首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Introduction: Few in vivo studies have demonstrated whether Toll‐like receptor 4 (TLR4) is indispensable for lipopolysaccharide (LPS)‐induced bone resorption and little is known about the receptor activator of nuclear factor‐κB ligand (RANKL) and osteoprotegerin (OPG) expression induced by LPS under conditions of lack of TLR4. Methods: We compared bone resorption histomorphometrically in C3H/HeN and C3H/HeJ mice that were repeatedly injected with Actinobacillus actionmycetemcomitans LPS into their gingiva every 48 h. RANKL‐, interleukin‐1β‐ and OPG‐positive cells in the connective tissue were also compared immunohistochemically. Results: Bone resorption in C3H/HeJ mice in the fourth, seventh, and tenth injection groups was significantly less than that C3H/HeN mice (P < 0.05). The number of RANKL‐positive cells in C3H/HeJ mice in the 10th injection group was significantly smaller than that in C3H/HeN mice (P < 0.05). The numbers of interleukin‐1β‐positive cells in C3H/HeJ mice in the seventh and tenth injection groups were significantly decreased compared with those in C3H/HeN mice (P < 0.05). The numbers of OPG‐positive cells in C3H/HeN and C3H/HeJ mice gradually increased, but there was no significant difference between the two strains of mice. Conclusion: TLR4 is indispensable for LPS‐induced bone resorption in vivo.  相似文献   

8.
Background: Recent studies have shown that the 15‐member macrolide antibiotic azithromycin (AZM) not only has antibacterial activity, but also results in the role of immunomodulator. Interleukin (IL)‐8 is an important inflammatory mediator in periodontal disease. However, there have been no reports on the effects of AZM on IL‐8 production from human oral epithelium. Therefore, we investigated the effects of AZM on IL‐8 production in an oral epithelial cell line. Methods: KB cells were stimulated by Escherichia coli or Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) lipopolysaccharide (LPS) with or without AZM. IL‐8 mRNA and protein expression and production in response to LPS were analyzed by quantitative polymerase chain reaction, flow cytometry, and enzyme‐linked immunosorbent assay. The activation of nuclear factor‐kappa B (NF‐κB) and Rac1, which is important for IL‐8 expression, was analyzed by enzyme‐linked immunosorbent assay and Western blotting, respectively. Results: IL‐8 mRNA expression, IL‐8 production, and NF‐κB activation in LPS‐stimulated KB cells were inhibited by the addition of AZM. LPS‐induced Rac1 activation was also suppressed by AZM. Conclusions: This study suggests that AZM inhibits LPS‐induced IL‐8 production in an oral epithelial cell line, in part caused by the suppression of Rac1 and NF‐κB activation. The use of AZM might provide possible benefits in periodontal therapy, with respect to both its antibacterial action and apparent anti‐inflammatory effect.  相似文献   

9.
10.
Sasaki H, Suzuki N, AlShwaimi E, Xu Y, Battaglino R, Morse L, Stashenko P. 18β‐Glycyrrhetinic acid inhibits periodontitis via glucocorticoid‐independent nuclear factor‐κB inactivation in interleukin‐10‐deficient mice. J Periodont Res 2010; 45: 757–763. © 2010 John Wiley & Sons A/S Background and Objective: 18β‐Glycyrrhetinic acid (GA) is a natural anti‐inflammatory compound derived from licorice root extract (Glycyrrhiza glabra). The effect of GA on experimental periodontitis and its mechanism of action were determined in the present study. Material and Methods: Periodontitis was induced by oral infection with Porphyromonas gingivalis W83 in interleukin‐10‐deficient mice. The effect of GA, which was delivered by subcutaneous injections in either prophylactic or therapeutic regimens, on alveolar bone loss and gingival gene expressions was determined on day 42 after initial infection. The effect of GA on lipopolysaccharide (LPS)‐stimulated macrophages, T cell proliferation and osteoclastogenesis was also examined in vitro. Results: 18β‐Glycyrrhetinic acid administered either prophylactically or therapeutically resulted in a dramatic reduction of infection‐induced bone loss in interleukin‐10‐deficient mice, which are highly disease susceptible. Although GA has been reported to exert its anti‐inflammatory activity via downregulation of 11β‐hydroxysteroid dehydrogenase‐2 (HSD2), which converts active glucocorticoids to their inactive forms, GA did not reduce HSD2 gene expression in gingival tissue. Rather, in glucocorticoid‐free conditions, GA potently inhibited LPS‐stimulated proinflammatory cytokine production and RANKL‐stimulated osteoclastogenesis, both of which are dependent on nuclear factor‐κB. Furthermore, GA suppressed LPS‐ and RANKL‐stimulated phosphorylation of nuclear factor‐κB p105 in vitro. Conclusion: These findings indicate that GA inhibits periodontitis by inactivation of nuclear factor‐κB in an interleukin‐10‐ and glucocorticoid‐independent fashion.  相似文献   

