首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dengue is a mosquito-borne disease caused by one of four serotypes of Dengue virus (DENV-1–4). Epidemiologic and observational studies demonstrate that the majority of severe dengue cases, dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS), occurs predominantly in either individuals with cross-reactive immunity following a secondary heterologous infection or in infants with primary DENV infections born from dengue-immune mothers, suggesting that B-cell-mediated and antibody responses impact on disease evolution. We demonstrate here that B cells play a pivotal role in host responses against primary DENV infection in mice. After infection, μMT?/? mice showed increased viral loads followed by severe disease manifestation characterized by intense thrombocytopenia, hemoconcentration, cytokine production and massive liver damage that culminated in death. In addition, we show that poly and monoclonal anti-DENV-specific antibodies can sufficiently increase viral replication through a suppression of early innate antiviral responses and enhance disease manifestation, so that a mostly non-lethal illness becomes a fatal disease resembling human DHF/DSS. Finally, treatment with intravenous immunoglobulin containing anti-DENV antibodies confirmed the potential enhancing capacity of subneutralizing antibodies to mediate virus infection and replication and induce severe disease manifestation of DENV-infected mice. Thus, our results show that humoral responses unleashed during DENV infections can exert protective or pathological outcomes and provide insight into the pathogenesis of this important human pathogen.  相似文献   

2.
Dengue is a mosquito-borne disease that affects millions of people worldwide yearly. Currently, there is no vaccine or specific treatment available. Further investigation on dengue pathogenesis is required to better understand the disease and to identify potential therapeutic targets. The chemokine system has been implicated in dengue pathogenesis, although the specific role of chemokines and their receptors remains elusive. Here we describe the role of the CC-chemokine receptor CCR5 in Dengue virus (DENV-2) infection. In vitro experiments showed that CCR5 is a host factor required for DENV-2 replication in human and mouse macrophages. DENV-2 infection induces the expression of CCR5 ligands. Incubation with an antagonist prevents CCR5 activation and reduces DENV-2 positive-stranded (+) RNA inside macrophages. Using an immunocompetent mouse model of DENV-2 infection we found that CCR5−/− mice were resistant to lethal infection, presenting at least 100-fold reduction of viral load in target organs and significant reduction in disease severity. This phenotype was reproduced in wild-type mice treated with CCR5-blocking compounds. Therefore, CCR5 is a host factor required for DENV-2 replication and disease development. Targeting CCR5 might represent a therapeutic strategy for dengue fever. These data bring new insights on the association between viral infections and the chemokine receptor CCR5.  相似文献   

3.
Atichat Kuadkitkan 《Virology》2010,406(1):149-161
Dengue is transmitted primarily by mosquitoes of the Aedes genus. Despite a number of studies, no insect dengue virus receptor protein has been clearly identified and characterized. Using a number of separation methodologies and virus overlay protein binding assays we identified a 35 kDa protein that segregated with susceptibility to dengue serotype 2 (DENV-2) infection in two mosquito species and two mosquito cell lines. Mass spectroscopy identified the protein to be prohibitin, a strongly conserved and ubiquitously expressed protein in eukaryotic cells. Antibody mediated inhibition of infection and siRNA mediated knockdown of prohibitin expression significantly reduced infection levels and subsequent virus production in both Aedes aegypti and Aedes albopictus cell lines. Confocal microscopy showed a significant degree of intracellular colocalization between prohibitin and DENV-2 E protein, and coimmunoprecipitation confirmed that prohibitin interacts with dengue E. Prohibitin is the first characterized insect cell expressed dengue virus receptor protein.  相似文献   

