basal level of tyrosine phosphorylation without elevated kinase activity in the absence of Steel factor (SLF), (2) deficient enhancement of tyrosine phosphorylation and kinase activity in response to SLF, (3) elevated binding rate of SLF shown in chemical cross-linking studies, and (4) little internalization and degradation after SLF treatment. Cocapping studies in living cells showed that c-kit colocalized with TM4SF molecules after SLF stimulation, suggesting confirmation of the biochemical data obtained by the coimmunoprecipitation studies. Colocalization of c-kit with CD81 by SLF was also observed in cord blood CD34(+) cells, suggesting the existence of functional units of c-kit in TM4SF complexes in primary hematopoietic cells. This suggests that some TM4SF members may negatively modulate function of c-kit receptor tyrosine kinase and thus regulate receptor sensitivity to SLF in hematopoietic progenitors.  相似文献   

17.
The tyrosine kinase inhibitor STI571 is a promising agent for the treatment of advanced Philadelphia chromosome positive (Ph(+)) acute lymphoblastic leukemia (ALL), but resistance develops rapidly in most patients after an initial response. To identify mechanisms of resistance to STI571, 30 complementary DNAs (including 9 matched samples) obtained from the bone marrow of individuals with Ph(+) ALL were analyzed by direct sequencing of a 714-base pair region of ABL encoding for the adenosine triphosphate (ATP)-binding site and the kinase activation loop. A single point mutation was found at nucleotide 1127 (GI6382056) resulting in Glu255Lys. This mutation occurred in 6 of 9 patients (67%) following their treatment with STI571 but not in the samples from patients before beginning treatment with STI571. Glu255Lys is within the motif important for forming the pocket of the ATP-binding site in ABL and it is highly conserved across species. In conclusion, Ph(+) ALL samples resistant to STI571 have a unique mutation Glu255Lys of BCR-ABL.  相似文献   

18.
To establish a molecular targeting therapy for anaplastic thyroid carcinomas, we studied the effect of the specific tyrosine kinase inhibitor, STI571, on anaplastic thyroid cancer cell lines highly expressing c-ABL ARO (mutated p53) and FRO (undetectable p53). These lines showed marked inhibition of cell growth after treatment with STI571. In contrast, the growth of papillary thyroid cancer cell lines that harbor wild-type p53 and have low levels of c-ABL was not affected by STI571. Fluorescent-activated cell sorting analysis revealed that STI571 treatment increased the fraction of FRO and ARO cells in S and G(2)/M phases, respectively, indicating induction of S and G(2)/M transition arrest. These changes were accompanied by inhibition of c-ABL phosphorylation/activation and increased expression of p21(cip1) in FRO and p27(kip1) in both FRO and ARO cells. Treatment with STI571 also led to reduction of cyclin A, B1, and CDC2 levels. The growth of FRO cells implanted into immunocompromised mice was significantly inhibited by STI571. Taken together, these results suggest that selective suppression of c-ABL activity by STI571 may represent a potential anticancer strategy for p53-mutated undifferentiated thyroid carcinomas.  相似文献   

19.
Based on its ability to inhibit the tyrosine kinase activity of ABL, as well as the c-kit and the Platelet Derived Growth Factor Receptor tyrosine kinases, the spectrum of diseases that may respond to STI571 is increasing. A recently recognized subgroup of myeloproliferative disorders/myelodysplastic syndromes (MPD/MDS) has a t(5;12)(q33;p13) with the activation of the gene for PDGFBR which encodes a receptor tyrosine kinase. Here, we present the case of a patient, with MPD/MDS, and eosinophilia, carrying a translocation t(5;12)(q33;p13) who achieved a complete remission following treatment with STI571, 400 mg daily. At the time of writing he still remains in complete remission with an excellent performance status. There is clearly a need for further studies of STI 571in MPD/MDS with chromosomal translocations involving PDGFBR to confirm this promising initial result.  相似文献   

20.
MAP (mitogen-activated protein) kinase (also called Erk 1/2) plays a crucial role in cell proliferation and differentiation. Its impact on secretory events is less well established. The interplay of protein kinase C (PKC), PI3-kinase and cellular tyrosine kinase with MAP kinase activity using inhibitors and compounds such as glucose, phorbol 12-myristate 13-acetate (PMA) and agonists of G-protein coupled receptors like gastrin releasing peptide (GRP), oxytocin (OT) and glucose-dependent insulinotropic peptide (GIP) was investigated in INS-1 cells, an insulin secreting cell line. MAP kinase activity was determined by using a peptide derived from the EGF receptor as a MAP kinase substrate and [32P]ATP. Glucose as well as GRP, OT and GIP exhibited a time-dependent increase in MAP kinase activity with a maximum at time point 2.5 min. All further experiments were performed using 2.5 min incubations. The flavone PD 098059 is known to bind to the inactive forms of MEK1 (MAPK/ERK-Kinase) thus preventing activation by upstream activators. 20 microM PD 098059 (IC50 = 5 microM) inhibited MAP kinase stimulated by either glucose, GRP, OT, GIP or PMA. Inhibiton ("downregulation") of PKC by a long term (22 h) pretreatment with 1 microM PMA did not influence MAP kinase activity when augmented by either of the above mentioned compound. To investigate whether PI3-kinase and cellular tyrosine kinase are involved in G-protein mediated effects on MAP kinase, inhibitors were used: 100 nM wortmannin (PI3-kinase inhibitor) reduced the effects of GRP, OT and GIP but not that of PMA; 100 microM genistein (tyrosine kinase inhibitor) inhibited the stimulatory effect of either above mentioned compound on MAP kinase activation. Inhibition of MAP kinase by 20 microM PD 098059 did not influence insulin secretion modulated by either compound (glucose, GRP, OT or GIP). [3H]Thymidine incorporation, however, was severely inhibited by PD 098059. Thus MAP kinase is important for INS-1 cell proliferation but not for its insulin secretory response with respect to major initiators and modulators of insulin release. The data indicate that MAP kinase is active and under the control of MAP kinase. PKC is upstream of a genistein-sensitive tyrosine kinase and probably downstream of a PI3-kinase in INS-1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号