首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The linker for activation of T cells (LAT) is an adaptor protein critical for Fc epsilon RI-mediated mast cell activation. LAT is a substrate of the tyrosine kinases activated after TCR and Fc epsilon RI engagement. After phosphorylation of the cytosolic domain of LAT, multiple signaling molecules such as phospholipase C-gamma1, Grb2, and Gads associate with phosphorylated LAT via their SH2 domains. The essential role of the four distal tyrosines in TCR-mediated signaling and T cell development has been demonstrated by experiments using LAT-deficient cell lines and genetically modified mice. To investigate the role of these four tyrosines of LAT in Fc epsilon RI-mediated mast cell activation, bone marrow-derived mast cells from LAT-deficient mice were infected with retroviral vectors designed to express wild-type or mutant LAT. Examination of bone marrow-derived mast cells expressing various tyrosine to phenylalanine mutants in LAT demonstrates a differential requirement for these different binding sites. In these studies, assays of biochemical pathways, degranulation, and cytokine and chemokine release were performed. Finally, the role of these tyrosines was also evaluated in vivo using genetically modified animals. Deletion of all four distal tyrosines, and in particular, loss of the primary phospholipase C-gamma-binding tyrosine had a significant effect on antigen-induced histamine release.  相似文献   

2.
3.
Individuals with systemic autoantibody-mediated diseases such as lupus have polyclonal T and B cell activation. Yet, autoantibody production is restricted to certain autoantigens. The mechanisms underlying this phenomenon remain unclear. We propose three potential mechanisms by which autoreactive helper T cell responses diversify to become polyclonal, yet are restricted to certain antigens. First, using a model where self-Ig peptides spontaneously activate T cells and modulate disease in lupus mice, we demonstrate that the numbers of autoantibody-augmenting T helper peptides increased across the Ig molecule as mice aged ("intramolecular determinant spreading"). Secondly, a single T cell hybridoma established from a (NZB x NZW)F1 mouse immunized with one self-Ig peptide recognized several Ig-derived determinants, which had little sequence homology with the immunizing peptide. Such determinant degeneracy can lead to polyclonality. To explore a mechanism for restriction to certain autoantigens, a protein database search was done for homologies with sequences of selected stimulatory Ig peptides. Identical sequences of such determinants were not found in murine proteins other than Ig. These occurred infrequently in nonautoantibody Ig, but quite commonly in lupus-related autoantibodies such as antibodies to DNA, cardiolipin, and erythrocytes. Thus, determinant spreading and degenerate recognition in T cells coupled with recurring use of T cell determinant sequences among autoantibodies result in polyclonality that is restricted to certain autoantigens.  相似文献   

4.
Two hematopoietic-specific adapters, src homology 2 domain-containing leukocyte phosphoprotein of 76 kD (SLP-76) and linker for activation of T cells (LAT), are critical for T cell development and T cell receptor (TCR) signaling. Several studies have suggested that SLP-76 and LAT function coordinately to promote downstream signaling. In support of this hypothesis, we find that a fraction of SLP-76 localizes to glycolipid-enriched membrane microdomains (GEMs) after TCR stimulation. This recruitment of SLP-76 requires amino acids 224-244. The functional consequences of targeting SLP-76 to GEMs for TCR signaling are demonstrated using a LAT/SLP-76 chimeric protein. Expression of this construct reconstitutes TCR-inducted phospholipase Cgamma1 phosphorylation, extracellular signal-regulated kinase activation, and nuclear factor of activated T cells (NFAT) promoter activity in LAT-deficient Jurkat T cells (J.CaM2). Mutation of the chimeric construct precluding its recruitment to GEMs diminishes but does not eliminate its ability to support TCR signaling. Expression of a chimera that lacks SLP-76 amino acids 224-244 restores NFAT promoter activity, suggesting that if localized, SLP-76 does not require an association with Gads to promote T cell activation. In contrast, mutation of the protein tyrosine kinase phosphorylation sites of SLP-76 in the context of the LAT/SLP-76 chimera abolishes reconstitution of TCR function. Collectively, these experiments show that optimal TCR signaling relies on the compartmentalization of SLP-76 and that one critical function of LAT is to bring SLP-76 and its associated proteins to the membrane.  相似文献   