4.
The difficulty in studying dengue virus (DENV) infection in humans and in developing a virus vaccine is the absence of a suitable animal model which develops the full spectra of the Dengue haemorrhagic fever (DHF) and Dengue shock syndrome (DSS). Despite the fact that viruses have been found in various animal tissues, we isolated DENV from tissues of adult BALB/c mice, inoculated with DENV serotype 2 (DENV-2) obtained from human serum. Viruses were ultrastructurally identified and immunolocalized by immunofluorescence techniques in C6/36 mosquito cell cultures, inoculated with tissues (liver, lung, kidney and cerebellum) macerate supernatant from mice, 48 h post-infection (p.i.). These organs, collected at the same stage of infection, were examined histologically. The histopathological analysis revealed focal alterations in all tissues examined. Liver contained focal ballooned hepatocytes, but without modifying the average diameter of the majority of hepatocytes. Sinusoidal lumen was significantly diminished at this stage but portal and centrolobular veins became congested. Lungs exhibited hemorrhagic foci in the alveolar space, vascular congestion and focal alveolitis. Cerebellar tissue showed rare foci of neuronal compactation (Purkinje cells) and perivascular oedema. In kidneys it was observed an increase in glomerular volume with augmented endocapillary and mesangial cellularity, with reactivity to anti-IgM in all glomeruli of infected mice. In conclusion, DENV-2 was found in all tissues examined early in the evolution of infection. Presence of viruses in tissues has mainly led to hemodynamic alterations with generalized vascular congestion and increased permeability, and mast cell recruitment in lungs. The latter could participate in the vascular modifications in tissues.  相似文献   

5.
6.
Acute and late convalescent sera (collected at day 5 of disease onset and 1 year later) from dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) laboratory confirmed cases, were tested for antibody-dependent cell-mediated cytotoxicity (ADCC) activity using dengue 1 (DENV-1) or dengue 2 (DENV-2) infected cells as target. All patients experienced their first dengue virus (DENV) infection 20 years before. ADCC activity was detected in acute sera from DHF/DSS but not in sera from DF patients. However, 1 year after illness, ADCC activity was observed in all cases. This preliminary report represents one of the few studies of ADCC in dengue patients and suggests that ADCC could be implicated in dengue pathogenesis.  相似文献   

7.
8.
Dengue continues to be a major health threat to Malaysia a century after its first reported outbreak in 1902. Examination of the available outbreak data suggested that a major DF/DHF outbreak occurred in Malaysia in a cyclical pattern of approximately every 8 years. All four dengue virus serotypes are found co-circulating in Malaysia, but after the first and only major outbreak involving DEN-4 in 1960's, only DEN-1, DEN-2 and DEN-3 were associated with DF/DHF outbreaks. It is argued that perhaps the spread of the later dengue virus serotypes followed the pattern of spread of the mosquito vector Aedes aegypti, whereas the former was associated with Aedes albopictus, the outdoor and rural area dwelling mosquito. Estimating from the trend and pattern of dengue and the associated dengue virus serotypes, unless there is a major breakthrough in dengue vaccine development, it is likely that dengue outbreaks will continue to occur in Malaysia throughout the 21st century.  相似文献   

