首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the Netherlands, there is an ongoing and unparalleled outbreak of Q fever. Rapid and reliable methods to identify patients infected with Coxiella burnetii, the causative agent of Q fever, are urgently needed. We evaluated the performance of different DNA extraction methods and real-time PCR assays that are in use in seven diagnostic or reference laboratories in the Netherlands. A low degree of variation in the sensitivities of most of the developed real-time PCR assays was observed. However, PCR assays amplifying short DNA fragments yielded better results than those producing large DNA fragments. With regard to DNA extraction, the automated MagNA Pure Compact system and the manual QIAamp DNA mini kit consistently yielded better results than either the MagNA Pure LC system and NucliSens EasyMag (both automated) or the High Pure viral nucleic acid kit (manual). The present study shows that multiple combinations of DNA extraction kits and real-time PCR assays offer equivalent solutions to detect C. burnetii DNA in serum samples from patients suspected to have Q fever.Q fever is a worldwide zoonosis caused by Coxiella burnetii, an obligate intracellular bacterium (11). Whereas animals such as sheep and goats are generally asymptomatic carriers, infection with C. burnetii in these animals may become manifest by abortion. Although asymptomatic in ∼60% of infected persons, C. burnetii can cause serious illness in humans. Q fever can cause acute or chronic infection depending on the patient''s condition or immune status. Acute Q fever may present as a self-limiting flu-like atypical pneumonia accompanied by severe headache and sometimes hepatitis. Approximately 5% of all Q fever cases may progress in a chronic infection leading to life-threatening endocarditis (1, 3, 5, 7-9). C. burnetii is highly infectious and can survive for long periods in the environment. Human outbreaks have been associated with farms, slaughterhouses, and wind dispersion from farms where infected animals were kept. Ticks and pets, including cats and dogs, have also been demonstrated to be potential sources of Q fever (1, 4, 10).Laboratory diagnosis of Q fever is usually performed by serological methods such as the indirect immunofluorescence assay (IFA), complement fixation test (CFT), or enzyme-linked immunosorbent assay (ELISA), but these tests are of limited use in the early phase of the disease, as it may take up to 2 weeks for a detectable immune response to develop. Several PCR-based diagnostic methods, such as conventional PCR, nested PCR, or real-time PCR, have successfully been applied for the direct detection of C. burnetii DNA in clinical samples. The sequences targeted by these tests varied from plasmids (QpH1 or QpRS) to chromosomal genes, such as the isocitrate dehydrogenase gene (NADP) or the transposase gene of the C. burnetii IS1111a insertion element (3, 4, 14-16). The multicopy IS1111a insertion element is present in 20 copies in the genome of the C. burnetii Nine Mile RSA493 strain. Copy numbers per isolate vary and can reach up to ∼100 copies per genome (7). Due to the multicopy nature of this DNA element, it provides a highly sensitive target for detection of C. burnetii DNA in serum samples. Furthermore, real-time PCR can be useful for diagnosis of chronic Q fever, since in these patients C. burnetii DNA can be detected in serum over long periods of time (3).In the Netherlands, as of 2007, there is an unprecedented and ongoing outbreak of Q fever (12, 17). At present, more than 3,000 cases have been reported in the Netherlands. In order to improve diagnosis for Q fever, medical microbiology laboratories have implemented molecular methods to close the diagnostic gap between onset of the disease and the presence of specific antibodies in serum. The aim of this study was to compare the performances of different DNA extraction methods and real-time PCR assays, all targeting the C. burnetii IS1111a insertion element, that are being used in seven diagnostic or public health laboratories in the Netherlands.  相似文献   

2.
A duplex PCR (dPCR) assay was developed to simultaneously detect and differentiate Bartonella quintana, Bartonella henselae, and Coxiella burnetii from surgical heart valve tissue specimens with an analytic sensitivity of 10 copies/reaction. Among 17 specimens collected from patients with a clinical diagnosis of culture-negative endocarditis, 2, 4, and 2 were positive for B. quintana, B. henselae, and C. burnetii, respectively, by the dPCR assay, which matched the results obtained by universal bacterial 16S rRNA gene amplification and sequencing.Infective endocarditis (IE) remains a major medical concern because of its associated mortality rate and expense. Fastidious and unculturable organisms represent approximately half of culture-negative endocarditis (4). With enriched nutrients in culture media and prolonged culture time, the recovery of fastidious microorganisms has been enhanced significantly. Identification of Coxiella burnetii and Bartonella spp., however, remains a diagnostic challenge (21). Routine serologic testing provides results retrospectively with difficulty in distinguishing the three organisms due to reciprocal cross-reactions of organism-specific antibodies (8, 16, 20).Currently, surgery is required in 20% to 40% of patients with IE (13), but cultures of valvular tissue specimens are generally unreliable (5). However, with the use of modern diagnostic techniques led by PCR of infected valves, the number of cases without a detectable etiology dropped from 27% to 9% and 1.4% in the last published series (9). Molecular genetic screening for bacteria, especially in cases of heart valve replacement, is a beneficial additional diagnostic strategy. Several recent reports have demonstrated the utility of culture-independent universal 16S rRNA gene PCR, combined with sequencing, in the diagnosis of IE and in the recognition of new IE pathogens (1, 3, 6, 12, 14, 15, 18). Alternatively, monoplex PCR procedures that amplify and detect organism-specific gene targets have been described (19, 20, 25). A duplex PCR (dPCR) assay was developed to simultaneously detect and differentiate three bacterial pathogens, Bartonella quintana, Bartonella henselae, and C. burnetii. An organism-specific citrate synthase gene (gltA) and an insertion sequence gene (IS111) were used as the target sequences for amplification of the Bartonella species and C. burnetii, respectively. Three species-specific probes were used to detect and differentiate between B. quintana, B. henselae, and C. burnetii in a colorimetric microtiter plate. Such an approach may facilitate the diagnosis of IE by decreasing the reaction mixture and specimen volumes needed to make a diagnosis.(This study was presented in part at the 109th General Meeting of the American Society for Microbiology, Philadelphia, PA, 17 to 21 May 2009.)  相似文献   

3.
Typhoid fever remains a serious public health problem in developing countries, especially among young children. Recent studies showed more than 50% of typhoid cases are in children under 5 years old. Licensed vaccines, such as Salmonella enterica serovar Typhi capsular Vi, did not confer protection against typhoid fever for this age group. Vi conjugate, prepared by binding Vi to Pseudomonas aeruginosa recombinant exoprotein A (rEPA), induces protective levels of antibody at as young as 2 years old. Because of the lack of regulatory precedent for rEPA in licensing vaccines, we employed diphtheria toxoid (DT) as the carrier protein to accommodate accessibility in developing countries. Five lots of Vi-DT conjugates were prepared using adipic acid dihydrazide (ADH) as the linker. All 5 lots showed consistency in their physical and chemical characteristics and final yields. These Vi-DT conjugates elicited levels of IgG anti-Vi in young mice significantly higher than those in mice injected with Vi alone and induced a booster response upon reinjection. This booster effect was absent if the Vi replaced one of the two conjugate injections. Vi-DT was stable under repeated freeze-thaw (20 cycles). We plan to perform clinical evaluation of the safety and immunogenicity of Vi-DT when added to the infant combination vaccines.Typhoid fever, a serious systemic infection caused by Salmonella enterica serovar Typhi, remains a major public health problem in Central Asia, Southeast Asia, Africa, and Latin America (11, 52, 53). It was estimated that more than 21 million cases of typhoid fever and >200,000 deaths occurred in 2000 (10). The treatment of patients and management of asymptomatic carriers are becoming more difficult due to the worldwide emergence of multidrug-resistant (MDR) strains (2, 15, 29, 42, 43). Vaccination is considered the most promising strategy for the control of typhoid fever in developing countries (11, 19, 52, 53).Typhoid fever in children younger than 5 years old has often been unrecognized due to atypical clinical symptoms, difficulties in the number and volume of blood drawings, and use of less than optimal culture media (35, 46). Several studies have shown that the incidence of typhoid fever among children less than 5 years old is similar to that in school age children and young adults (14, 27, 34, 50, 51).The 3 licensed typhoid vaccines have limited efficacy, and none are suitable for young children under 5 years old. The use of heat-inactivated whole-cell vaccine was suspended in many countries because of its reactogenicity. The parenteral Vi polysaccharide and the live attenuated oral Ty21a vaccine were introduced in the late 1980s; both vaccines are well accepted and confer moderate protection (50 to 70%) in older children and adults. However, neither vaccine is licensed for routine immunization of infants (52).The Vi capsular polysaccharide is both an essential virulence factor and a protective antigen for S. Typhi (36, 38, 39). The concentration of serum IgG anti-Vi is correlated with immunity to the pathogen (22, 25, 26, 28, 36, 38, 49). However, Vi is not suitable for routine immunization of infants and young children because of its age-related immunogenicity and T-cell independence. As was shown for other capsular polysaccharides, such as Haemophilus influenzae type b (8, 37); meningococcus groups A, C, and W135; and Streptococcus pneumoniae (12, 20), Vi covalently bound with protein conferred T-cell dependence and increased immunogenicity (48-50). To date, diphtheria toxoid (DT), tetanus toxoid (TT), cholera toxins (CT), the B subunit of the heat-labile toxin (LT-B) of Escherichia coli, recombinant outer membrane protein of Klebsiella pneumoniae (rP40), and iron-regulated outer-membrane proteins (IROMPs) of S. Typhi have served as carriers for Vi polysaccharide in laboratory studies (16, 17, 32, 48-50; personal communications). An improved method was developed (24), utilizing adipic acid dihydrazide (ADH) as the linker and Pseudomonas aeruginosa recombinant exoprotein A (rEPA) as the carrier. Clinical trials of Vi-rEPA conjugates conferred 89% protection in Vietnamese children 2 to 5 years old for 46 months (23, 26, 28). The level of serum IgG anti-Vi induced by Vi-rEPA conjugates was correlated with prevention of typhoid fever in these studies (7, 21-23, 26, 28).One limitation of using rEPA as the carrier protein is the lack of regulatory precedent in licensing vaccines. In this report, five lots of Vi conjugates using DT manufactured by pharmaceutical companies in China and India were prepared (24, 48, 49). Modifications of conjugation procedures were made for the purposes of easy adoption and scale up by manufacturers. The stability of Vi-DT was studied for the feasibility of stockpiling in disaster relief.Another important aspect of conjugate vaccine implementation is the optimum immunization formulation and schedule using alternating injections of polysaccharide and conjugate. Priming or boosting effects of polysaccharide on its conjugate vaccine have been observed in infants injected with pneumococcal and meningococcal vaccines (3, 4, 31, 40). There was no consistent conclusion about various types of polysaccharides studied (6, 9, 31, 40, 41). Here, we compared the immune response of Vi polysaccharide injected before or after the administration of Vi-DT with the responses of those receiving 2 injections of Vi-DT. We also investigated the dosage effect for the purpose of better formulation.  相似文献   