5.
Mouse bone marrow cells were fractionated by BSA discontinuous density gradient centrifugation, and a small lymphocyte rich fraction was obtained at the high density. Cells of this fraction were shown to respond in vitro to T cell mitogens and alloantigens. Furthermore, they were able to mount a graft-versus-host reaction when assessed by spleen weight assay and by the method of inhibiting erythroid cell growth by allogeneic lymphoid cells. The results indicate that these lymphocytes possess T cell functions. On the other hand they were found to carry only little theta antigen assessed by the cytotoxic test and by the absorption test. It is presumed, therefore, that the amount of theta antigen on a cell might not correlate with T cell functions, and these lymphocytes might be mature ones in the course of postthymic maturation. Hemopoietic stem cells were determined by spleen colony formation and the peak of colony-forming efficiency was seen at the low density. These observations imply that immunocompetent cells causing GVHR can be separated from hemopoietic stem cells. This procedure may be applied for prevention and reduction of GVHR in allogeneic bone marrow transplantation in human.  相似文献   

6.
The immune and inflammatory responses are largely inhibited by glucocorticosteroids. In thymocytes, for example, glucocorticosteroids cause apoptosis, whereas they suppress the activity of phospholipase A2 and the production of eicosanoids in tissues actively engaged in inflammation. The immunosuppressive action of dexamethasone (DEX) was studied in vitro by employing a model cell system, namely the murine Th2 clone D10.G4.1 (D10) and its clonotypic anti-T cell receptor (TCR) mAb 3D3. Although the proliferative response of D10 cells to 3D3 stimulation was not affected by DEX, the costimulation provided by IL-1 was dramatically inhibited. Substitution of 3D3 by exogenous IL-4 (as the IL-1 costimulant) failed to prevent the inhibition of proliferation caused by DEX. Yet, when 3D3-mediated stimulation of TCR was supplemented with IL-2, D10 cells were capable of proliferating, even in the presence of DEX. Thus, TCR stimulation on D10 cells remained intact and their resulting propagation was not compromised by DEX treatment. These results provide evidence that immunosuppression caused by DEX is TCR independent and involves an early cytokine-signalling event.  相似文献   

7.
SAMP1/YitFc mice develop discontinuous, transmural inflammatory lesions in the terminal ileum, similar to what is found in human Crohn disease. Compared with the mesenteric lymph nodes (MLNs) of AKR control mice, SAMP1/YitFc MLNs contain a 4.3-fold expansion in total B cell number and a 2.5-fold increased percentage of CD4(+) T cells expressing the alpha(E)beta(7) integrin. Although alpha(E)beta(7)(+)CD4(+) T cells possess a regulatory phenotype (CD25(+), L-selectin(lo), and CD45RB(lo)), express IL-10, and suppress effector T cell proliferation in vitro, they cannot prevent ileitis development in SCID mice adoptively transferred with effector CD4(+) T cells, although the CD4(+)CD25(+) subset, which overlaps with the alpha(E)beta(7)(+)CD4(+) subset, prevents colitis. The alpha(E)beta(7)(+)CD4(+) T cells express high levels of ICOS, a costimulatory molecule that augments B cell function, suggesting their involvement in the increase in B cells, IgA(+) cells, and soluble IgA found within the MLNs and ileum of SAMP1/YitFc mice. MLN B cell numbers correlate with ileitis severity in SAMP1/YitFc mice, and cotransfer of SAMP1/YitFc MLN B cells along with CD4(+) T cells increases ileitis severity in SCID mice compared with transfer of CD4(+) T cells alone. SAMP1/YitFc B cells prevent alpha(E)beta(7)(+)CD4(+) T cells from suppressing effector T cell proliferation. We conclude that SAMP1/YitFc MLN B cells contribute to the development of SAMP1/YitFc ileitis.  相似文献   