11.
During periodontitis, alveolar bone resorption is associated with activation of T helper type 17 (Th17) lymphocytes and receptor activator of nuclear factor‐κB ligand (RANKL) ‐induced osteoclasts. We previously reported that serotype b of Aggregatibacter actinomycetemcomitans has a higher capacity to trigger Th17‐type differentiation and function in activated T lymphocytes and its lipopolysaccharide is a more potent immunogen compared with the other serotypes. This study aimed to investigate whether serotype b of A. actinomycetemcomitans induces higher Th17‐associated RANKL production, RANKL‐induced osteoclast activation, and antigen‐specific memory T lymphocyte proliferation. On naive CD4+ T lymphocytes stimulated with autologous dendritic cells primed with different A. actinomycetemcomitans serotypes, RANKL production, T‐bet, GATA‐3, RORC2 and Foxp3 expression, RORC2/RANKL intracellular double‐expression, TRAP+ osteoclast activation, and bone resorption were quantified. The frequency of proliferating memory T lymphocytes in response to A. actinomycetemcomitans serotypes was determined in periodontitis and healthy subjects. Naive CD4+ T lymphocytes stimulated by serotype b‐primed dendritic cells elicited higher levels of RANKL, RORC2, TRAP+ osteoclasts, and bone resorption than the same cells stimulated with the other serotypes. RANKL positively correlated and co‐expressed with RORC2. Memory T lymphocytes responding to serotype b were more frequently detected in periodontitis patients than healthy subjects. These results indicate that serotype b of A. actinomycetemcomitans is associated with higher production of RANKL and these increased levels are associated with Th17 lymphocyte induction, osteoclast activation, and bone resorption.  相似文献   

12.
J Oral Pathol Med (2010) 39 : 592–598 Background: Ameloblastoma, a common odontogenic tumor located in jaws, generally leads to severe damage to patient’s complexion and masticatory function. To expand in jaws, ameloblastoma must have a mechanism of resorbing the surrounding bone. Our objective was to explore the bone‐resorption mechanism of ameloblastoma by observing the role of Receptor activator of nuclear factor kappa B ligand (RANKL) and matrix metalloproteinase‐9 (MMP‐9) in the bone‐resorption process. Methods: In the study, the expression of RANKL and MMP‐9 in ameloblastoma was detected using immunohistochemistry (IHC) and RT‐PCR. Then, co‐culture system of ameloblastoma cells and bone marrow cells from neonatal rabbit was erected to observe the potential of ameloblastoma cells to induce osteoclastogenesis. Finally, the induced osteoclasts were used for in vitro bone‐resorption assay. In the co‐culture system and the bone‐resorption assay, the selective inhibitor of RANKL and MMP‐9, osteoprotegerin (OPG) and tissue inhibitor of metalloproteinase‐1 (TIMP‐1) were, respectively, used for observing the role of RANKL and MMP‐9. Results: The expression of RANKL and MMP‐9 in ameloblastoma was confirmed. Ameloblastoma cells were found to induce bone marrow cells from neonatal rabbit differentiate into osteoclasts with bone‐resorption activity. In addition, OPG was found to, respectively, have markedly inhibitory effect on osteoclastogenesis (P < 0.01), and slightly inhibitory action on bone resorption (P < 0.05). Conclusions: Ameloblastoma cells had the potential to induce osteoclastogenesis. Moreover, RANKL played an essential role in the in vitro osteoclast formation and bone resorption induced by ameloblastoma cells.  相似文献   

