首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have investigated the polymorphism of the DQA1 promoter region (QAP) and we have deduced four point (DRB1, QAP, DQA1, DQB1) haplotypes of 60 unrelated healthy Dai minority individuals using the polymerase chain reaction and Dig-ddUTP labeled oligonucleotides. A total of eight QAP alleles (QAP1.1, 1.2, 1.3, 1.4, 3.1, 3.2, 4.1 and 4.2) were detected and two QAP alleles, QAP1.5 and QAP2.1 were absent in this population. The most predominant allele was QAP1.2 with 80% allele frequency. We also found that QAP alleles are in strong linkage disequilibrium with certain alleles of the neighboring loci DQA1 and DQB1. Complete positive association was found for QAP4.1-DQA1*05, QAP4.2-DQA1*0601, QAP1.2-DR2 group, QAP3.2-DRB1*09, QAP4.1-DRB1*03. A total of 28 different four point (DRB1-QAP-DQA1-DQB1) haplotypes were deduced and the most frequent haplotypes were DRB1*1602-QAP1.2-DQA1*0102-DQB1*0502 (N = 18, H.f. = 15%) and DRB1*09-QAP3.2-DQA1*03-DQB1*03032 (N = 18, H.f. = 15%) followed by the haplotypes DRB1*1401-QAP1.3-DQA1*01-DQB1*0502, DRB1*1202-QAP4.2-DQA1*0601-DQB1*0301 and DRB1*1502-QAP1.2-DQA1*0101-DQB1*0501 with H.f. 9.1%, 6.7% and 5.0% respectively. The other 23 haplotypes were all less than 5% (H.f. 0.8%-5%). The relationship between the QAP alleles and DQA1 in the Dai minority is the same as that in the Chinese and the Caucasoid population.  相似文献   

2.
We have investigated polymorphism in the 5′-URR of the DQA1 gene by PCR-SSO method in a group of 55 Italian healthy individuals olygotyped for DRB1, DQA1, DQB1 genes and in 20 10th IHWS cell lines as controls. We used primers and oligos (X and Y box) supplied by 12th IHWS and a DIG-11-ddUTP/AMPPD method. We have detected eight QAP variants (1.1,1.2,1.3,1.4,2.1,3.1,4.1,4.2) in our samples. As far as the association of DR/DQ haplotype and QAP sequences, we observed cases of one to one relationship (DQA1*0201 and QAP2.1, DQA1*0301 and QAP3.1, DQA1*0401 and QAP4.2, DQA1*0501 and QAP4.1); cases in which the same QAP allele was present in different DQA1-DRB1 haplotypes (QAP1.2 with DQA1*0102 in DRB1*15-DQB1*0602 and DRB1*16-DQB1*0502 haplotypes or with DQA1*0103 in the DRB1*15-DQB1*0601 haplotypes; QAP1.3 linked to DQA1*0102, DQA1*0103 or DQA1*0104 in different haplotypes; QAP4.1 linked to DQA1*0501 in DRB1*11-DQB1*0301, DRB1*0301-DQB1*0201, DRB1*1303-DQB1*0301 haplotypes or to DQA1*0601 in DRB1*0803-DQB1*0301); cases where the same DQA1 allele is associated with different QAP sequences according to the DRB1 specificity (DQA1*0102 allele with QAP1.2 or QAP1.4 in DRB1*1302). Besides, we have observed that the QAP1.3, previously reported associated with DQA1*0101-DRB1*1401 haplotype, is really linked to DQA1*0104-DRB1*1401 haplotype. An intriguing data is that sometimes the same QAP is linked to different DQA1 alleles but to the same generic DRB1 allele: DRB1*02 haplotype includes always the QAP1.2 variant but can bring different DQA1 alleles (*0102 or *0103) and DRB1*08 haplotype has always the QAP4.2 variant with different DQA1 alleles (*0401 or *0601). The variability of linkage QAP-DQA1 can give further informations about HLA susceptibility in autoimmune diseases and in regulation of immune response in transplantation and oncology.  相似文献   