8.
After stimulation of the T cell receptor (TCR), the tyrosine residues 292 and 315 in interdomain B of the protein tyrosine kinase ZAP-70 become phosphorylated and plausibly function as docking sites for Cbl and Vav1, respectively. The two latter proteins have been suggested to serve as substrates for ZAP-70 and to fine-tune its function. To address the role of these residues in T cell development and in the function of primary T cells, we have generated mice that express ZAP-70 molecules with Tyr to Phe substitution at position 292 (Y292F) or 315 (Y315F). When analyzed in a sensitized TCR transgenic background, the ZAP-70 Y315F mutation reduced the rate of positive selection and delayed the occurrence of negative selection. Furthermore, this mutation unexpectedly affected the constitutive levels of the CD3-zeta p21 phosphoisoform. Conversely, the ZAP-70 Y292F mutation upregulated proximal events in TCR signaling and allowed more T cells to produce interleukin 2 and interferon gamma in response to a given dose of antigen. The observation that ZAP-70 Y292F T cells have a slower rate of ligand-induced TCR downmodulation suggests that Y292 is likely involved in regulating the duration activated TCR reside at the cell surface. Furthermore, we showed that Y292 and Y315 are dispensable for the TCR-induced tyrosine phosphorylation of Cbl and Vav1, respectively. Therefore, other molecules present in the TCR signaling cassette act as additional adaptors for Cbl and Vav1. The present in vivo analyses extend previous data based on transformed T cell lines and suggest that residue Y292 plays a role in attenuation of TCR signaling, whereas residue Y315 enhances ZAP-70 function.  相似文献   

9.
A new mAb G38 was generated against purified EA 1, an early activation antigen. In immunoprecipitation, it was reactive with the same complex precipitated by the initial anti-EA 1 mAb P8. mAb G38 augmented PMA-induced proliferation of PBMC. It was shown to be mitogenic for purified T cells in collaboration with PMA in a dose-dependent manner. This effect was independent of monocytes and other accessory cells. mAb G38 augmented PMA-induced IL-2-R expression. In conjunction with PMA, it induced IL-2 synthesis and secretion. Its effects on IL-2-R and IL-2 expression were documented at both protein and mRNA levels. Both anti-EA 1 mAbs did not induce Ca2+ influx by themselves in PMA-treated T cells. However, the addition of second anti-mouse Ig antibodies induced readily detectable increases in [Ca2+]i. Ca2+-mediated pathways may be utilized as the transduction signal mechanisms. mAb Leu-23 was shown to be reactive with EA 1. mAb Leu-23 was also mitogenic for T cells in the presence of PMA. These findings provide evidence for a functional role for EA 1 in T cell activation and proliferation.  相似文献   

10.
The present studies were carried out to characterize the cellular interactions involved in the activation and function of the antigen-specific and antigen-nonspecific T suppressor (Ts) cells that regulate the IgG responses of Lyb-5-B cells. The in vitro activation of both Lyt-1+2- antigen-nonspecific Ts cells and Lyt-1-2+ antigen-specific Ts cells was shown to require the interaction of accessory cells and antigen-primed T cells. It was further demonstrated that this interaction was major histocompatibility complex (MHC)-restricted in that T cell recognition of I-A-encoded determinants on accessory cells was required for Ts cell activation. The activation of antigen-primed (A X B)F1 T cells with antigen in the presence of parentA or parentB accessory cells resulted, respectively, in the generation of parentA-restricted or parentB-restricted Ts cells. ParentA-restricted F1 Ts cells suppressed the responses generated by (A X B)F1 T helper (Th) cells cooperating with parentA (B + accessory) cells but did not suppress responses by the same (A X B)F1 Th cell population cooperating with parentB (B + accessory) cells. Neither parentA-restricted Ts cells alone nor parentB-restricted Ts cells alone suppressed the responses of (A X B)F1 (B + accessory) cells, whereas a mixture of these two Ts cell populations was able to significantly suppress the responses of F1 (B + accessory) cells. In contrast, responses of (A X B)F1 leads to parentA Th cells (restricted to recognizing parentA but not parentB MHC determinants on F1 cells) and (A X B)F1 (B + accessory) cells was suppressed by parentA-restricted Ts cells but not by parentB-restricted Ts cells. Collectively these findings suggest that the Ts cell populations characterized here do not function by directly inhibiting the activity of Th cells, B cells or accessory cells of a given MHC genotype, but rather that they appear to function through a unique mechanism involving highly specific inhibition of the interaction between MHC-restricted Th cells and the (B + accessory) cells required for these responses.  相似文献   