9.
Protective immunity against dengue virus (DENV) is best reflected by the presence of neutralizing antibodies. The conventional plaque reduction neutralizing test (PRNT) is performed using Fcγ receptor (FcγR)-negative cells. Because FcγR plays a key role in antibody-dependent enhancement, we examined neutralizing antibody titers of mouse monoclonal antibodies and human serum samples in PRNTs using FcγRIIA-negative and FcγRIIA-expressing BHK cells. There was a discrepancy in dengue virus neutralizing antibody titers between PRNTs using FcγRIIA-negative versus FcγRIIA-expressing BHK cells. Neutralizing antibody titers to DENV-1 and DENV-2 tested with monoclonal antibodies, and with most of the human serum samples, were higher in assays using BHK cells than those using FcγRIIA-expressing BHK cells. The results suggest that neutralizing antibody titers determined using FcγRIIA-expressing cells may better reflect the protective capacity of anti-DENV antibodies, as the major target cells of DENV infection are FcγR-positive cells.Dengue virus (DENV), a member of the family Flaviviridae, represents a major health problem in tropical and subtropical regions of the world. There are four serotypes, dengue virus types 1 to 4 (DENV-1 to DENV-4). DENV causes a wide range of symptoms, from mild febrile illness known as dengue fever (DF) to severe life-threatening illness, including dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Infection with one serotype induces life-long protection against homologous serotypes, but protection against other serotypes is short-lived. In secondary infection, cross-reactive, nonneutralizing antibodies bind to DENV. DENV-antibody complexes are taken up more efficiently by Fcγ receptor (FcγR)-expressing cells, and higher levels of viremia develop (5, 7, 10, 12, 15, 16). This phenomenon, known as antibody-dependent enhancement (ADE), is considered to be a risk factor for DHF and DSS.Protective immunity against DENV is best reflected by the presence of neutralizing antibody. High neutralizing antibody levels induced by primary infection are considered central in offering life-long protective immunity against the homologous serotypes. Thus, a vaccine against DENV infection is expected to induce high levels of neutralizing antibodies against all four serotypes. The plaque reduction neutralizing test (PRNT) is a widely accepted approach to measure the neutralizing activities of antibodies (14). PRNTs, which employ Vero, LLC-MK2, or BHK-21 cells (11, 14) are, however, limited to measuring neutralizing activities of viral infectivity in the absence of FcγR (1). It is possible that neutralizing antibody titers of anti-DENV antibodies induced by natural infection or by vaccines may differ when assayed in the presence of enhancing activity. The neutralizing antibody titers determined using FcγR-expressing BHK-21 cells may better reflect protective immunity, because the principal target cells of DENV are FcγR-expressing cells, such as monocytes (6). In the present study, we sought to determine if neutralizing antibody titers were at the same or different levels when BHK-21 cells and cell lines expressing FcγR were used as the assay cells.  相似文献   

10.
Background and Objectives: Dengue is one of the most prevalent arboviral diseases in the world with 390 million dengue infections per year. In this study, we report the molecular characterisation of dengue outbreak in Pasighat, Arunachal Pradesh, Northeast India during 2015. Subjects and Methods: A total of 613 dengue-suspected cases were screened for dengue virus by dengue NS1 Ag and anti-dengue IgM antibody depending on the duration of sample collection and onset of symptom. Further, molecular characterisation was done by amplifying the C-PrM region by real-time polymerase chain reaction followed by phylogenetic analysis. Results: Molecular characterisation revealed that the dengue outbreak was predominantly due to dengue virus serotype-1 (DENV-1) (90.9%) while DENV-2 was detected in 7.5% of samples. Co-infection of DENV-1 and DENV-2 was detected in one case. Phylogenetic analysis of the DENV-1 strains with the prototype revealed that the DENV-1 strains were grouped within genotype III. Similarly, DENV-2 strains were clustered within genotype IV. The study revealed a change in the predominant serotype in recent years with DENV-3 in 2012 to DENV-1, 2, 3 and 4 in 2014 to DENV-1 in 2015 in the study region. A unique L24M mutation was observed in the DENV-1 strains of Arunachal Pradesh which was absent in all the circulating strains in India except one strain from the state of Kerala in South India. Marked variation within the DENV-2 strains was observed at A102V and I163V in one strain similar to earlier circulating isolates in India. Conclusions: The present study reveals a shift in the serotype dominance in the study region. As serotype shifts and secondary infection with a heterologous DENV serotype are frequently associated with disease severity, there is an urgent need for sustained monitoring of the circulating serotypes and enhanced surveillance operations, especially in the monsoon and post-monsoon periods to prevent large-scale, severe dengue outbreaks in this region.  相似文献   