3.
对44名西双版纳傣族和9名上海地区汉族DK2阳性个体进行了与其相关的DR/DQ单倍型组合的分析。傣族群体中DRBI-DR2亚型分布以*1602与*1502为最常见,其等位基因频率分别为43.6%与,40.0%和汉族群体中以*1501为主明显不同。傣族群体中共检出10种与DR2相关联的DR/DQ单倍型;最常见的是DRB1*1602、DRB5*0101、DQA1*0102、DQB1*0502(34.5%)与汉族及其他群体明显不同,本研究表明傣族不仅具有高频率的DR2,而且与DR2相关联的DRB1、DRB5、DQA1、DQB1单倍型组合有其独特性。  相似文献   

4.
HLA-DR2 is the most common DR specificity (60.3%) identified in the Dai minority population of Xishuangbanna, Yunna Province, China. We characterized the DRB1, DRB5, DQA1, and DQB1 alleles of 44 unrelated DR2-positive individuals, 11 of whom (15%) were DR2 homozygous. Four DRB1 and four DRB5 alleles encoding DR2 were identified in this population. The most frequent DR2-associated DRB1 alleles were *1602 (gf = 0.164) and *1502 (gf = 0.151). DRB1*1501 (gf = 0.048) and a new allele designated DRB1*1504 (gf = 0.014) were also detected, but *1601 and *1503 were absent. The most frequent DR2-associated DRB5 alleles were *0101 (gf = 0.233) and *0102 (gf = 0.110). Nine different DR2-associated DR/DQ haplotypes were identified. The two most common DR2 haplotypes were DRB1*1602,DRB5*0101,DQA1*0102,DQB1*0502(hf = 0.142) and DRB1*1502,DRB5*0102,DQA1*0101, DQB1*0501 (hf = 0.075). The new DRB1*1504 allele was found on a single haplotype: DRB1*1504, DRB5*0101,DQA1*0102,DQB1*0502 (hf = 0.017). The Dw2, Dw12, Dw21, and Dw22 haplotypes, present in many other Asian and Mongoloid populations, were not identified in this unique group. However, the Dai minority population is characterized by a relatively large number of diverse DR2 haplotypes and a new DRB1 allele encoding DR2.  相似文献   

5.
The distribution of HLA-DRB1, -DQA1 and -DQB1 alleles were analysed in 124 Graves' disease (GD) patients compared to 124 normal controls in order to identify the alleles/haplotypes associated with GD in Thai population. The DRB1*1602-DQA1*0102-DQB1*0502 haplotype was significantly increased in GD patients (P = 0.0209, OR = 2.55). DRB1*07-DQA1*0201-DQB1*0201 haplotype (P = 0.039, OR = 0.32) and HLA-DRB1*12-DQA1*0601-DQB1*0301 haplotype (P = 0.0025, OR = 0.28) were significantly decreased in GD patients. Interestingly, a protective DRB1*07 allele in Thai population lacks an arginine at position 74 similar to DRB1*0311 (a protective allele in Caucasians). A significant association of DRB1*1602-DQA1*0102-DQB1*0502 and HLA-DRB1*12-DQA1*0601-DQB1*0301 alleles and haplotypes with GD was recently reported in Korean but not in any Caucasian studies. Thus, DRB1*1602 allele and closely linked haplotype, DRB1*1602-DQA1*0102-DQB1*0502, might serve as a marker for genetic susceptibility to GD in Asian population.  相似文献   

6.
HLA-DRB and -DQB1 polymorphism in the Macedonian population   总被引:2,自引:0,他引:2  
HLA-DRB1, DRB3/4/5 and DQB1 polymorphism has been studied in a population of 80 unrelated healthy Macedonians using molecular methods. Twenty-five different DRB1 alleles were identified of which DRB1*1104, *1501, *1601, and *1101 were found most frequently. Among the 15 identified DQB1 alleles, two were predominant: DQB1*0301 and *0502. The most frequent three-locus haplotypes were DRB1*1104-DRB3*02-DQB1*0301 (18%/), DRB1*1101-DRB3*02-DQB1*0301 (9%) and DRB1*1601-DRB5*02-DQB1*0502 (10%). Polymorphism for DRB1*04, *13 and *15 haplotypes was extensive. Eleven different DR2-related haplotypes were found, some of which were unusual for European populations: DRB1*1501-DRB5*0102-DQB1*0502, DRB1*1501-DRB5*02-DQB1*0502, DRB1*1501-DRB5*0102-DQB1*0601.  相似文献   