11.
The present studies have been carried out to characterize the regulatory influences acting upon defined pathways of T cell-dependent B cell activation. In these studies, it was demonstrated that high concentrations of free carrier strongly inhibited the MHC-restricted in vitro T cell-dependent antibody responses of primed Lyb-5- B cells to the corresponding carrier-hapten conjugate. In contrast, these same concentrations of free carrier failed to inhibit the T cell dependent responses of Lyb-5+ B cells to the same antigen. The inhibition of Lyb-5- B cell responses by free carrier was shown to result from active suppression mediated by carrier-specific primed Lyt-1+2- T cells and to require the additional participation of unprimed Lyt-1-2+ T cells. The activation of this suppression was antigen-specific, but suppression once activated was antigen nonspecific in its effect. These findings thus demonstrate that distinct pathways of B cell activation can be independently regulated by T suppressor network influences, and that these pathways therefore constitute potentially independent components of the immune response to a given antigenic stimulus.  相似文献   

12.
Adaptor proteins positively or negatively regulate the T cell receptor for antigen (TCR) signaling cascade. We report that after TCR stimulation, the inhibitory adaptor downstream of kinase (Dok)-2 and its homologue Dok-1 are involved in a multimolecular complex including the lipid phosphatase Src homology 2 domain-containing inositol polyphosphate 5'-phosphatase (SHIP)-1 and Grb-2 which interacts with the membrane signaling scaffold linker for activation of T cells (LAT). Knockdown of LAT and SHIP-1 expression indicated that SHIP-1 favored recruitment of Dok-2 to LAT. Knockdown of Dok-2 and Dok-1 revealed their negative control on Akt and, unexpectedly, on Zap-70 activation. Our findings support the view that Dok-1 and -2 are critical elements of a LAT-dependent negative feedback loop that attenuates early TCR signal. Dok-1 and -2 may therefore exert a critical role in shaping the immune response and as gatekeepers for T cell tolerance.  相似文献   

13.
CD27 is a lymphocyte-specific member of the TNF receptor family and has a TNF-related transmembrane ligand, CD70. The CD27/CD70 receptor-ligand pair cooperates with the TCR in the regulation of the peripheral T cell response. The study presented here reveals that CD27 may play a similar role in thymic pre-T cell development. We have previously cloned the cDNA encoding murine CD27, prepared specific mAbs and observed that murine CD27 is expressed on virtually all thymocytes, with the exception of a subpopulation of CD4-8- precursor T cells. It is shown here that induction of murine CD27 expression occurs at the transition from the CD4-8-25+ to the CD4-8-25- precursor T cell stage and is regulated by the pre-TCR. Therefore, we investigated whether CD27 contributes to pre-TCR-mediated thymocyte development. Pre-TCR function was mimicked by the induction of CD3 signaling in thymocytes of recombination activating gene (RAG)-deficient mice. This in vivo anti- CD3 epsilon mAb treatment induces an about fifty fold numerical expansion of CD4-8-25+ thymocytes and their differentiation to the CD4+8+25- stage. Co-injection of anti-CD27 mAb inhibited the CD3- mediated expansion and differentiation of the CD4-8-25+ precursor population. Also, injection of anti-CD27 mAb in TCR alpha-/- mutant mice led to a reduction in the absolute number of CD4+8+25- thymocytes. We present evidence that in these in vivo systems, anti-CD27 mAb inhibits CD27-ligand interaction. Therefore, we conclude that CD27 may contribute to normal murine T cell development by synergizing with the pre-TCR-mediated signal.  相似文献   