11.
Reverse vaccinology method was used to predict the monovalent peptide vaccine candidate to produce antibodies for therapeutic purpose and to predict tetravalent vaccine candidate to act as a common vaccine to cover all the dengue virus serotypes. Envelope (E)-proteins of DENV-1-4 serotypes were used for vaccine prediction using NCBI, Uniprot/Swissprot, Swiss-prot viewer, VaxiJen V2.0, TMHMM, BCPREDS, Propred-1, Propred and MHC Pred. Eproteins of DENV-1-4 serotypes were identified as antigen from which T cell epitopes, through B cell epitopes, were predicted to act as peptide vaccine candidates. Each selected T cell epitope of E-protein was confirmed to act as vaccine and to induce complementary antibody against particular serotype of dengue virus. Chimeric tetravalent vaccine was formed by the conjugation of four vaccines, each from four dengue serotypes to act as a common vaccine candidate for all the four dengue serotypes. It can be justifiably concluded that the monovalent 9-mer T cell epitope for each DENV serotype can be used to produce specific antibody against dengue virus and a chimeric common tetravalent vaccine candidate to yield a comparative vaccine to cover any of the four dengue virus serotype. This vaccine is expected to be highly immunogenic against dengue fever.  相似文献   

12.
Infection with dengue virus (DENV) is the most rapidly spreading mosquito-borne viral disease in the world. The clinical spectrum of dengue, caused by any of the four serotypes of DENV, ranges from mild self-limiting dengue fever to severe dengue, in the form dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Increased rates of hospitalization due to severe dengue, during outbreaks, result in massive economic losses and strained health services. In the absence of specific antiviral therapy, control of transmission of DENV by vector management is the sole method available for decreasing dengue-associated morbidity. Since vector control strategies alone have not been able to satisfactorily achieve reduction in viral transmission, the implementation of a safe, efficacious and cost-effective dengue vaccine as a supplementary measure is a high public health priority. However, the unique and complex immunopathology of dengue has complicated vaccine development. Dengue vaccines have also been challenged by critical issues like lack of animal models for the disease and absence of suitable markers of protective immunity. Although no licensed dengue vaccine is yet available, several vaccine candidates are under phases of development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, subunit vaccines, DNA vaccines and viral-vectored vaccines. Although some vaccine candidates have progressed from animal trials to phase II and III in humans, a number of issues regarding implementation of dengue vaccine in countries like India still need to be addressed. Despite the current limitations, collaborative effects of regulatory bodies like World Health Organization with vaccine manufacturers and policy makers, to facilitate vaccine development and standardize field trials can make a safe and efficacious dengue vaccine a reality in near future.  相似文献   

13.
We reported a case of acute pancreatitis as the complication of dengue hemorrhagic fever (DHF). This complication can cause more severe fatal condition, and difficulties in treatment, although it is rare. Dengue hemorrhagic fever (DHF) is one of the endemic diseases and often come as an outbreak event in South East Asia including Indonesia. Dengue hemorrhagic fever (DHF) is a global public health problem, because until now there has been no medicine to eradicate the dengue virus, no dengue vaccine and difficult to eradicate the mosquitoes as the contagious vector. Diagnosis and treatment of acute pancreatitis as early as possible is important to improve the patient's condition and survival. The patient was a 59 year old male and had been treated conservatively. The patient was admitted to the hospital, oral fasting until the fourth day, given parenteral nutrition, antibiotic and other intravenous medicines. Initial oral liquid diet was given on the fifth day of hospitalization and changed gradually according to the condition. The patient was then improved and discharged from the hospital.  相似文献   