7.
Among major histocompatibility complex class II antigens, HLA-DR2 appears to have a much larger degree of polymorphism than usually recognized by routine serology or restriction fragment length polymorphisms. We have utilized oligonucleotide probes to further identify the DR2 specificity and its molecular subtypes on the basis of specific DNA sequences as they occur in a select sample from the Asian Indian population. In addition, oglinucleotide typing of HLA-DQA1 and -DQB1 genes allowed us to determine specific associations of DRB1, DRB5, DQA1, and DQB1 alleles in DR2 individuals. A set of 60 oligonucleotide probes were hybridized to polymerase chain reaction (PCR)-amplified DNA from DR2 homozygous or heterozygous individuals. The most common DR2 subtypes that occured in this selected population are: DRB1*1501 (60%), DRB1*1502 (33.8%), and DRB1*1602 (6.2%). No example of DRB1*1601 was detected. By combining these results with the allelic variations at DQA1 and DQB1, we were able to detect at least seven different haplotypes, the most common being DRB1*1502-DRB5*0102- DQA1*0103-DQBI*0601 and DRBI*1501-DRB5*0101 DQA1*0102-DQB1*0502. At least five unexpected combinations, not reported among Western Caucasians, were noticed in this sample. Thus oligonucleotide typing is a valuable tool for defining further polymorphisms in the HLA-D region as exemplified by its applications to typing DR2-positive patients with tubercoloid leprosy and pulmonary tubercolosis.  相似文献   

8.
HLA-DRB1, DQA1, DQB1 DNA polymorphism in the Bulgarian population   总被引:1,自引:0,他引:1  
We describe for the first time the use of PCR based techniques to analyze the MHC class II polymorphism of the Bulgarian population. The present study provides the HLA-DRB, DQB1 allele frequencies in 116 Bulgarian individuals and DQA1 alleles frequencies in 100 subjects. DNA from these individuals was typed for DRB and DQB1 typed by the PCR- Allele Specific Amplification (PCR-ASA) method and DQA1 by PCR followed by hybridization using Sequence Specific Oligonucleotides (PCR-SSO). Allele and haplo-type frequencies and linkage disequilibria are computed by the standard methods used for the XIth International Histocompatibility Workshop. The highest frequencies are 0.159, 0.109 and 0.085 for DRB1*1101, DRB1*1601 and DRB1*1301 respectively. Among the eight DQA1 alleles detected, DQA1*0501 (0.344) is found to be much more frequent than the two most frequent alleles DQA1*0102 (0.225) and DQA1*0101 (0.151). Twelve DQB1 alleles are found and three of them, DQB1*0301 (0.280), DQB1*0502 (0.153) and DQB1*0201 (0.133) showed the highest frequencies. The haplo-type DRB1*1101-DQA1*0501-DQB1*0301 (0.079) predominate clearly, followed by DRB1*1601-DQA1*0102-DDQB1*0502 (0.055) and DRB1*0101-DQA1*0101-DQB1*0501. These results indicate that the Bulgarian population is characterized by features representative of the European anthropological type with a substantial contribution from the Southern Belt of Europe.  相似文献   

9.
Polymorphisms outside the hypervariable regions of HLA class II alleles that do not affect the peptide-binding site are probably not under selective pressure and could therefore be useful as markers of the evolutionary pathways of the HLA class II haplotypes. We have analyzed such a polymorphism in the variants of DQA1*03, which differ at residue 160 encoded in exon 3. Our study included homozygous BCLs of the 10th IHWS and samples of a multiracial panel of 723 unrelated subjects which were also typed for allelic variations in exon 2 by hybridization with SSOP. BCLs having DQA1*03 and 131 selected DQA1*03-positive samples were typed for the dimorphism in exon 3 that distinguishes DQA1*0301 and DQA1*0302. DQA1*0301 was found to be exclusively associated with DQB1*0302, while samples carrying DQB1*0201, 0301, 0303, and 0401 always had DQA1*0302. A few haplotypes carrying DQB1*0302 had DQA1*0302. The fact that DQA1*0301 is completely included in DQB1*0302, and not vice versa, suggests that DQA1*0301 may have arisen from a mutation in a haplotype containing DQA1*0302-DQB1*0302. DQB1*0302 was found to be associated with all DR4 subtypes, suggesting possibly that the current variants of DRB1-DR4 may be of more recent origin. DRB1*0405 was the only subtype of DR4 which was not associated with DQA1*0301 and had multiple associations with the DQB1 alleles, therefore, perhaps representing the oldest allele of this group.  相似文献   