4.
5.
Moraxella catarrhalis is a human pathogen causing otitis media in infants and respiratory infections in adults, particularly patients with chronic obstructive pulmonary disease. The surface protein Hag (also designated MID) has previously been shown to be a key adherence factor for several epithelial cell lines relevant to pathogenesis by M. catarrhalis, including NCIH292 lung cells, middle ear cells, and A549 type II pneumocytes. In this study, we demonstrate that Hag mediates adherence to air-liquid interface cultures of normal human bronchial epithelium (NHBE) exhibiting mucociliary activity. Immunofluorescent staining and laser scanning confocal microscopy experiments demonstrated that the M. catarrhalis wild-type isolates O35E, O12E, TTA37, V1171, and McGHS1 bind principally to ciliated NHBE cells and that their corresponding hag mutant strains no longer associate with cilia. The hag gene product of M. catarrhalis isolate O35E was expressed in the heterologous genetic background of a nonadherent Haemophilus influenzae strain, and quantitative assays revealed that the adherence of these recombinant bacteria to NHBE cultures was increased 27-fold. These experiments conclusively demonstrate that the hag gene product is responsible for the previously unidentified tropism of M. catarrhalis for ciliated NHBE cells.Moraxella catarrhalis is a gram-negative pathogen of the middle ear and lower respiratory tract (29, 40, 51, 52, 69, 78). The organism is responsible for ∼15% of bacterial otitis media cases in children and up to 10% of infectious exacerbations in patients with chronic obstructive pulmonary disease (COPD). The cost of treating these ailments places a large financial burden on the health care system, adding up to well over $10 billion per annum in the United States alone (29, 40, 52, 95, 97). In recent years, M. catarrhalis has also been increasingly associated with infections such as bronchitis, conjunctivitis, sinusitis, bacteremia, pneumonia, meningitis, pericarditis, and endocarditis (3, 12, 13, 17-19, 24, 25, 27, 51, 67, 70, 72, 92, 99, 102-104). Therefore, the organism is emerging as an important health problem.M. catarrhalis infections are a matter of concern due to high carriage rates in children, the lack of a preventative vaccine, and the rapid emergence of antibiotic resistance in clinical isolates. Virtually all M. catarrhalis strains are resistant to β-lactams (34, 47, 48, 50, 53, 65, 81, 84). The genes specifying this resistance appear to be gram positive in origin (14, 15), suggesting that the organism could acquire genes conferring resistance to other antibiotics via horizontal transfer. Carriage rates as high as 81.6% have been reported for children (39, 104). In one study, Faden and colleagues analyzed the nasopharynx of 120 children over a 2-year period and showed that 77.5% of these patients became colonized by M. catarrhalis (35). These investigators also observed a direct relationship between the development of otitis media and the frequency of colonization. This high carriage rate, coupled with the emergence of antibiotic resistance, suggests that M. catarrhalis infections may become more prevalent and difficult to treat. This emphasizes the need to study pathogenesis by this bacterium in order to identify vaccine candidates and new targets for therapeutic approaches.One key aspect of pathogenesis by most infectious agents is adherence to mucosal surfaces, because it leads to colonization of the host (11, 16, 83, 93). Crucial to this process are surface proteins termed adhesins, which mediate the binding of microorganisms to human cells and are potential targets for vaccine development. M. catarrhalis has been shown to express several adhesins, namely UspA1 (20, 21, 59, 60, 77, 98), UspA2H (59, 75), Hag (also designated MID) (22, 23, 37, 42, 66), OMPCD (4, 41), McaP (61, 100), and a type 4 pilus (63, 64), as well as the filamentous hemagglutinin-like proteins MhaB1, MhaB2, MchA1, and MchA2 (7, 79). Each of these adhesins was characterized by demonstrating a decrease in the adherence of mutant strains to a variety of human-derived epithelial cell lines, including A549 type II pneumocytes and Chang conjunctival, NCIH292 lung mucoepidermoid, HEp2 laryngeal, and 16HBE14o-polarized bronchial cells. Although all of these cell types are relevant to the diseases caused by M. catarrhalis, they lack important aspects of the pathogen-targeted mucosa, such as the features of cilia and mucociliary activity. The ciliated cells of the respiratory tract and other mucosal membranes keep secretions moving out of the body so as to assist in preventing colonization by invading microbial pathogens (10, 26, 71, 91). Given this critical role in host defense, it is interesting to note that a few bacterial pathogens target ciliated cells for adherence, including Actinobacillus pleuropneumoniae (32), Pseudomonas aeruginosa (38, 108), Mycoplasma pneumoniae (58), Mycoplasma hyopneumoniae (44, 45), and Bordetella species (5, 62, 85, 101).In the present study, M. catarrhalis is shown to specifically bind to ciliated cells of a normal human bronchial epithelium (NHBE) culture exhibiting mucociliary activity. This tropism was found to be conserved among isolates, and analysis of mutants revealed a direct role for the adhesin Hag in binding to ciliated airway cells.  相似文献   

6.
Vancomycin MICs (V-MIC) and the frequency of heteroresistant vancomycin-intermediate Staphylococcus aureus (hVISA) isolates are increasing among methicillin (meticillin)-resistant Staphylococcus aureus (MRSA) isolates, but their relevance remains uncertain. We compared the V-MIC (Etest) and the frequency of hVISA (Etest macromethod) for all MRSA blood isolates saved over an 11-year span and correlated the results with the clinical outcome. We tested 489 isolates: 61, 55, 187, and 186 isolates recovered in 1996-1997, 2000, 2002-2003, and 2005-2006, respectively. The V-MICs were ≤1, 1.5, 2, and 3 μg/ml for 74 (15.1%), 355 (72.6%), 50 (10.2%), and 10 (2.1%) isolates, respectively. We detected hVISA in 0/74, 48/355 (13.5%), 15/50 (30.0%), and 8/10 (80.0%) isolates with V-MICs of ≤1, 1.5, 2, and 3 μg/ml, respectively (P < 0.001). The V-MIC distribution and the hVISA frequency were stable over the 11-year period. Most patients (89.0%) received vancomycin. The mortality rate (evaluated with 285 patients for whose isolates the trough V-MIC was ≥10 μg/ml) was comparable for patients whose isolates had V-MICs of ≤1 and 1.5 μg/ml (19.4% and 27.0%, respectively; P = 0.2) but higher for patients whose isolates had V-MICs of ≥2 μg/ml (47.6%; P = 0.03). However, the impact of V-MIC and hVISA status on mortality or persistent (≥7 days) bacteremia was not substantiated by multivariate analysis. Staphylococcal chromosome cassette mec (SCCmec) typing of 261 isolates (including all hVISA isolates) revealed that 93.0% of the hVISA isolates were SCCmec type II. These findings demonstrate that the V-MIC distribution and hVISA frequencies were stable over an 11-year span. A V-MIC of ≥2 μg/ml was associated with a higher rate of mortality by univariate analysis, but the relevance of the V-MIC and the presence of hVISA remain uncertain. A multicenter prospective randomized study by the use of standardized methods is needed to evaluate the relevance of hVISA and determine the optimal treatment of patients whose isolates have V-MICs of ≥2.0 μg/ml.The treatment of methicillin (meticillin)-resistant Staphylococcus aureus (MRSA) bacteremia with vancomycin is often associated with a poor clinical outcome (6, 15, 28, 40). Treatment failure was reported among patients infected with isolates whose vancomycin MICs were ≥4 μg/ml (6, 9, 12, 25, 28, 42). This prompted the Clinical and Laboratory Standards Institute to lower the cutoffs for S. aureus susceptibility to ≤2 μg/ml for susceptible, 4 to 8 μg/ml for intermediate (vancomycin-intermediate S. aureus [VISA]), and 16 μg/ml for resistance (39). Within the susceptibility range, the MIC is reported to increase over time (14, 25, 35-40). This is often referred to as MIC creep (38). Additionally, isolates with heteroresistance (heteroresistant vancomycin-intermediate S. aureus [hVISA]) are emerging, and this has uncertain implications for laboratory detection and clinical management (2, 5, 15, 24, 40-42). The first isolate of hVISA to be identified was reported from Japan in 1997 (11). Since then, it has been reported worldwide at frequencies of 0 to 50% (2, 4, 6, 9, 12, 19, 20, 21, 24, 26, 27, 31, 40, 42, 44). This disparity in frequency is probably a result of its variable incidence and the different testing methodologies used. Likewise, the frequency of isolates with MICs of 1.5 to <4 μg/ml varies according to the testing method used (3, 32). The relevance of an MIC on the higher side of the susceptibility range and the presence of hVISA isolates remains uncertain (8, 19, 21). Therapeutic failure was reported in patients infected with isolates with vancomycin MICs of 2 μg/ml (6, 12, 28) and 1.5 or 1 μg/ml (25, 34, 37). Most clinical microbiology laboratories use automated testing methods that are known to underestimate the vancomycin MIC (13, 24). Additionally, most previous studies addressing the relevance of such isolates were observational and usually involved only a few patients and poorly selected controls (1, 4, 7, 9, 12, 14, 25, 35, 38, 42). At our institution, we found the frequency of hVISA isolates among isolates from patients with persistent MRSA bacteremia to be 14%; however, heteroresistance did not correlate with the mortality rate (19). In the current study, we tested all blood MRSA isolates collected over 11 years to determine whether the vancomycin MIC and the prevalence of hVISA have changed over time and to evaluate the effects of increasing vancomycin MICs and the hVISA frequency on patient outcomes.  相似文献   