14.
Activation of coagulation and fibrinolysis during dengue virus infection   总被引:4,自引:0,他引:4  
Dengue virus infection can induce mild dengue fever (DF) or severe dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS) in human. The pathogenesis of hemorrhage in dengue virus infection is not fully understood. Since hemostasis depends on the balance between coagulation and fibrinolysis, alternation of some coagulation parameters (platelet count and activated partial thromoboplastin time, APTT) as well as fibrinolytic parameters (tissue plasminogen activator, tPA and plasminogen activator inhibitor-1, PAI-1) were compared in 8 DHF/DSS and 17 DF patients. Patients showed thrombocytopenia, APTT prolongation, and tPA increase in the acute stage of disease, indicating activation of coagulation and fibrinolysis. The activation of coagulation and fibrinolysis in DHF/DSS patients was much more severe than DF patients. In the convalescent stage, a rise of PAI-1 level and platelet count with concomitant decline of tPA level and APTT returned to normal in both DHF/DSS and DF patients. Therefore, the activation of coagulation and fibrinolysis during the acute stage of dengue virus infection is offset by the increase of platelet and PAI-1 during convalescent stage. Taken together, these results suggest that the degree of coagulation and fibrinolysis activation induced by dengue virus infection is associated with the disease severity.  相似文献   

15.
Dengue virus infections are a major cause of morbidity and mortality in tropical and subtropical areas in the world. Attempts to develop effective vaccines have been hampered by the lack of understanding of the pathogenesis of the disease and the absence of suitable experimental models for dengue viral infection. The magnitude of T-cell responses has been reported to correlate with dengue disease severity. Sixty Malaysian adults with dengue viral infections were investigated for their dengue virus-specific T-cell responses to 32 peptides antigens from the structural and nonstructural regions from a dengue virus isolate. Seventeen different peptides from the C, E, NS2B, NS3, NS4A, NS4B, and NS5 regions were found to evoke significant responses in a gamma interferon enzyme-linked immunospot (ELISPOT) assay of samples from 13 selected patients with dengue fever (DF) and dengue hemorrhagic fever (DHF). NS3 and predominantly NS3(422-431) were found to be important T-cell targets. The highest peaks of T-cell responses observed were in responses to NS3(422-431) and NS5(563-571) in DHF patients. We also found almost a sevenfold increase in T-cell response in three DHF patients compared to three DF patient responses to peptide NS3(422-431). A large number of patients' T cells also responded to the NS2B(97-106) region. The ELISPOT analyses also revealed high frequencies of T cells that recognize both serotype-specific and cross-reactive dengue virus antigens in patients with DHF.  相似文献   

16.
Dengue virus (DENV) infection usually presents with mild self-limiting dengue fever (DF). Few however, would present with the more severe form of the disease, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). In the present study, the association between IL-12B, IL-10 and TNF-α gene polymorphisms and dengue severity was investigated. Methods: A case-control study was performed on a total of 120 unrelated controls, 86 DF patients and 196 DHF/DSS patients. The polymorphisms in IL-12B, IL-10 and TNF-α genes were genotyped using PCR-RFLP and PCR-sequencing methods. Results: A protective association of TNF-α -308A allele and -308GA genotype against DHF/DSS was observed, while TNF-α -238A allele and -238GA genotype were associated with DHF/DSS. A combination of TNF-α -308GA+AA genotype and IL-10 non-GCC haplotypes, IL-12B pro homozygotes (pro1/pro1, pro2/pro2) and IL-12B 3''UTR AC were significantly correlated with protective effects against DHF/DSS. An association between the cytokine gene polymorphisms and protection against the clinical features of severe dengue including thrombocytopenia and increased liver enzymes was observed in this study. Conclusion: The overall findings of the study support the correlation of high-producer TNF-α genotypes combined with low-producer IL-10 haplotypes and IL-12B genotypes in reduced risk of DHF/DSS.  相似文献   

17.
Generation of IgM anti-platelet autoantibody in dengue patients   总被引:6,自引:0,他引:6  
Dengue virus infection causes a wide range of diseases from dengue fever to life-threatening dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS). The mechanisms involved in DHF/DSS pathogenesis remain unclear. Patient sera collected from an outbreak in southern Taiwan from November 1998 to January 1999 were studied. The presence of antibodies which cross-reacted with platelets could be detected in patient sera, and the isotype of these autoantibodies was IgM. The anti-platelet IgM levels were higher in DHF/DSS than in dengue fever patient sera in disease acute phase. These autoantibodies were still detectable in convalescent stage (1-3 weeks after acute phase) and even eight to nine months after illness. The platelet binding activity was not observed in other virus-infected patient sera tested. Further investigation showed that dengue patient sera caused platelet lysis in the presence of complement. The platelet cytotoxicity induced by DHF/DSS patient sera was higher than that by dengue fever sera. Dengue patient sera also inhibited platelet aggregation which, however, appeared to be not related to DHF/DSS development.  相似文献   