10.
The upstream sequences in the 5' flanking region of HLA class II genes, regulate their expression and contribute to the development of immunological diseases. We analyzed 105 healthy unrelated Mexican Mestizos for QAP and QBP polymorphism. DNA typing for DRB1, DQA1, DQB1, QAP1 and QBP1 was done using a standardized PCR-SSOP. Although all QAP alleles previously described were found in Mexicans, the distribution differed as compared to other populations. QAP-3.1, 4.1 and 4.2 were the most frequent alleles and were associated with DQA1*03, *0501 and *0402 respectively. The prevalent QBP alleles were 3.21, 3.1 and 4.1 found mainly associated with DQB1*0302, *0301 and *0501. Linkage disequilibria between the promoter and the corresponding DQA1 and DQB1 allele, are in general the same as described by others. A total of 61 different haplotypes were defined, only six of them with a frequency above 4%. The haplotypes DRB1*0407-QAP-3.1-DQA1*03-QBP-3.21-DQB1*0302 (HF = 14.37%) and DRB1*0802-QAP-4.2-DQA1*0401-QBP-4.1-DQB1*0402 (HF = 14.22%), which have an Amerindian ancestry, are the most frequent in Mexicans. Some rare combinations were detected such as DRB1*0405-QAP-1.3-DQA1*0101/4-QBP-5.11/5.12-DQB1*0501 and DRB1*0403-QAP-3.2-DQA1*03-QBP-3.21-DQB1*0302, probably due to ancient recombination events. This knowledge is relevant as a basis to evaluate functional implications and to explore the role of promoter diversity in disease expression.  相似文献   

11.
The study of the genetics of the Major Histocompatibility Complex (MHC) in Amerindians is of great value in understanding the origins and migrations of these native groups, as well as the impact of immunogenetics on the epidemiology of diseases affecting these populations. We analyzed, using Polymerase Chain Reaction and Sequence Specific Oligonucleotide Probes (PCR-SSOP), DRB1, DQA1, DQB1 alleles and the promoter regions of DQA1 and DQB1 genes in 31 unrelated and 24 related Seri, a Mexican Indian group, from the state of Sonora (Northwest Mexico). The class II genotypes of this population were found to be in genetic equilibrium. The allele frequency (AF) of the prevalent DRB1 alleles were DRB1*0407 (48.4%), DRB1*0802 (33.9%) and DRB1*1402 (16.1%). The most frequent DQA1 and DQB1 alleles were DQA1*03011 (AF = 50.00%), DQA1*0401 (AF = 33.87%) and DQA1*0501 (AF = 16.13%); DQB1*0302 (AF = 50.00%), DQB1*0402 (33.87%) and DQB1*0301 (16.13%); which were in combination with DRB1*0407, DRB1*0802 and DRB1*1402, respectively. Three QAP and three QBP alleles were present (QAP 3.1, 4.1, 4.2; QBP 3.1, 3.21, 4.1) associated with the typical published DQA1 and DQB1 alleles. Four class II haplotypes were present in family members: DRB1*0407-QAP-3.1-DQA1*03011-QBP-3.21-DQB1*0302; DRB1*0802-QAP-4.2-DQA1*0401-QBP-4.1-DQB1*0402; DRB1*1402-QAP-4.1-DQA1*0501-QBP-3.1-DQB1*0301 and DRB1*0701-QAP-2.1-DQA1*0201-QBP-2.1-DQB1*0201. The family data were used to confirm extended haplotypes. A total of 21 haplotypes were found when A* and B* loci were also considered. The three most frequent combinations included A*0201-B*3501-DRB1*0407, A*3101-B*5101-DRB1*0802, and A*0201-B*40-DRB1*1402.  相似文献   