7.
In the present study, two immunoglobulin G (IgG) immunoblot assays and one IgG Western blot assay were compared to the rapid plasma reagin test (RPR), the fluorescent treponemal antibody absorption test (FTA-ABS), and the Treponema pallidum particle agglutination assay (TP-PA). The agreement levels of the Viramed, Virotech, and MarDx assays were 97.0%, 96.4%, and 99.4%, and the agreements of samples inconclusive by FTA-ABS and resolved by TP-PA were 91.7%, 83.3%, and 69.4%, respectively.Syphilis, a disease caused by Treponema pallidum, is transmitted congenitally or through sexual intercourse (8-9). Non-treponema-based tests such as the rapid plasma reagin test (RPR) are used to detect syphilis infection (6, 9-10). These tests may produce false-positive results in pregnant women and patients with infections (3, 5-6, 9, 11). An algorithm has been developed for the serological diagnosis of syphilis which includes a non-treponema-based screening test and a treponema-based confirmatory assay (1-2, 7, 11). Traditional confirmatory assays include the fluorescent treponemal antibody absorption test (FTA-ABS) and the T. pallidum particle agglutination assay (TP-PA) (9).Western blot-based assays to detect immunoglobulin G (IgG) antibodies may prove useful, especially in cases where the FTA-ABS is inconclusive. In the present study, results of two immunoblot assays and one Western blot assay were compared to FTA-ABS/TP-PA and RPR results, as well as to each other.  相似文献   

8.
Many currently available diagnostic tests for typhoid fever lack sensitivity and/or specificity, especially in areas of the world where the disease is endemic. In order to identify a diagnostic test that better correlates with typhoid fever, we evaluated immune responses to Salmonella enterica serovar Typhi (serovar Typhi) in individuals with suspected typhoid fever in Dhaka, Bangladesh. We enrolled 112 individuals with suspected typhoid fever, cultured day 0 blood for serovar Typhi organisms, and performed Widal assays on days 0, 5, and 20. We harvested peripheral blood lymphocytes and analyzed antibody levels in supernatants collected on days 0, 5, and 20 (using an antibody-in-lymphocyte-supernatant [ALS] assay), as well as in plasma on these days. We measured ALS reactivity to a serovar Typhi membrane preparation (MP), a formalin-inactivated whole-cell preparation, and serovar Typhi lipopolysaccharide. We measured responses in healthy Bangladeshi, as well as in Bangladeshi febrile patients with confirmed dengue fever or leptospirosis. We categorized suspected typhoid fever individuals into different groups (groups I to V) based on blood culture results, Widal titer, and clinical features. Responses to MP antigen in the immunoglobulin A isotype were detectable at the time of presentation in the plasma of 81% of patients. The ALS assay, however, tested positive in all patients with documented or highly suspicious typhoid, suggesting that such a response could be the basis of improved diagnostic point-of-care-assay for serovar Typhi infection. It can be important for use in epidemiological studies, as well as in difficult cases involving fevers of unknown origin.Salmonella enterica serovar Typhi (serovar Typhi) is the cause of typhoid fever, an illness that affects over 20,000,000 individuals worldwide each year, killing over 200,000 (5, 8, 16). The largest burden of typhoid fever is borne by impoverished individuals in resource-poor areas of the world. Serovar Typhi is a human-restricted invasive enteric pathogen which, after ingestion, crosses the intestinal mucosa, is taken up by gut-associated lymphoreticular tissues, and enters the systemic circulation. Both mucosal and systemic host immune responses are stimulated after infection. Serovar Typhi is an intracellular pathogen, and antibody and cell-mediated immune responses occur after infection or immunization with live oral attenuated typhoid vaccines (10, 25, 34).Diagnostic tests for typhoid fever often lack sensitivity and/or specificity, especially in areas of the world that are endemic for typhoid fever, where clinically distinguishing typhoid fever from other febrile illnesses is difficult (5, 17, 39). Microbiologic culturing of blood is approximately 30 to 70% sensitive, with the highest sensitivity being associated with an absence of prior use of antibiotics and the culturing of larger volumes of blood, features that complicate this mode of diagnosis in young children (5, 6, 8, 36). Microbiologic culturing of bone marrow aspirates is more sensitive than blood but often clinically impractical (1, 11, 12). Serum Widal assay titers are often nonspecific in endemic settings and are of limited value unless titers are markedly elevated or are analyzed for changes from acute to convalescent phases of illness (18, 33, 38). Molecular diagnostic assays including PCR are promising, but issues of practicality, contamination, and quality control have limited their use in many resource-poor areas of the world (14).Since serovar Typhi interacts with both the mucosal and the systemic immune systems, we were interested to determine whether analyses of mucosal immune responses would give improved insight into this human-restricted infection. Activated mucosal lymphocytes migrate from intestinal tissue and circulate within peripheral blood before rehoming to mucosal tissues (20, 31). This migration peaks 1 to 2 weeks after intestinal infection and may be measured by using peripheral blood mononuclear cells (PBMC) in an antibody-secreting cell (ASC) assay (19, 26) or in supernatants recovered from harvested PBMC (the “antibody in lymphocyte supernatant” [ALS] assay) (7, 31). Although ALS and ASC responses have previously been measured after immunization with oral live attenuated typhoid vaccines, detailed analyses of ALS or ASC responses in individuals with wild-type typhoid fever are lacking (21, 24). In order to gain further insight into mucosal immune responses during wild-type serovar Typhi infection, we undertook a study to characterize the serum and ALS responses to serovar Typhi among individuals with suspected typhoid fever in Bangladesh.  相似文献   