14.
Immunization of C3H/HeJ mice with 4 X 10(9) SRBC yields a whole splenic T-cell population which can, upon transfer, specifically suppress recipient direct and indirect plaque-forming cells (PFC) responses to sheep erythrocytes (SRBC). Discontinuous bovine serum albumin density gradient fractionation of these T cells demonstrated a population of low density T cells which augmented and a population of high density T cells which suppressed recipient responses irrespective of the number of T cells transferred. Moreover, infusion of admixtures of low and high density cells resulted in intermediate regulatory functions which could be predicted by knowing the regulatory capacity of each population alone. In addition to heterogeneity existing among regulatory T cells as regards amplification and suppression, it appeared that heterogeneity existed within the suppressor T population. Thus, T cells capable of inhibiting direct PFC could be distinguished from those suppressing indirect PFC by their differential localization in peripheral lymphoid tissue, differences in the dissipation of suppressive influences during incubation at 37 degrees C, and by differences in the possible requirement for adherent cell populations. While the relative frequency of both low density amplifier and high density suppressor cells increased with the dose of SRBC used for their induction, it appeared that suppressor cells might be generated in response to feedback signals from amplifier cells. These studies indicate that further delineation of heterogeneity existing within suppressor populations may be helpful in defining mechanisms required for the induction and manifestation of suppressive regulatory forces.  相似文献   

15.
Previous studies have shown the existence of both heterogeneous Lyt-1-,2+ suppressor (Ts) cells and cloned Lyt-1+,2- Ts cells which, despite the difference in their Lyt phenotypes, functioned in a similar antigen-specific and major histocompatibility complex (MHC)-restricted fashion to suppress the antibody responses generated by cloned helper T (Th) cells and hapten-primed B cells. Our studies were carried out to assess in further detail the genetically restricted cell interactions that mediate this immune response suppression. We show that the activation of both heterogeneous and cloned Ts cells is antigen-specific and MHC-restricted under our experimental conditions. After appropriate activation, the effector function of both cloned Lyt-1+,2-Ts cells and heterogeneous Lyt-1-,2+ Ts cells was also antigen-specific. In contrast, once activated, Ts cells suppressed the responses generated by cloned Th cells and hapten-primed B cells in an MHC-unrestricted fashion. We also showed, however, that a population of unprimed Lyt-1+,2-T cells was able to significantly alter the genetic restriction requirements for Ts cell function. The activity of this population was itself MHC-restricted, and was observed only when the unprimed Lyt-1+,2-T cells shared the MHC restriction specificity of the cloned Th cells functioning in a given response. When these requirements were satisfied, Lyt-1+,2- T cells significantly modified the suppression mediated by both heterogeneous and cloned Ts cells, resulting in suppression that was then MHC restricted in its effector function as well as in its activation requirements. Thus, our findings suggest that the observed MHC restriction in Ts function is the result of a complex interaction involving Ts cells, Th cells, and an additional population of MHC-restricted Lyt-1+,2- T cells. This newly characterized activity of Lyt-1+,2- T cells functionally resembles that of an MHC-restricted contrasuppressor population that selectively blocks a pathway of MHC-unrestricted Ts activity, while leaving intact susceptibility to MHC-restricted Ts effects.  相似文献   

16.
Restoring T cell competence is a significant clinical challenge in patients whosethymic function is severely compromised due to age or cytoreductive conditioning.Here, we demonstrate in mice that mesenteric LNs (MLNs) support extrathymic T celldevelopment in euthymic and athymic recipients of bone marrow transplantation (BMT).Furthermore, in aged murine BMT recipients, the contribution of the MLNs to thegeneration of T cells was maintained, while the contribution of the thymus wassignificantly impaired. Thymic impairment resulted in a proportional increase inextrathymic-derived T cell progenitors. Extrathymic development in athymic recipientsgenerated conventional naive TCRαβ T cells with a broadVβ repertoire and intact functional and proliferative potential.Moreover, in the absence of a functional thymus, immunity against known pathogenscould be augmented using engineered precursor T cells with viral specificity. Thesefindings demonstrate the potential of extrathymic T cell development for T cellreconstitution in patients with limited thymic function.  相似文献   