18.
Dengue is a viral disease present in tropical developing countries where cause an important number of new cases annually. There are four serotypes (DENV-1 to 4), which can cause a clinical spectrum varying from a mild disease; dengue fever, to a potential life-threatening form; dengue hemorrhagic fever (DHF). The molecular mechanism to explain the developing of DHF remains uncertainly, but it has been related to previous immunity to a different serotype, host-depending factors (age, nutritional status, HLA type) and to viral genotypes. In this sense, have been described a number of genotypes among the serotypes, some of which has been associated with increased severity. In Venezuela, since 1989 have been reported cases due to all the viral serotypes, but there are few studies attempting to determine the genotype circulating in both epidemic and endemic situations. In all the reports, Venezuelan isolates are related to Asian genotypes, some of which have been associated with high risk to develop DHF. It is necessary more studies to analyze the whole viral genome from isolates collected in last years, in order to get information about how and why occur the viral extinction process in epidemics settings, its geographical origin and if certainly there are genotypes associated with DHF circulating in the country. Despite its importance to public health, it is necessary more research to understand deeply the dengue physiopathology. Genomics seems to be an important tool to achieve this objective and to help to develop required therapeutics and prophylactic strategies in a short time.  相似文献   

19.
To evaluate the neutralizing antibody activity of a human sera panel against seven strains of the homotypic virus. Sera were collected from DENV-3 immune individuals. Two DENV-3 genotypes and strains isolated at different time-points during the 2000 and 2001-2002 Havana epidemics were included. A panel of 20 late convalescent sera collected 16-18 months after acute illness from DF and DHF patients are studied. These individuals were infected during the 2001-2002 Havana DENV-3 epidemic. All but four sera collected from DF cases had a secondary DENV-1/DENV-3 infection. Sera neutralizing antibody titer against the seven DENV-3 strains were determined by plaque reduction neutralization technique. Sera samples were tested simultaneously. Studied sera showed higher levels of neutralizing antibodies to DENV-3 strains of genotype III compared to genotype V. Interesting, higher levels of neutralizing antibodies were detected to DENV-3 strain isolated at the end of the epidemic 2001-2002. An increased tendency of GMT of neutralizing antibodies according to epidemic evolution was observed for the 2001-2002 outbreak. In general, antibody levels in sera collected from DF cases were higher. Differences in the neutralization capacity of immune DENV-3 sera tested against two homologous genotypes including strains of the same genotype are demonstrated. Observed results suggest that virus changed in the course of the epidemic. The implications of this finding in terms of dengue pathogenesis and vaccine development need to be considered.  相似文献   

20.
Dengue viruses (DENV) cause 50-100 million cases of acute febrile disease every year, including 500,000 reported cases of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Viral factors have been proposed to influence the severity of the disease, but markers of virulence have never been identified on DENV. Three DENV serotype-1 isolates from the 2007 epidemic in Cambodia that are derived from patients experiencing the various clinical forms of dengue were characterized both phenotypically and genetically. Phenotypic characteristics in vitro, based on replication kinetics in different cell lines and apoptosis response, grouped isolates from DF and DHF patients together, whereas the virus isolate from a DSS patient showed unique features: a lower level of replication in mammalian cells and extensive apoptosis in mosquito cells. Genomic comparison of viruses revealed six unique amino acid residues in the membrane, envelope, and in non-structural genes in the virus isolated from the DSS patient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号