9.
Coxiella burnetii infects mononuclear phagocytes, where it directs biogenesis of a vacuolar niche termed the parasitophorous vacuole (PV). Owing to its lumenal pH (∼5) and fusion with endolysosomal vesicles, the PV is considered phagolysosome-like. However, the degradative properties of the mature PV are unknown, and there are conflicting reports on the maturation state and growth permissiveness of PV harboring virulent phase I or avirulent phase II C. burnetii variants in human mononuclear phagocytes. Here, we employed infection of primary human monocyte-derived macrophages (HMDMs) and THP-1 cells as host cells to directly compare the PV maturation kinetics and pathogen growth in cells infected with the Nine Mile phase I variant (NMI) or phase II variant (NMII) of C. burnetii. In both cell types, phase variants replicated with similar kinetics, achieving roughly 2 to 3 log units of growth before they reached stationary phase. HMDMs infected by either phase variant secreted similar amounts of the proinflammatory cytokines interleukin-6 and tumor necrosis factor alpha. In infected THP-1 cells, equal percentages of NMI and NMII PVs decorate with the early endosomal marker Rab5, the late endosomal/lysosomal markers Rab7 and CD63, and the lysosomal marker cathepsin D at early (8 h) and late (72 h) time points postinfection (p.i.). Mature PVs (2 to 4 days p.i.) harboring NMI or NMII contained proteolytically active cathepsins and quickly degraded Escherichia coli. These data suggest that C. burnetii does not actively inhibit phagolysosome function as a survival mechanism. Instead, NMI and NMII resist degradation to replicate in indistinguishable digestive PVs that fully mature through the endolysosomal pathway.Coxiella burnetii is a wide-ranging facultative intracellular bacterium (37) that causes the zoonosis Q fever, a disease that generally manifests as an acute, debilitating flu-like illness (34). A small developmental form of the pathogen confers pronounced environmental stability (21), a characteristic that facilitates aerosol transmission of the organism. Human infection primarily occurs via inhalation of contaminated material generated by domestic livestock, the primary animal reservoirs of C. burnetii. The organism is highly infectious, with the infective dose approaching one bacterium (35). The main target cells of C. burnetii during natural infection are mononuclear phagocytes, such as alveolar macrophages (27, 48). Consequently, infection of cultured primary or immortalized human monocytes/macrophages is considered the most physiologically relevant in vitro model of C. burnetii-host cell interactions (52). In human mononuclear phagocytes and other cell types, C. burnetii replicates within a membrane-bound compartment termed the parasitophorous vacuole (PV) (52).The genetic intractability of C. burnetii has limited the availability of knowledge of the pathogen''s virulence mechanisms and host-pathogen interactions. Currently, lipopolysaccharide (LPS) is the only confirmed virulence factor of the organism (35). Full-length LPS is produced by virulent phase I organisms isolated from natural sources and infections, typified by the Nine Mile phase I variant (NMI) reference strain (strain RSA493). Serial passage of phase I C. burnetii in embryonated eggs or tissue culture selects for phase II bacteria, which produce a severely truncated LPS that lacks the O antigen and some core sugars (20, 35). A cloned phase II variant originating from NMI, termed Nine Mile phase II variant (NMII; strain RSA439, clone 4), has an ∼26-kb chromosomal deletion that eliminates multiple genes involved in LPS biosynthesis (24, 35) and is avirulent for immunocompetent mice and guinea pigs (4, 35). NMII is a biosafety level 2 organism, while biosafety level 3 is required for all other C. burnetii strains.A conundrum in C. burnetii biology is whether the virulence properties of NMI and NMII are associated with the ultimate maturation state of their respective PVs in resting primary human monocytes and/or macrophages (17, 52). PVs of both phase variants decorate with the late endosomal/lysosomal markers lysosome-associated membrane protein 1 (LAMP-1), CD63 (LAMP-3), and the vacuolar type H+ ATPase and are moderately acidic (pH ∼5) (17). However, on the basis of the minimal recruitment of cathepsin D and the small GTPase Rab7, it has been suggested that maturation of PVs containing NMI stalls at a late endosomal stage (17). This trafficking behavior correlates with pathogen survival but in most cases little to no replication (8, 17, 18, 23). Conversely, PVs sheltering NMII are proposed to fully mature into a bactericidal phagolysosomal compartment that contains active lysosomal hydrolases (17, 18, 23).In conflict with the phase-specific trafficking model in human mononuclear phagocytes is the observation that NMI and NMII both grow robustly in CD63-positive PVs of human monocyte-derived dendritic cells (DCs) (47). Moreover, phase variants productively infect THP-1 cells and primary nonhuman primate alveolar macrophages, where they induce similar host cell prosurvival responses (53, 54). In animal cell lines, NMI and NMII replicate equally in vacuoles that fully mature to contain lysosomal markers (5). For example, PVs harboring replicating NMI in murine L-929 fibroblasts and J774 macrophages clearly fuse with lysosomes, as evidenced by the presence of active acid phosphatase and 5′-nucleotidase (2, 11, 25). NMII has also recently been demonstrated to replicate in a cathepsin D-positive vacuole in human HeLa epithelial cells (1).Because multiple laboratories have recently employed avirulent NMII to investigate C. burnetii infection of host cells (1, 30, 38, 50, 54), it is important to ascertain the degree to which in vitro infection by NMII recapitulates infection by virulent NMI, particularly with respect to PV maturation in human mononuclear phagocytes. To this end, we directly compared the growth kinetics and PV maturation of NMI and NMII in human monocyte-derived macrophages (HMDMs) and phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells, which accurately mimic the properties of human primary macrophages (29). Additionally, the cytokine responses of infected HMDMs were examined, as were the degradative properties and cathepsin activities of PVs. We conclude that human macrophages respond similarly to NMI and NMII C. burnetii by delivering organisms to phenotypically indistinguishable, degradative, phagolysosome-like compartments.  相似文献   

10.
Rift Valley fever (RVF) is an epizootic viral disease of sheep that can be transmitted from sheep to humans, particularly by contact with aborted fetuses. A capripoxvirus (CPV) recombinant virus (rKS1/RVFV) was developed, which expressed the Rift Valley fever virus (RVFV) Gn and Gc glycoproteins. These expressed glycoproteins had the correct size and reacted with monoclonal antibodies (MAb) to native glycoproteins. Mice vaccinated with rKS1/RVFV were protected against RVFV challenge. Sheep vaccinated with rKS1/RVFV twice developed neutralizing antibodies and were significantly protected against RVFV and sheep poxvirus challenge. These findings further document the value of CPV recombinants as ruminant vaccine vectors and support the inclusion of RVFV genes encoding glycoproteins in multivalent recombinant vaccines to be used where RVF occurs.Rift Valley fever (RFV) virus (RVFV) is a mosquito-borne member of the genus Phlebovirus, family Bunyaviridae. It is widely distributed in Africa, causing endemic and epidemic disease in both humans and livestock, including sheep, cattle, and goats. RVF was first described in Kenya and was shown to be caused by a filterable virus transmissible via blood (9). Acute RVF in lambs is characterized by fever and death within 24 to 48 h of being detected (43). Signs in adult sheep include fever, mucopurulent nasal discharge, hemorrhagic diarrhea, and abortion in pregnant ewes (43). RVFV can be transmitted from infected sheep to humans, particularly when humans are exposed to aborted sheep fetuses and blood.Attenuated live RVFV vaccines are available for use in livestock. A mutagen-attenuated RVFV vaccine induces protective immune responses in lambs and appears to be safe (25); however, other studies documented teratogenic effects on lambs from vaccinated pregnant ewes similar to those caused by the attenuated RVFV strain Smithburn (18). An inactivated RVFV vaccine induces neutralizing antibody responses in humans (33), and its use in sheep would not induce teratogenic effects or abortions. However, the inactivated vaccine requires 3 doses (33) and is expensive to produce. Efforts to make RVFV vaccines without these disadvantages include an attenuated RVFV developed by reverse genetics and lacking the NSs and NSm genes (4) and other new-generation RVFV vaccines (reviewed in reference 19) that protect mice against virus challenge (7, 16, 24, 27).The middle (M) RNA segment of the RVFV genome encodes the viral glycoproteins Gn and Gc (8, 20), and recombinant vaccinia virus expressing these glycoproteins induces neutralizing antibody and protective immunity to RVFV in mice (7). Vaccinia virus is safe for animals, but there is some risk to humans, as it was reported previously to spread from human vaccinees to contacts (28, 55) and to cause serious clinical disease in human immunodeficiency virus-infected patients (36). Although modified vaccinia virus Ankara is a safer alternative for humans (6, 57), there are animal poxviruses with naturally restricted host ranges for vaccine vectors in animals (1, 13, 30, 31, 40, 46, 47, 52, 53).For ruminants, the genus Capripoxvirus (CPV) of the family Poxviridae has been an effective recombinant vector to induce protective immunity against several other viruses (3, 17, 29, 32, 40, 41, 51). This genus has three closely related species causing sheep pox, goat pox, and lumpy skin disease (LSD) of cattle. A recombinant LSD vaccine expressing the Gn and Gc glycoproteins of RVFV induced protection against RVFV challenge in mice (52, 53) and sheep (52). The three species of CPV have 96 to 97% nucleotide identity (49) and are restricted to ruminants, with no evidence of human infections (10, 11). Furthermore, attenuated CPV vaccines are in use in Africa and the Middle East to control ruminant poxvirus disease (11, 21). The use of a CPV vector to deliver virus vaccines to ruminants also induces immunity to the CPV vector, thus increasing the valence of the vaccine (3, 17, 39, 40). We report here the construction of a recombinant CPV that expresses the RVFV Gn and Gc glycoproteins and induces protective immunity against RVFV and sheep poxvirus (SPV) challenge in sheep.  相似文献   