12.
We investigated the association of HLA-DRB1, -DQA1 and -DQB1 alleles and haplotypes in 33 Thai HIV discordant couples. A significantly lower frequencies of DRB1*14 (3.0% vs 11.3%, p = 0.048) and DQA1*0103 (0.0% vs 5.63%, p = 0.042) alleles were found in the seropositive individuals when compared with HIV-negative controls. In contrast, there was no significant difference in HLA-DQB1* allele frequencies. The haplotype analysis revealed that DRB1*1501-DQA1*0102-DQB1*0601 (7.6% vs 0.0%, p = 0.002), DRB1*0405-DQA1*0302-DQB1*0401 (7.6% vs 1.3%, p = 0.024) and DRB1*1401-DQA1*0104-DQB1*05031 (6.1% vs 0.0%, p = 0.007) were found to be significantly higher frequencies when compared between HIV seronegative partners and HIV negative controls, but DRB1*1501-DQA1*0102-DQB1*0502 (0.0% vs 8.1%, p = 0.01) was significantly lower. The DRB1*1602-DQA1*0101-DQB1*0502 (4.6% vs 0.0%, p = 0.024) haplotype was found to be significantly higher frequencies in HIV seropositive individuals when compared to HIV negative controls but the DRB1*1502-DQA1*0101-DQB1*0501 (1.5% vs 8.1%, p = 0.049) haplotype was lower.  相似文献   

13.
Although the sequences of the class II promoters are highly conserved, diversity has been found in the URRs of DR and DQ loci. For the promoter region of DQA1, 10 QAP alleles are defined and 12 QBP for DQB1 region; DNA of 46 Mexican Mestizos and 101 Seri Indians was typed for QAP, QBP and class II alleles using the PCR-SSO protocols of the 12th W, as part of the promoter component chaired by E. Albert. PCR-SSP was done to distinguish between QBP6.2 and 6.3. In both groups, all QAP alleles previously described were detected, excepting for 3.2, absent because the associated DQA1*0302 is also lacking. One unusual haplotype accounting for 16.3% was observed: DRB1 *0802-QAP4.2-DQA1*0401-DQB1*0402-QBP4.1. QBP3.22 described in Whites, was not present in this haplotype. Neither QBP4.1 that associates with DQB1 *0401, or the latter have been found in Mexicans. A recombination possibly occured in the DQB1 region of an ancestral haplotype carrying QBP4.1. In Seri Indians, only 8 haplotypes were detected. Of these, 3 seem to be the ancestral ones: *0407-*03011-3.1-*0302-3.21; *0802-4.2-*0401-*0402-4.1; and *1402-4.1-*0501-*0301-3.1. The frequencies of 43.5%, 36.6% and 13.9% accounting for 94% of the haplotypes, indicate from an evolutionary viewpoint, that these originated from Orientals and probably conferred a great biological advantage. They are also the prevalent haplotypes in Mestizos (60.9%). One unusual QBP4.1 combination was detected in 2 Seris with DRB1*0407-DQB1*0302. The functional role of these variants in expression and in development of disease, must be explored.  相似文献   

14.
应用PCR-SSO方法,对华东地区汉族人群进行了HLA-DQA1、-DQB1和DRB1*02,07,09基因分型。DQA1中以DQA1*0301基因频率最高(0.3844),其次为*0501(0.1406)和0102(0.1219),*0401最低(0.0281);DQB1中以DQB1*0303基因频率最高(0.2342),其次为*0301(0.1899)、*0601(0.1203)和*0201(0.1108),*0501、*0604和*0605最低(均为0.0127);DR9基因频率较高(0.2310),DR2中DRB1*1501占73%,基因频率为0.0854,未见*1601。DQA1、DQB1及DRB1等位基因之间存在显著的连锁不平衡。DRB1*0901-DQA1*0301-DQB1*0303、DQA1*0103-DQB1*0601等为常见单倍型。本资料与我国其他汉族人群资料有可比性,也存在一定差异。  相似文献   