17.
The T cell receptor for antigen (TCR) complex is organized into two functional domains: the antigen-binding clonotypic heterodimer and the signal-transducing invariant CD3 and TCRzeta chains. In most vertebrates, there are two different clonotypic heterodimers (TCRalphabeta and TCRgammadelta) that define the alphabeta and gammadelta T cell lineages, respectively. alphabeta- and gammadeltaTCRs also differ in their invariant chain subunit composition, in that alphabetaTCRs contain CD3gammaepsilon and CD3deltaepsilon dimers, whereas gammadeltaTCRs contain only CD3gammaepsilon dimers. This difference in subunit composition of the alphabeta- and gammadeltaTCRs raises the question of whether the stoichiometries of these receptor complexes are different. As the stoichiometry of the murine gammadeltaTCR has not been previously investigated, we used two quantitative immunofluorescent approaches to determine the valency of TCRgammadelta heterodimers and CD3gammaepsilon dimers in surface murine gammadeltaTCR complexes. Our results support a model of murine gammadeltaTCR stoichiometry in which there are two CD3gammaepsilon dimers for every TCRgammadelta heterodimer.  相似文献   

18.
Utilizing somatic cell hybridization, we have developed a monoclonal antibody that interacts only with cells of the monocyte/macrophage (M phi) line and not with other myeloid or lymphoid cells. This antibody detects a 120,000-dalton determinant present on 37 +/- 2.8% of the peripheral blood M phi from several (HLA-DR)-disparate individuals and only depicts a subpopulation (approximately 30%) of HLA-DR-bearing M phi from any single subject. Cytolytic removal of this subpopulation of HLA-DR-bearing cells markedly diminished antigen-induced T cell reactivity, a deficiency that can be reconstituted with autologous M phi but not with either their soluble products containing lymphocyte- activating factor or with intact HLA-DR-disparate M phi. Whereas M phi bearing both the 120,000-dalton determinant and HLA-DR serve as effective stimulators for autologous mixed lymphocyte reactions. M phi bearing only HLA-DR determinants do not. However, this latter population of M phi can stimulate proliferation among alloreactive T cells. These studies indicate that the Mac-120 monoclonal antibody detects a subpopulation of HLA-DR-bearing M phi that is required for the genetically restricted presentation of conventional antigen to reactive T cells. Within the M phi population, these Mac-120+ cells constitute the most effective stimulators for autologous mixed lymphocyte reactions.  相似文献   

19.
T cells may be activated either by the antigen-specific T cell receptor (TCR)-CD3 complex or the cell surface receptor CD2. A natural ligand for CD2 has been found to be lymphocyte function-associated antigen 3 (LFA-3), a widely distributed cell surface glycoprotein. To investigate the interaction of these two pathways, we have expressed the cDNA encoding the human CD2 molecule in a murine T cell hybridoma that produces IL-2 in response to HLA-DR antigens. Expression of the CD2 molecule markedly enhances IL-2 production in response to LFA-3+ antigen-bearing stimulator cells, and this stimulation is inhibited by anti-CD2 and anti-LFA-3 mAb. To further define the role of LFA-3 in antigen-dependent T cell activation, we have studied the ability of the purified ligands of CD2 and the TCR to stimulate the hybridoma. Neither liposomes containing purified HLA-DR antigens nor liposomes containing purified LFA-3 were able to stimulate the parent or the CD2+ hybridoma. However, liposomes containing both purified LFA-3 and HLA-DR, the physiological ligands for CD2 and the TCR, respectively, stimulate IL-2 production by the CD2+ but not the parent hybridoma, suggesting that complementary interactions between the TCR-CD3 complex and the CD2 pathway may regulate lymphocyte activation. To determine whether the CD2/LFA-3 interaction participates in cell-cell adhesion and provides an activation signal, we have constructed a cytoplasmic deletion mutant of CD2, CD2 delta B, in which the COOH-terminal 100 amino acids of CD2 have been replaced with a serine. Hybridomas expressing the CD2 delta B molecule were examined. Deletion of the cytoplasmic domain of CD2 did not alter binding of LFA-3 but eliminated the ability of CD2 to increase the response of the hybridoma to liposomes containing both HLA-DR and LFA-3, demonstrating that adhesion of LFA-3 to CD2 alone was insufficient for activation, and that the cytoplasmic domain was required for LFA-3 stimulation through the CD2 molecule. T cells may be activated by purified LFA-3 binding to CD2 and the TCR interacting with its ligand, and these signals appear to be synergistic for the T cell. These results suggest that the CD2/LFA-3 interaction not only plays a role in cell-cell adhesion but provides a stimulatory signal for T cell activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号