11.
Groups of 15 laboratory-bred beagles were vaccinated and boosted with either a placebo or adjuvanted bivalent bacterin comprised of a traditional Borrelia burgdorferi strain and a unique ospA- and ospB-negative B. burgdorferi strain that expressed high levels of OspC and then challenged with B. burgdorferi-infected Ixodes scapularis ticks. The vaccinated dogs produced high titers of anti-OspA and anti-OspC borreliacidal antibodies, including borreliacidal antibodies specific for an epitope within the last seven amino acids at the OspC carboxy terminus (termed OspC7) that was conserved among pathogenic Borrelia genospecies. In addition, spirochetes were eliminated from the infected ticks that fed on the bacterin recipients, B. burgdorferi was not isolated from the skin or joints, and antibody responses associated specifically with canine infection with B. burgdorferi were not produced. In contrast, B. burgdorferi was recovered from engorged ticks that fed on 13 (87%) placebo-vaccinated dogs (P < 0.0001), skin biopsy specimens from 14 (93%) dogs (P < 0.0001), and joint tissue specimens from 8 (53%) dogs (P = 0.0022). In addition, 14 (93%) dogs developed specific antibody responses against B. burgdorferi proteins, including 11 (73%) with C6 peptide antibodies (P < 0.0001). Moreover, 10 (67%) dogs developed Lyme disease-associated joint abnormalities (P < 0.0001), including 4 (27%) dogs that developed joint stiffness or lameness and 6 (40%) that developed chronic joint inflammation (synovitis). The results therefore confirmed that the bacterin provided a high level of protection against Lyme disease shortly after immunization.Dogs with Lyme disease rarely develop acute illness (26); but the infection reliably causes chronic subclinical polyarthritis and/or periarteritis (43) and occasionally causes frank recurrent arthritis with myalgia, fever, anorexia, and lethargy (41, 42); renal failure (11); heart block (24); or neurologic disease (9). In addition, the severity of the illness appears to be influenced by the species and the age of the dog. For example, beagle puppies are prone to oligoarthropathy (2, 39), while adults are more likely to develop asymptomatic synovitis (2, 7, 43). Moreover, Labrador retrievers, golden retrievers, and Shetland sheepdogs appear to be more susceptible to kidney nephropathy (11).Several commercial dog vaccines are currently available, and each provides protection primarily by inducing the production of anti-OspA borreliacidal antibodies that stimulate complement to form a membrane attack complex (33) that kills Borrelia burgdorferi in the tick midgut as the infected vectors ingest blood (12, 16). The approach has been effective (8, 10, 31, 40), but the vaccines may also fail (23) because the expression of OspA is downregulated immediately after the infected tick begins acquiring a blood meal (36), borreliacidal antibodies specific for OspA are genospecies specific (28, 49), and ticks can be infected with variant OspA-negative Lyme disease spirochetes (15).Another viable target for antibody-mediated immunity is OspC (18), especially since, in contrast to OspA, the Lyme disease spirochetes upregulate the expression of OspC as the tick begins feeding (36) and express OspC during the early stages of a mammalian infection (45). However, vaccines that provide protection by inducing anti-OspC antibodies have not been pursued aggressively, likely because the extreme heterogeneity, even among B. burgdorferi isolates from the same geographic area (44, 47), suggested that the protection afforded by anti-OspC antibodies would not be comprehensive.However, researchers (21) recently identified an epitope within the surface-exposed 7 amino acids of the carboxy terminus of OspC (hereafter referred to as OspC7) recognized by anti-OspC borreliacidal antibodies. More significantly, the epitope within the OspC7 region is conserved among the pathogenic Borrelia genospecies, including B. afzelii and B. garinii. Therefore, anti-OspC borreliacidal antibodies formed against the OspC7 region should provide comprehensive protection and should be effective against spirochetes in the tick and during the early stages of mammalian infection. Moreover, in contrast to the use of vaccination to induce anti-OspA borreliacidal antibodies, vaccination with proteins such as OspC that are also expressed during mammalian infection provides the possibility of producing an effective anamnestic immunologic memory response. We therefore developed a bivalent bacterin that induced both anti-OspA and anti-OspC borreliacidal antibodies, including borreliacidal antibodies specific for the conserved epitope within the OspC7 region, and evaluated the ability of immunization to provide protection against challenge from B. burgdorferi-infected ticks.(This study was presented in part at the 25th American College of Veterinary Internal Medicine Forum, Seattle, WA, 6 to 9 June 2007 [22a, 22b].)  相似文献   

12.
Comparison of flocked swabs (E-swabs; Copan) to the standard rayon swabs (Copan) was undertaken for detection of Staphylococcus aureus nasal carriage among staff at Dorevitch Pathology in Heidelberg, Melbourne, Australia. Among 100 volunteers, 36 were found to be colonized with S. aureus by one or both swab results. The prevalence detected by E-swabs was 35%, and the prevalence through rayon swabs was 34% (95% confidence interval [CI] for the difference in proportions, −12 to 14). Thirty-three volunteers tested positive with both types of swabs, while 2 were detected on E-swabs alone and another on rayon swab testing alone. There was no evidence of a significant difference in carriage detected by E-swabs or rayon swabs.Staphylococcus aureus is a common cause of infections in the community and a major cause of hospital-associated morbidity (18). Colonization is well described, with up to 30% of the population thought to be carriers (7, 16, 18), and is associated with a higher risk of infection in the hospital setting (2, 4, 9, 11, 12, 15, 17, 18). The anterior nares have been shown to be the most frequent site of carriage and therefore a single site for detection (9, 10, 18). Nasal carriage is defined as “persistent” or “intermittent or noncarriage,” with persistent carriers showing an increased risk of infection, compared with intermittent carriers who share the same low risk as noncarriers (13). Given the clinical relevance, it is imperative to use the best swab system which would provide the highest yield in detecting nasal carriage. Flocked swabs have been described as improving uptake of epithelial cells and, therefore, microorganisms and viruses (1, 5, 6, 14), but are more expensive than standard rayon swabs, so it is therefore worth investigating whether there is evidence that E-swabs perform better in detecting nasal carriage.  相似文献   

13.
This open, randomized phase I study evaluated the safety and reactogenicity of an experimental meningococcal serogroup B (MenB) vaccine obtained from outer membrane vesicle detoxified L3-derived lipooligosaccharide. Healthy young adults (n = 150) were randomized to receive either experimental vaccine (provided in five formulations, n = 25 in each group) or VA-Mengoc-BC (control, n = 25) administered on a 0- to 6-week/6-month schedule. Serum bactericidal assays performed against three MenB wild-type strains assessed the immune response, defined as a 4-fold increase from pre- to postvaccination. No serious adverse events related to vaccination were reported. Pain at the injection site, fatigue, and headache were the most commonly reported adverse events. Solicited adverse events graded level 3 (i.e., preventing daily activity) were pain (up to 17% of the test subjects versus 32% of the controls), fatigue (up to 12% of the test subjects versus 8% of the controls), and headache (up to 4% of any group). Swelling graded level 3 (greater than 50 mm) occurred in up to 4% of the test subjects versus 8% of the controls. The immune responses ranged from 5% to 36% across experimental vaccines for the L3 H44-76 strain (versus 27% for the control), from 0% to 11% for the L3 NZ98/124 strain (versus 23% for the control), and from 0% to 13% for the L2 760676 strain (versus 59% for the control). All geometric mean titers were below those measured with the control vaccine. The five experimental formulations were safe and well tolerated but tended to be less immunogenic than the control vaccine.Meningococcal diseases caused by Neisseria meningitidis are a significant health burden throughout the world, leading to death and permanent sequelae (15). Whereas polysaccharide or polysaccharide conjugate vaccines are effective against serogroups A, C, Y, and W135, N. meningitidis serogroup B (MenB) remains a major cause of death and morbidity throughout the world, infants less than 1 year of age being affected the most (5, 8). Serogroup B outbreaks were reported in Europe, Latin America, Australia, New Zealand, and the United States (3, 7, 22, 33). Immunization against MenB presents a challenge, as the capsular polysaccharide is poorly immunogenic in humans (4) and shares molecular mimicry with human antigens (11), which guided the search for outer membrane vesicle (OMV) vaccines (16).Three MenB OMV vaccines with PorA protein as the dominant antigen have been brought to the market (VA-Mengoc-BC [Finlay Institute], MeNZB [Chiron], and MenBvac [Norwegian Institute of Public Health]), but although they have shown protection against PorA-heterologous strains in older children and adults, protection of the youngest is mostly against PorA-homologous MenB strains and their accessibility is geographically limited (7, 9, 18, 21, 25, 26, 31, 34, 36, 37). To be immunogenic in the pediatric and adult populations, a more comprehensive MenB vaccine should include antigens inducing cross-reactive serum bactericidal antibodies (SBA) against a broad spectrum of circulating strains (16, 17, 20, 21, 35). That could best be achieved with non-PorA vaccines (20).Natural immunity against MenB is also induced by protein and lipooligosaccharide (LOS) antigens (28), but proteins and LOS may vary substantially across meningococcal strains. However, at least 70% of invasive MenB isolates express LOS of immunotype L3,7 (19, 27, 29, 30). Hence, GlaxoSmithKline (GSK) Biologicals has developed an experimental vaccine based on the LOS L3 immunotype that was shown to induce bactericidal antibodies in preclinical studies (39). Two detoxified LOS type 3 MenB experimental vaccines differing by the length of the LOS were developed. Such formulations have shown good safety and immunogenicity during preclinical and toxicological studies (39).The primary objective of this study was to evaluate the safety and reactogenicity of several formulations of the experimental vaccines given to healthy young adults. The secondary objective was to assess the immunogenicity of the different formulations.  相似文献   

14.
The diagnosis of Clostridium difficile infection continues to be a challenge for many clinical microbiology laboratories. A new lateral flow assay, the C.Diff Quik Chek Complete assay, which tests for the presence of both glutamate dehydrogenase (GDH) and C. difficile toxins A and B, was evaluated for its ability to diagnose C. difficile disease. The results of this assay were compared to those of both PCR and toxigenic culture. The results showed that this assay allows 88% of specimens to be accurately screened as either positive (both tests positive) or negative (both tests negative) for the presence of toxigenic C. difficile in less than 30 min and with minimal hands-on time. Use of a random-access PCR for the analysis of specimens with discrepant results (one test positive and the other negative) allows the easy, rapid, and highly sensitive (100%; 95% confidence interval [CI], 89.6 to 100%) and specific (99.6%; 95% CI, 97.3 to 99.9%) diagnosis of C. difficile disease. The use of this algorithm would save institutional costs, curtail unnecessary isolation days, reduce the nosocomial transmission of disease, and increase the quality of care for patients.The laboratory diagnosis of Clostridium difficile disease has evolved significantly over the last several years, and many tests that may be used to assist with the detection of C. difficile infection are now available. These assays include enzyme immunoassays (EIAs), lateral flow tests, PCR assays, tissue culture cytotoxicity neutralization tests, and toxigenic culture. Many recent papers have reported on the use of different algorithms that use the tests mentioned above to allow the better diagnosis of C. difficile disease (4, 5, 8, 18, 19, 20, 23, 26). Many of these approaches incorporate cytotoxicity neutralization (CTN) assays or anaerobic agar culture with identification of the organism, followed by toxin testing. However, many laboratories do not have the technical expertise, facilities, or training to perform CTN assays (which are labor-intensive and somewhat subjective), and an anaerobic agar culture with toxin detection may take several days; both of these methods delay the reporting of results (14, 17, 19, 20, 21, 29). The use of PCR for the diagnosis of this disease has been shown to be very specific and sensitive but often does not allow for random-access (i.e., real-time) results and can be quite costly to perform as a stand-alone testing method (2, 6, 10, 12, 15, 17, 27, 28). There is a real need for a rapid and simple testing strategy for the accurate diagnosis of C. difficile disease. With this in mind, we examined a simple, rapid two-step algorithm for the laboratory diagnosis of Clostridium difficile disease utilizing the new C.Diff Quik Chek Complete assay, a lateral flow kit that uses a combination of glutamate dehydrogenase (GDH) antigen detection plus toxin A and B detection for initial screening and a random-access, highly sensitive Xpert C. difficile PCR assay which detects the toxin B gene for samples with discrepant results.  相似文献   