15.
Abstract: HLA-class II polymorphisms have been studied in a population of 141 unrelated healthy Croatians using PCR amplification, followed by non-radioactive oligonucleotide hybridization. Thirty one DRB1, 8 DQA1, 13 DQB1 and 16 DPB1 alleles were found in the tested population. DRB1*1601, 0701, 1501, 0101 and 1104 are the most frequent alleles at the DRB1 locus. At the DQA1 locus two alleles predominate: DQA1*0501 and 0102, while the most frequent DQB1 allele is *0301. Analysis of HLA-DPB1 polymorphism showed that, as in other Europeans, DPB1* 0401 is the most frequent allele. Four different two locus haplotypic associations (DRB1-DRB3, DRB1-DRB5, DRB1-DQB1 and DQA1-DQB1) as well as three locus DRB1-DQA1-DQB1 haplotypic associations were assigned on the basis of known linkage disequilibria. Several unusual two-locus associations have been observed: DRB1*0301-DRB3* 0202, DRB1*1501-DRB5*02, DRB1*1601-DRB5*0101, DRB1*1502-DRB5*0101, DQA1*0103-DQB1*0503 and DQA1*0501-DQB1*0302. Among 236 examined DRB1-DQA1-DQB1 haplotypic combinations, the most frequent was DRB1*1601-DQA1*0102-DQB1*0502 that was found with statistically significant higher frequency than in other Europeans. Twenty-eight distinct probable haplotypes were observed just once, suggesting that the main characteristic of Croatian population is great heterogeneity of haplotypes. This study will serve as a reference for further anthropology studies, HLA and disease associations studies and for donor/recipient matching in organ and bone marrow transplantation.  相似文献   

16.
HLA class II polymorphism in Moroccan IDDM patients has not been investigated so far. In this study, HLA-DRB1, -DQA1, and -DQB1 allele and haplotype frequencies were analyzed in 125 unrelated Moroccan IDDM patients and 93 unrelated healthy controls, all originating from the Souss region and mostly of Berber origin. Some common features with other Caucasian groups were observed, in particular, a predisposing effect of the DRB1*03-DQA1*0501-DQB1*0201 and DRB1*04-DQA1*0301-DQB1*0302 alleles or allelic combinations. The Moroccan IDDM group also presented with more specific characteristics. Among DRB1*04 subtypes, DRB1*0405 was associated with susceptibility to and DRB1*0406 with protection from the disease. The haplotype and the relative predispositional effect (RPE) analyses indicated that the DRB1*08-DQA1*0401DQB1 *0402 haplotype was also associated with susceptibility to IDDM. Interestingly, the DRB1*09DQA1 *0301-DQB1*0201 haplotype, completely absent from the control group and very rare in North African populations, was observed in 7.2% of the Moroccan diabetics. Conversely, the DRB1*07-DQA1*0201DQB1 *0201 and DRB1*15-DQA1*0102-DQB1*0602 haplotypes were associated with protection from IDDM. Finally, we observed an age-dependent genetic heterogeneity of IDDM, the frequencies of predisposing alleles being higher and those of protective alleles lower in childhood- than in adult-onset diabetics. Our data on Moroccan diabetics, together with data on European and Northern Mediterranean patients, suggest a gradient of various HLA class II predisposing and protective markers that link these populations  相似文献   

17.
MHC class II alleles and haplotypes were determined from unrelated individuals and families of the Arhuaco (n = 107), Kogi (n = 42), Arsario (n = 18), and Wayú (n = 88) tribes located in the northern part of Colombia. Class II DRB, DQA1, and DQB1 alleles were determined by PCR-SSO and PCR-RFLP based methods. Four haplotypes, [DRB1*0407, DRB4*0101, DQA1*03, DQB1*0302]; [DRB1*0403, DRB4*0101, DQA1*03, DQB1*0302]; [DRB1*1402/1406, DRB3*0101, DQA1*0501, DQB1*0301]; and [DRB1*0802, DQA1*0401, DQB1*0402], were observed among these four tribes. In addition to these haplotypes, the Wayú Indians showed a frequency of 21.3% for the [DRB1*1602, DRB5*02, DQA1*0501, DQB1*0301] haplotype, 13.1% for the [DRB1*0411, DRB4*0101, DQA1*03, DQB1*0302] haplotype, and 8.1% for the [DRB*0411, DRB4*0101, DQA1*03, DQB1*0402] haplotype. Red cell antigen typing was used to calculate genetic admixture. The Kogi and Arsario showed no genetic admixture while the Arhuaco tribe showed admixture with genes of African origin and the Wayú showed admixture with Caucasians as well as genes of African origin. These findings were confirmed by the MHC class II allele and haplotype data obtained, as alleles and haplotypes of Caucasian and African origin were detected in the Wayú and Arhuaco and not in the Kogi or Arsario. These studies will be important in disease association and transplantation studies for Amerindian and Colombian populations and for correlating genetic traits with the anthropologic and linguistic data available in order to better understand the Amerindian populations.  相似文献   