13.
Tamai R, Kiyoura Y, Sugiyama A. Alendronate regulates cytokine production induced by lipid A through nuclear factor‐κB and Smad3 activation in human gingival fibroblasts. J Periodont Res 2011; 46: 13–20. © 2010 John Wiley & Sons A/S Background and Objective: Nitrogen‐containing bisphosphonates (NBPs) are widely used as anti‐bone‐resorptive drugs. However, use of NBPs results in inflammatory side‐effects, including jaw osteomyelitis. In the present study, we examined the effects of alendronate, a typical NBP, on cytokine production by human peripheral blood mononuclear cells (PBMCs) and gingival fibroblasts incubated with lipid A. Methods: The PBMCs and gingival fibroblasts were pretreated with or without alendronate for 24 h. Cells were then incubated in the presence or absence of lipid A for a further 24 h. Levels of secreted human interleukin (IL)‐1β, IL‐6, IL‐8 and monocyte chemoattractant protein‐1 (MCP‐1) in culture supernatants were measured by ELISA. We also examined nuclear factor‐κB (NF‐κB) activation in both types of cells by ELISA. Activation of Smad3 in the cells was assessed by flow cytometry. In addition, we performed an inhibition assay using SIS3, a specific inhibitor for Smad3. Results: Pretreatment of PBMCs with alendronate promoted lipid A‐induced production of IL‐1β and IL‐6, but decreased lipid A‐induced IL‐8 and MCP‐1 production. In human gingival fibroblasts, alendronate pretreatment increased lipid A‐induced production of IL‐6 and IL‐8, and increased NF‐κB activation in gingival fibroblasts but not PBMCs stimulated with lipid A. In contrast, alendronate activated Smad3 in both types of cells. Finally, SIS3 inhibited alendronate‐augmented IL‐6 and IL‐8 production by human gingival fibroblasts but up‐regulated alendronate‐decreased IL‐8 production by PBMCs. Conclusion: These results suggest that alendronate‐mediated changes in cytokine production by gingival fibroblasts occur via regulation of NF‐κB and Smad3 activity.  相似文献   

14.
Zhang G, Chen R, Rudney JD.Streptococcus cristatusmodulates theFusobacterium nucleatum‐induced epithelial interleukin‐8 response through the nuclear factor‐kappa B pathway. J Periodont Res 2011; 46: 558–567.©2011 John Wiley & Sons A/S Background and Objective: We previously reported that the interleukin‐8 (IL‐8) response to Fusobacterum nucleatum was attenuated in the presence of Streptococcus cristatus. Here, we further examined the underlying mechanism(s) involved in the modulating effect of S. cristatus by looking specifically at its impact on the nuclear factor‐kappa B (NF‐κB) pathway under the toll‐like receptor (TLR) signaling background. Material and Methods: OKF6/TERT‐2 and KB cells were co‐cultured with F. nucleatum and S. cristatus, either alone or in combination. Secretion of IL‐8 protein was measured by ELISA. The nuclear translocation of NF‐κB was evaluated by confocal microscopy, while DNA‐binding activity was quantified using TransAM? ELISA kits. Western blot analysis was performed to determine whether the anti‐inflammatory effect of S. cristatus is related to the modulation of the NF‐κB inhibitory protein IκB‐α. Results: Incubation with F. nucleatum significantly enhanced the nuclear translocation of NF‐κB. Exposure to S. cristatus alone did not cause detectable NF‐κB translocation and was able to inhibit the F. nucleatum‐induced NF‐κB nuclear translocation. The TransAM assay further confirmed that S. cristatus blocked the nuclear translocation of NF‐κB in response to F. nucleatum stimulation. In contrast to the nearly complete degradation of IκB‐α induced by F. nucleatum alone, the presence of S. cristatus stabilized IκB‐α. Pre‐incubation with TLR2 and TLR4 antibodies, however, did not affect the epithelial response to either species alone or in combination. Conclusion: The mechanism by which S. cristatus attenuates F. nucleatum‐induced proinflammatory responses in oral epithelial cells appears to involve blockade of NF‐κB nuclear translocation at the level of IκB‐α degradation.  相似文献   