15.
Colonizing group B Streptococcus (GBS) capsular polysaccharide (CPS) type IV isolates were recovered from vaginal and rectal samples obtained from 97 (8.4%) nonpregnant women of 1,160 women enrolled in a U.S. multicenter GBS vaccine study from 2004 to 2008. Since this rate was much higher than the rate of prevalence of 0.4 to 0.6% that we found in previous studies, the isolates were analyzed by using surface protein profile identification, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST) to characterize them and identify trends in DNA clonality and divergence. Of the 101 type IV isolates studied, 53 expressed α and group B protective surface (BPS) proteins, 27 expressed BPS only, 20 expressed α only, and 1 had no detectable surface proteins. The isolates spanned three PFGE macrorestriction profile groups, groups 37, 38, and 39, of which group 37 was predominant. The isolates in group 37 expressed the α and BPS proteins, while those in groups 38 and 39 expressed the α protein only, with two exceptions. MLST studies of selective isolates from the four protein profile groups showed that isolates expressing α,BPS or BPS only were of a new sequence type, sequence type 452, while those expressing α only or no proteins were mainly of a new sequence type, sequence type 459. Overall, our study revealed a limited diversity in surface proteins, MLST types, and DNA macrorestriction profiles for type IV GBS. There appeared to be an association between the MLST types and protein expression profiles. The increased prevalence of type IV GBS colonization suggested the possibility that this serotype may emerge as a GBS pathogen.Group B Streptococcus (GBS) (Streptococcus agalactiae) is a leading cause of neonatal infection in the United States, with maternal vaginal or rectal colonization often resulting in the transmission of GBS to the infant during the perinatal period (8, 23). GBS isolates are classified according to nine capsular polysaccharide (CPS) types: types Ia, Ib, and II to VIII and the recently proposed type IX (9, 15, 21, 23, 46, 52). Isolates that do not express any of the known CPS types are designated nontypeable (NT) (2, 6, 21, 40). In addition to CPS, GBS may express one or more surface-localized proteins, including the α and β components of the c protein (24); the alpha-like R proteins, specifically R1, R4(Rib), and R1,R4 (also known as Alp3) (14, 17, 19, 30, 40); and the group B protective surface (BPS) protein (12). Certain protein profiles are associated with each capsular polysaccharide CPS type (2), for example, the c(α only) protein with types Ia and II, c(α + β) with type Ib, and R4(Rib) with type III (2, 14). BPS, expressed by fewer than 3% of colonizing isolates, can be found alone or with another protein in type Ia, II, and V isolates (12, 14).In the United States, the predominant serotypes over the past 2 decades, constituting 70 to 75% of all GBS isolates, have been type Ia, type III, and the more recently emerged type V (14, 15, 20, 52). The remaining isolates consisted primarily of types Ib and II, with types IV, VI, VII, and VIII making up a small fraction of the isolates. We found type IV to represent between 0.4 and 0.6% of colonizing GBS isolates (14, 15), but only rare type IV isolates were found in invasive GBS disease during that same time period (14, 43, 52).In contrast to the previously low percentage of type IV isolates reported for the United States, recent studies in the United Arab Emirates, Turkey, and Zimbabwe showed large proportions of type IV isolates among their GBS isolates. In the United Arab Emirates, type IV was the predominant serotype among colonized pregnant women, representing 26.3% of the GBS isolates (1). In eastern Turkey, it was the second most common serotype, at 8.3%, among colonizing isolates (10), and in Zimbabwe, it was the fourth most common serotype, comprising 5.1% of GBS isolates from colonized pregnant women and 4.0% of all GBS isolates from various sites, including blood and cerebrospinal fluid (CSF), from hospitalized patients (36).Immunization studies of humans (3, 28) and protection studies with mice (37) have shown the potential of vaccines against the common GBS serotypes to prevent invasive neonatal GBS disease through the vaccination of pregnant women (3, 28). The GBS strains described here are from a phase II randomized, double-blinded clinical trial of a GBS serotype III-tetanus toxoid (CPS III-TT) vaccine to prevent the vaginal acquisition of GBS type III in nonpregnant women in three areas of the United States: Pittsburgh (PA), Georgia, and Texas (S. Hillier, unpublished data). Because we found type IV isolates for almost 10% of these patients, we examined the type IV isolates for surface proteins and clonality.Pulsed-field gel electrophoresis (PFGE) was used in this analysis because it is a widely used method that can further characterize GBS isolates within particular CPS type and/or protein profile groups (2, 4, 6, 48). Multilocus sequence typing (MLST) was performed in order to assess the general relatedness of strains within and across laboratories (25, 50). Together, the discriminatory power of PFGE and the objectivity of MLST gave insight into the GBS type IV population genetic structure and the identification of emerging clones (2, 5, 13, 18, 19).  相似文献   

16.
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs and can be considered an alternative for conventional biochemical and molecular identification systems in a conventional microbiological laboratory. First, we evaluated MALDI-TOF MS using 327 clinical isolates previously cultured from patient materials and identified by conventional techniques (Vitek-II, API, and biochemical tests). Discrepancies were analyzed by molecular analysis of the 16S genes. Of 327 isolates, 95.1% were identified correctly to genus level, and 85.6% were identified to species level by MALDI-TOF MS. Second, we performed a prospective validation study, including 980 clinical isolates of bacteria and yeasts. Overall performance of MALDI-TOF MS was significantly better than conventional biochemical systems for correct species identification (92.2% and 83.1%, respectively) and produced fewer incorrect genus identifications (0.1% and 1.6%, respectively). Correct species identification by MALDI-TOF MS was observed in 97.7% of Enterobacteriaceae, 92% of nonfermentative Gram-negative bacteria, 94.3% of staphylococci, 84.8% of streptococci, 84% of a miscellaneous group (mainly Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, and Kingella [HACEK]), and 85.2% of yeasts. MALDI-TOF MS had significantly better performance than conventional methods for species identification of staphylococci and genus identification of bacteria belonging to HACEK group. Misidentifications by MALDI-TOF MS were clearly associated with an absence of sufficient spectra from suitable reference strains in the MALDI-TOF MS database. We conclude that MALDI-TOF MS can be implemented easily for routine identification of bacteria (except for pneumococci and viridans streptococci) and yeasts in a medical microbiological laboratory.Identification of bacteria and yeasts is generally based on conventional phenotypic methods, encompassing culture and growth patterns on specific media, Gram staining, and morphological and biochemical characteristics. Although results of Gram staining can be achieved within minutes, complete identification usually takes 1 or more days. In addition, tests may be difficult to interpret or inconclusive and require specialized staff. Recent molecular methods for microbial identification, such as real-time PCR, sequence analysis, or microarray analysis, have found some application in bacteriology. However, these methods do not provide the complete solution in routine bacterial identifications. To optimize care of patients with infectious diseases, there still is an urgent need for rapid and simple techniques for microbial identification.Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been used to analyze many different biological molecules. The application of microbial identification based on species-specific spectra of peptides and protein masses by mass spectrometry was first reported about 30 years ago (1). By further improvement of the technique, a rapid, accurate, easy-to-use, and inexpensive method has become available for identification of microorganisms (4, 14, 27). MALDI-TOF MS can be used for accurate and rapid identification of various microorganisms, such as Gram-positive bacteria (2, 3, 9, 10, 22, 26), Enterobacteriaceae (5), nonfermenting bacteria (6, 19-21), mycobacteria (12, 16, 24), anaerobes (10, 23), and yeasts (18, 25). Most studies have reported on MALDI-TOF MS identification of a single strain or family of microorganisms in a research setting. Only one study applied MALDI-TOF MS for identification of bacteria—but not yeasts—in conventional microbiology settings but did not evaluate the results for individual bacteria at the species level (27). In the present study, identification of bacteria by MALDI-TOF MS was extensively evaluated for both bacterial and yeast species identification in an academic medical microbiologic laboratory.  相似文献   