18.
The association of narcolepsy with HLA-DQB1*0602 is established in Japanese, African-Americans, European, and North American Caucasians. We examined DRB1, DRB3, DRB4, DRB5, DQA1, and DQB1 in 163 patients with centrally mediated daytime sleepiness (100 with narcolepsy) and 211 Korean controls. In this population, the DQB1*0602 association was always evident in the context of the DRB1*1501-DQA1*0102-DQB1*0602 haplotype. The DQB1*0602 association was highest in cases with hypocretin deficiency (100% vs 13% in controls), most of which had narcolepsy-cataplexy (81%). A weaker DQB1*0602 (45%) association was present in cases without cataplexy. No human leukocyte antigen (HLA) association was present in idiopathic hypersomnia or in cases with normal cerebrospinal fluid (CSF) hypocretin-1. As in other populations, DQB1*0602 homozygosity increased risk in cases with cataplexy and/or hypocretin deficiency (odds ratio = 2.0 vs heterozygotes). Non-DQB1*0602 allelic effects were also observed but could not be interpreted in the context of DQB1*0602 overabundance and linkage disequilibrium. We therefore next analyzed compound heterozygote effects in 77 subjects with either hypocretin deficiency or cataplexy and one copy of DRB1*1501-DQA1*0102-DQB1*0602, a sample constructed to maximize etiologic homogeneity. In this analysis, we found additional predisposing effects of DQB1*0301 and protective effects for DQA1*0103-DQB1*0601. Unexpectedly, the predisposing effects of DQB1*0301 were present in the context of various DQA1-bearing haplotypes. A predisposing effect of DQA1*0303 was also suggested. These results indicate a remarkable consistency in the complex HLA association present in narcolepsy across multiple ethnic groups.  相似文献   

19.
We investigated DR52 haplotype polymorphism in a population of 78 Croatian families with at least one parent and one offspring positive for a DR52-associated allele, using the PCR–SSOP method. The haplotypes DRB1*0301-DQA1*0501-DQB1*0201, DRB1*11-DQA1*0501-DQB1*0301 and DRB1*1201-DQA1*0501-DQB1*0301 seem to be conserved haplotypes in this Croatian population, while DRB1*13 haplotypes showed high diversity. Among 10 different DRB1*13 haplotypes, four consist of common alleles, while six have an unusual combination of DRB1-DQA1-DQB1 alleles. Three haplotypes (DRB1*1301-DQA1*0103-DQB1*0503, DRB1*1302-DQA1*0102-DQB1*0502 and DRB1*1303-DQA1*0102-*DQB1*0502) have not been reported. These results on DR52-associated haplotype polymorphisms in a Croatian population must be taken into consideration in organ transplantation, especially when searching for unrelated bone marrow donors.  相似文献   

20.
We investigated DR52 haplotype polymorphism in a population of 78 Croatian families with at least one parent and one offspring positive for a DR52-associated allele, using the PCR-SSOP method. The haplotypes DRB1*0301-DQA1*0501-DQB1*0201, DRB1*11-DQA1*0501-DQB1*0301 and DRB1*1201-DQA1*0501-DQB1*0301 seem to be conserved haplotypes in this Croatian population, while DRB1*13 haplotypes showed high diversity. Among 10 different DRB1*13 haplotypes, four consist of common alleles, while six have an unusual combination of DRB1-DQA1-DQB1 alleles. Three haplotypes (DRB1*1301-DQA1*0103-DQB1*0503, DRB1*1302-DQA1*0102-DQB1*0502 and DRB1*1303-DQA1*0102-*DQB1*0502) have not been reported. These results on DR52-associated haplotype polymorphisms in a Croatian population must be taken into consideration in organ transplantation, especially when searching for unrelated bone marrow donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号