15.
16.
Murayama R, Kobayashi M, Takeshita A, Yasui T, Yamamoto M. MAPKs, activator protein‐1 and nuclear factor‐κB mediate production of interleukin‐1β‐stimulated cytokines, prostaglandin E 2 and MMP‐1 in human periodontal ligament cells. J Periodont Res 2011; 46: 568–575. © 2011 John Wiley & Sons A/S Background and Objective: Determination of the interleukin‐1 (IL‐1) signaling cascades that lead to the production of various inflammatory mediators and catabolic factors may clarify attractive targets for therapeutic intervention for periodontitis. We comprehensively assessed the involvement of MAPKs, activator protein‐1 (AP‐1) and nuclear factor‐κB (NF‐κB) in IL‐1β‐induced production of interleukin‐6 (IL‐6), interleukin‐8 (IL‐8), prostaglandin E2 (PGE2) and MMP‐1 in human periodontal ligament cells. Material and Methods: Human periodontal ligament cells were pretreated with an inhibitor for each of the MAPKs or NF‐κB and subsequently treated with IL‐1β. Following treatment, phosphorylation of three types of MAPK (ERK, p38 MAPK and c‐Jun N‐terminal kinase), IκB kinase (IKK) α/β/γ and IκB‐α, as well as the DNA binding activity of AP‐1 and NF‐κB and the production of IL‐6, IL‐8, PGE2 and MMP‐1, were determined by western blotting, a gel mobility shift assay and ELISA, respectively. Results: The three MAPKs, simultaneously activated by IL‐1β, mediated the subsequent DNA binding of AP‐1 at various magnitudes, while IKKα/β/γ, IκB‐α and NF‐κB were also involved in the IL‐1 signaling cascade. Furthermore, IL‐1β stimulated the production of IL‐6, IL‐8, PGE2 and MMP‐1 via activation of the three MAPKs and NF‐κB, because inhibitors of these significantly suppressed the IL‐1β‐stimulated production of these factors. Conclusion: Our results strongly suggest that MAPK, AP‐1 and NF‐κB mediate the IL‐1β‐stimulated synthesis of IL‐6, IL‐8, PGE2 and MMP‐1 in human periodontal ligament cells. Therefore, inhibition of activation of MAPK, AP‐1 and/or NF‐κB may lead to therapeutic effects on progression of periodontitis.  相似文献   

17.
18.
19.
Song H, Zhao H, Qu Y, Sun Q, Zhang F, Du Z, Liang W, Qi Y, Yang P. Carbon monoxide releasing molecule‐3 inhibits concurrent tumor necrosis factor‐α‐ and interleukin‐1β‐induced expression of adhesion molecules on human gingival fibroblasts. J Periodont Res 2011; 46: 48–57. © 2010 John Wiley & Sons A/S Background and Objective: Carbon monoxide releasing molecule‐3 (CORM‐3) is a newly reported compound that has shown anti‐inflammatory effects in a number of cells. In this study, we aimed to investigate the influence of CORM‐3 on concurrent tumor necrosis factor‐α (TNF‐α)‐ and interleukin (IL)‐1β‐induced expression of adhesion molecules on human gingival fibroblasts (HGF). Material and Methods: HGF were cultured from the explants of normal gingival tissues. Cells were costimulated with TNF‐α and IL‐1β in the presence or absence of CORM‐3 for different periods of time. The expression of adhesion molecules, nuclear factor‐kappaB (NF‐κB) and phosphorylated p38 was studied using western blotting. RT‐PCR was applied to check the expression of the adhesion molecules at the mRNA level. The activity of NF‐κB was analysed using a reporter gene assay. Results: CORM‐3 inhibited the up‐regulation of intercellular adhesion molecule 1, vascular cell adhesion molecule 1 and endothelial leukocyte adhesion molecule in HGF after costimulation with TNF‐α and IL‐1β, which resulted in the decreased adhesion of peripheral blood mononuclear cells to these cells. Sustained activation of the NF‐κB pathway by costimulation with TNF‐α and IL‐1β was suppressed by CORM‐3, which was reflected by a reduced NF‐κB response element‐dependent luciferase activity and decreased nuclear NF‐κB‐p65 expression. CORM‐3 inhibited MAPK p38 phosphorylation in response to stimulation with proinflammatory cytokines. Conclusion: The results of this study bode well for the application of CORM‐3 as an anti‐inflammatory agent to inhibit NF‐κB activity and to suppress the expression of adhesion molecules on HGF, which suggests a promising potential for CORM‐3 in the treatment of inflammatory periodontal disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号