17.
Anaerobic bacteria can cause a wide variety of infections, and some of these infections can be serious. Conventional identification methods based on biochemical tests are often lengthy and can produce inconclusive results. An oligonucleotide array based on the 16S-23S rRNA intergenic spacer (ITS) sequences was developed to identify 28 species of anaerobic bacteria and Veillonella. The method consisted of PCR amplification of the ITS regions with universal primers, followed by hybridization of the digoxigenin-labeled PCR products to a panel of 35 oligonucleotide probes (17- to 30-mers) immobilized on a nylon membrane. The performance of the array was determined by testing 310 target strains (strains which we aimed to identify), including 122 reference strains and 188 clinical isolates. In addition, 98 nontarget strains were used for specificity testing. The sensitivity and the specificity of the array for the identification of pure cultures were 99.7 and 97.1%, respectively. The array was further assessed for its ability to detect anaerobic bacteria in 49 clinical specimens. Two species (Finegoldia magna and Bacteroides vulgatus) were detected in two specimens by the array, and the results were in accordance with those obtained by culture. The whole procedure of array hybridization took about 8 h, starting with the isolated colonies. The array can be used as an accurate alternative to conventional methods for the identification of clinically important anaerobes.Anaerobic bacteria are important human pathogens, and infections caused by these bacteria can be serious and life-threatening (6). A recent report from the Mayo Clinic (Rochester, MN) revealed an overall increase in the incidence of anaerobic bacteremias of 74% from 2001 to 2004 compared to that from 1993 to 1996 (20), although the same trend was not found in community hospitals or in an European countries (2, 11). The commonly isolated anaerobic bacteria are the members of the Bacteroides fragilis group and Peptostreptococcus, Clostridium, and Fusobacterium species (3, 6, 20).Most clinical laboratories use differential biochemical tests for the identification of anaerobic microorganisms (35). However, Simmon et al. (31) found that 24% of the isolates of anaerobic bacteria recovered from blood cultures were misidentified and that 10% isolates were not identified to the species level by phenotypic characteristics. A rapid commercial kit, the Rapid ID 32A kit (bioMérieux, Marcy l''Etoile, France), was evaluated for its ability to identify strains in the Bacteroides fragilis group. The results showed that only 78.4% of the strains were correctly identified to the species level without supplemental tests (15). The success of the Rapid ID 32A system for species identification varied with different taxa (10), and a low identification rate (50%) was observed for fusobacteria (16). Veillonella isolates are relatively easily identified to the genus level, but the differentiation of Veillonella isolates at the species level remains difficult and inconclusive due to the lack of discriminatory tests (14). In recent years, increasing antimicrobial resistance for some anaerobic bacteria (1, 13, 33) were noted, especially for species in the B. fragilis group (40). The rapid identification of anaerobic bacteria and the administration of appropriate antimicrobials play crucial roles in preventing mortality and morbidity in patients (6).Molecular methods have emerged as accurate alternatives for the identification of anaerobic bacteria (21, 22, 34, 36). Approximately 9% isolates of bacteremic anaerobes could not be identified to the species level by 16S rRNA gene sequencing, although all isolates were correctly assigned to the genus level (31). Other molecular identification methods targeting the rRNA operon include PCR (32), real-time PCR (26), PCR-restriction fragment length polymorphism analysis (39), and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (37).The intergenic spacer (ITS) region separating the 16S and 23S rRNA genes has been suggested to be a good candidate for use for the identification of aerobic and anaerobic bacteria (8, 19, 42). Moreover, the DNA array technology has been applied to the identification of a variety of microorganisms (12, 17, 41). The aim of the study described here was to develop an oligonucleotide array based on the ITS sequences to identify 28 clinically important species of anaerobes and Veillonella.  相似文献   

18.
Catheter-associated urinary tract infections (CAUTIs) constitute the majority of nosocomial UTIs and pose significant clinical challenges. Enterococcal species are among the predominant causative agents of CAUTIs. However, very little is known about the pathophysiology of Enterococcus-mediated UTIs. We optimized a murine model of foreign body-associated UTI in order to mimic conditions of indwelling catheters in patients. In this model, the presence of a foreign body elicits major histological changes and induces the expression of several proinflammatory cytokines in the bladder. In addition, in contrast to naïve mice, infection of catheter-implanted mice with Enterococcus faecalis induced the specific expression of interleukin 1β (IL-1β) and macrophage inflammatory protein 1α (MIP-1α) in the bladder. These responses resulted in a favorable niche for the development of persistent E. faecalis infections in the murine bladders and kidneys. Furthermore, biofilm formation on the catheter implant in vivo correlated with persistent infections. However, the enterococcal autolytic factors GelE and Atn (also known as AtlA), which are important in biofilm formation in vitro, are dispensable in vivo. In contrast, the housekeeping sortase A (SrtA) is critical for biofilm formation and virulence in CAUTIs. Overall, this murine model represents a significant advance in the understanding of CAUTIs and underscores the importance of urinary catheterization during E. faecalis uropathogenesis. This model is also a valuable tool for the identification of virulence determinants that can serve as potential antimicrobial targets for the treatment of enterococcal infections.Catheter-associated urinary tract infections (CAUTIs) are the most common complications resulting from the use of indwelling urinary catheters (25, 70). CAUTIs account for 40% of all nosocomial infections (48) with more than one million cases diagnosed annually in hospitals and nursing homes in the United States, generating approximately $600 million in medical expenditures every year (26, 69, 70). The pathophysiology of CAUTIs results from the disruption of the normal mechanical and antimicrobial defenses of the bladder and the injuries ensuing from urinary catheterization, which render the bladder environment vulnerable to microbial adhesion, multiplication, and dissemination within the urinary tract (15, 47, 49, 51, 78). Furthermore, indwelling urinary catheters provide an additional surface for microbial attachment and biofilm formation, which is a major component of the pathophysiology of CAUTIs and other chronic device-associated persistent infections (4, 6, 12, 14, 37, 46, 68). Once formed, biofilms provide a favorable milieu for microbial survival within the host as the organisms are shielded from the host immune response, as well as antibiotics and antimicrobial agents (36, 67, 81), leading to chronic or recurrent infections that are difficult to treat. If untreated, CAUTIs can lead to more severe diseases such as acute pyelonephritis, bacteremia, urosepsis, and in some cases, death (38, 77). The high incidence of CAUTIs and their medical and economic challenges underscore the need for a better understanding of CAUTI pathogenesis.While community-acquired UTIs are most commonly due to uropathogenic Escherichia coli (UPEC), UPEC represent only 50% of bacterial isolates derived from patients with CAUTIs (34). The Enterococcus species, especially Enterococcus faecalis and Enterococcus faecium, account for 15% to 30% of CAUTIs (38) and are now considered the third leading cause of hospital-acquired UTIs (20, 68). The ability of many enterococcal isolates to produce biofilms (41, 60, 73) and the increasing microbial resistance to antibiotics, including vancomycin, pose significant challenges for the treatment of enterococcal infections (11, 80).Several rodent models have been developed to study E. faecalis pathogenesis in the urinary tract in single and mixed infections with other Gram-negative pathogens (21, 29, 43, 61, 75). These models involve the transurethral inoculation of bacterial suspensions into the bladders of healthy animals or streptozocin-induced diabetic animals (56) and have been shown to be primarily useful for the study of E. faecalis-mediated pyelonephritis. The experimental conditions defined by these models are inadequate for the investigation of persistent enterococcal CAUTI, since the bacteria are readily cleared from the bladder and fail to establish chronic cystitis (29, 56, 61). Nonetheless, data obtained from these models have implicated some enterococcal factors in UTI pathogenesis, including the enterococcal surface protein Esp (61), the pilus-associated sortase C (SrtC) (30), and the endocarditis and biofilm-associated pilus (Ebp) (65). However, well-characterized adhesins and biofilm determinants often associated with enterococcal UTI isolates, like aggregation substance (AS) and the housekeeping sortase A (SrtA) (17, 27, 33), were reported to be dispensable for virulence in the urinary tract (27, 30). Since these conclusions are drawn from models where persistent infections cannot be established, it is imperative to reexamine the existing paradigm in an animal model that better mimics the transition of E. faecalis from a commensal organism to a virulent pathogen in the urinary tract.In this study, we optimized a rodent model of foreign body-associated UTI, developed in rats by Kurosaka et al. (35) and adapted for mice by Kadurugamuwa et al. (28), to investigate the pathophysiology of E. faecalis-mediated CAUTIs. We report that the presence of silicone catheter implants causes major physiological changes in the bladder, which becomes predisposing to E. faecalis biofilm formation, and is associated with persistent enterococcal cystitis and pyelonephritis. We further demonstrate that biofilm formation on the silicone implants and the development of successful enterococcal UTI are independent of autolytic factors GelE and Atn, also known as AtlA (13), but requires the presence of the housekeeping sortase A (SrtA). Overall, this optimized murine model is well suited to identify host and enterococcal factors critical for pathogenesis in the urinary tract which will provide a better understanding of the mechanisms underlying the pathophysiology of CAUTIs.  相似文献   

19.
Cystic fibrosis (CF) is a multiorgan disease, with the majority of mortalities resulting from pulmonary failure due to repeated pulmonary exacerbations. Recently, members of the Streptococcus anginosus group (S. anginosus, S. constellatus, and S. intermedius), herein referred to as the “Streptococcus milleri group” (SMG) have been implicated as important etiological pathogens contributing to pulmonary exacerbations in CF patients. This is partly due to better microbiological detection of the SMG species through the development of a novel specific medium termed “McKay agar.” McKay agar demonstrated that SMG has been an underreported respiratory pathogen contributing to lung exacerbations. Our aim was to develop a real-time PCR assay to expedite the detection of SMG within diagnostic samples. The cpn60 gene was chosen as a target, with all three members amplified using a single hybridization probe set. SMG strain analysis showed that speciation based on melting curve analysis allowed for the majority of the S. constellatus (96%), S. intermedius (94%), and S. anginosus (60%) strains to be correctly identified. To increase specificity for S. anginosus, two 16S rRNA real-time PCR assays were developed targeting the 16S rRNA gene. The 16s_SA assay is specific for S. anginosus (100%), while the 16s_SCI assay is specific for S. constellatus and S. intermedius (100%). These assays can detect <10 genome equivalents in pure culture and >104 genome equivalents in sputum samples, making this a great tool for assessment of the presence of SMG in complex polymicrobial samples. Novel molecular methods were developed providing detection ability for SMG, an emerging opportunistic pathogen.Cystic fibrosis (CF) is the most common fatal genetic disease affecting young Caucasians (13). It is a multiorgan disease that primarily affects the lungs and digestive system. Within the CF lungs, there is a buildup of thick mucus that is difficult to clear, leading to chronic bacterial colonization with high bacterial loads (34, 41, 49). However, it is not solely the presence of high bacterial loads in the lungs of CF patients but periods of pulmonary exacerbation, an overt immune response that leads to the majority of irreversible lung damage, that ultimately lead to pulmonary failure in 90% of afflicted individuals (34-36). Classically there are relatively few bacterial pathogens described in CF lung disease (15, 17, 18); however, CF should be considered a polymicrobial infectious disease, as the CF lungs are colonized by a diverse and dynamic consortium of bacteria, fungi, and viruses (1, 21-23, 44-46, 53).Recently the Streptococcus anginosus group, herein referred to as the “Streptococcus milleri group” (SMG), which includes the three species S. anginosus, S. constellatus and S. intermedius, has been implicated in pulmonary exacerbations of CF patients (4, 37, 45). The SMG species have been identified as part of the microbiota of the respiratory tract, gastrointestinal tract, and genitourinary tract in 15 to 30% of healthy individuals (20, 38, 39, 43). However, each species within the SMG has the capacity to cause severe invasive infections throughout the body. SMG infection is the most common cause of brain and liver abscesses (8, 20, 32, 54) and is a major cause of empyema (30). Members of the SMG have been implicated in infection at all body sites, associated with skin and soft tissue (3, 56), abdomen (48), head and neck (16, 33, 48), pleuropulmonary (28, 48), cardiovascular and blood (25, 40), and genitourinary and musculoskeletal (7, 48) infections. There does appear to be species bias to some infections, as S. anginosus has been found to cause the majority of abdominal infections, while S. intermedius has been more often linked to liver and central nervous system (CNS) infections (10, 56). Members of the SMG have also been implicated as a common etiology of intra-abdominal abscesses developed by individuals who have received solid organ transplants and may have been underestimated as a cause of disease within this population (50).SMG strains are phenotypically diverse, even within each species. However, most strains share some common characteristics such as slow growth rate, a distinctive “caramel smell,” their ability to hydrolyze arginine, acetoin production from glucose, and an inability to ferment sorbitol (9, 20, 38, 43). Microbiological differentiation of the three species within the SMG can be problematic. A few methods have been designed that allow for the differentiation of these three species; unfortunately, they are time-consuming, and results are variable (14, 31, 58). Recently a new medium that has been developed, McKay agar, that allows for the isolation of SMG from complex clinical samples; however, other organisms, including additional Streptococcus strains, can also be cultured on this medium (46a). Numerous molecular assays have been developed to differentiate SMG using cpn60 (53), rnpB (27, 52, 55), 16S rRNA genes (7, 10, 31), 16S-to-23S rRNA gene intergenic spacer (ITS) region (5, 11, 52, 57), and the penicillin-binding protein (51). These assays are limited by their need for nucleic acid sequence analysis or further PCR analysis required to differentiate SMG species.The increased importance of SMG in human infections and the difficulty in microbial detection suggest a need for a rapid and reliable test to detect SMG from pure culture as well as complex polymicrobial diagnostic samples such as CF sputum samples (4, 37, 45). The development of a real-time PCR assay in combination with McKay agar isolation would reduce microbial identification time, thereby decreasing the period before the initiation of appropriate antibiotics, which in turn would resolve clinical symptoms more efficiently for all types of infections. This would also afford the opportunity for clinical intervention before the onset of pulmonary exacerbation preventing increased lung damage.We have developed three real-time PCR assays. The first assay is based on cpn60, which detects S. constellatus and S. intermedius and many S. anginosus strains and allows for melting curve-based speciation. The second assay specifically detects S. anginosus, based on a conserved region of the 16S rRNA gene. Finally, the third assay specifically detects S. constellatus and S. intermedius based on a conserved region of the 16S rRNA gene. These assays provide a novel culture-independent strategy for the detection of this important group of emerging pathogens.  相似文献   

20.
In addition to HLA and insulin genes, the costimulatory molecule CTLA-4 gene is a confirmed type 1 diabetes (T1D) susceptibility gene. Previous studies investigated the association of CTLA-4 genetic variants with the risk of T1D, but with inconclusive findings. Here, we tested the contributions of common CTLA-4 gene variants to T1D susceptibility in Tunisian patients and control subjects. The study subjects comprised 228 T1D patients (47.8% females) and 193 unrelated healthy controls (45.6% females). Genotyping for CTLA-4 CT60A/G (rs3087243), +49A/G (rs231775), and −318C/T (rs5742909) was performed by PCR-restriction fragment length polymorphism (RFLP) analysis. The minor-allele frequencies (MAF) for the three CTLA-4 variants were significantly higher in T1D patients, and significantly higher frequencies of homozygous +49G/G and homozygous CT60G/G genotypes were seen in patients, which was confirmed by univariate regression analysis (taking the homozygous wild type as a reference). Of the eight possible three-locus CTLA-4 haplotypes (+49A/G, −318C/T, and CT60A/G) identified, multivariate regression analysis confirmed the positive association of ACG (odds ratio [OR], 1.93; 95% confidence interval [CI], 1.26 to 2.94), GCG (OR, 2.40; 95% CI, 1.11 to 5.21), and GTA (OR, 4.67; 95% CI, 1.52 to 14.39) haplotypes with T1D, after confounding variables were adjusted for. Our results indicate that CTLA-4 gene variants are associated with increased T1D susceptibility in Tunisian patients, further supporting a central role for altered T-cell costimulation in T1D pathogenesis.Type 1 (insulin-dependent) diabetes (T1D) is the most prevalent form of diabetes in children and young adults and results from autoimmune CD4+ and CD8+ T-cell-directed destruction of insulin-producing pancreatic β islet cells in genetically susceptible individuals (3, 12), leading to irreversible hyperglycemia and related complications (13). There is a strong genetic component to T1D pathogenesis, evidenced by its clustering in families and by the contributions of a number of susceptibility gene variants to its pathogenesis (10, 12, 29). They include the human leukocyte antigen (HLA) locus, in particular the class II region (DR and DQ), which accounts for 40 to 50% of T1D familial clustering (1, 12, 18), and non-HLA susceptibility loci, several of which were mapped by genome-scanning (11, 29) and/or candidate gene (7, 18, 31) approaches. They include insulin promoter gene variants, which reportedly may modulate immunological tolerance by controlling the expansion of the autoreactive cell pool (26), and the T-cell costimulator cytotoxic T-lymphocyte antigen 4 (CTLA-4) transmembrane glycoprotein, which plays a key role in the fine tuning of T-cell immunity (9, 32, 33).CTLA-4 is a 40-kDa transmembrane glycoprotein expressed on resting and activated T cells and nonlymphoid cells (33), and along with the related CD28 costimulatory molecule, it regulates T-cell activation (and is itself primarily mediated by engagement of the T-cell receptor [TCR]) but does recognize major histocompatibility complex (MHC)-bound antigenic peptides (9, 33). CTLA-4 negatively regulates T-cell activation and effector function, in part by inhibiting Th1 (interleukin 2 [IL-2] and gamma interferon [IFN-γ]) cytokine production and IL-2 receptor α-chain (p55; Tac) expression by engaging antigen-presenting cell (APC)-bound B7.1 (CD80) and B7.2 (CD86) ligands (9, 33). Functionally, CTLA-4 attenuates T-cell signaling by interference with intracellular signal transduction events, including TCR signaling, and reduced CTLA-4 expression and/or activity results in uncontrolled T-cell-associated autoimmunity and lymphoproliferative disease (9, 21). In this regard, it was shown that CTLA-4 polymorphisms significantly influence the risk of autoimmune diseases, including Graves'' disease, systemic lupus erythematosus, autoimmune hypothyroidism, celiac disease, and type 1 diabetes (15, 21, 32).First observed in Italian subjects (25), and confirmed subsequently by case control and family studies, CTLA-4 polymorphic variants were linked with T1D pathogenesis (14, 20, 31, 32). While this association was detected in different ethnic groups (14, 23, 30), it appears more likely to be Caucasian selective (10, 29, 33) and absent from non-Caucasians (5, 6, 8, 19, 22). A recent report from the Type I Diabetes Genetics Consortium bearing on 2,300 affected sib pair families demonstrated that among the 24 single nucleotide polymorphisms (SNPs) genotyped in the CTLA-4 region, only the +49A/G and CT60 SNPs were replicated in the nine combined collections (27). In the present study, we investigated the association of three common CTLA-4 SNPs (−318C/T; +49A/G, and CT60A/G) and the corresponding haplotypes with T1D in Tunisian Arab patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号