首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Significant adverse events are associated with vaccination with the currently licensed smallpox vaccine. Candidate new-generation smallpox vaccines such as the replication-defective modified vaccinia virus Ankara (MVA) produce very few adverse events in experimental animals and in limited human clinical trials conducted near the end of the smallpox eradication campaign. Efficacy evaluation of such new-generation vaccines will be extraordinarily complex, however, since the eradication of smallpox precludes a clinical efficacy trial and the correlates of protection against smallpox are unknown. A combination of relevant animal efficacy studies along with thorough comparative immunogenicity studies between traditional and new-generation smallpox vaccines will be necessary for vaccine licensure. In the present study, a variety of immune responses elicited by MVA and the licensed smallpox vaccine Dryvax in a murine model were compared, with a focus on mimicking conditions and strategies likely to be employed in human vaccine trials. Immunization of mice with MVA, using several relevant vaccination routes including needle-free delivery, elicited humoral and cellular immune responses qualitatively similar to those elicited by vaccination with Dryvax. Similar levels of vaccinia-specific IgG and neutralizing antibody were elicited by Dryvax and MVA when higher doses (approximately 1 log) of MVA were used for immunization. Antibody levels peaked at about 6 weeks post-immunization and remained stable for at least 15 weeks. A booster immunization of either MVA or Dryvax following an initial priming immunization with MVA resulted in an enhanced IgG titer and neutralizing antibody response. In addition, both Dryvax and various MVA vaccination protocols elicited antibody responses to the extracellular enveloped form of the virus and afforded protection against a lethal intranasal challenge with vaccinia virus WR.  相似文献   

2.
The humoral immune responses elicited by priming with a DNA plasmid and boosting with either the plasmid or the corresponding recombinant protein in alum adjuvant were compared. The plasmid DNA encoded a sequence (M3) derived from the Plasmodium falciparum antigen Pf155/RESA, and the recombinant protein consisted of the identical malarial sequence fused to an albumin-binding region (BB) of streptococcal protein G. Mice of different genetic backgrounds (CBA, Balb/c and C57Bl/6) were primed with plasmid DNA and boosted with either plasmid or recombinant protein. In all strains of mice, boosting with protein elicited higher anti-M3 antibody levels than obtained by boosting with plasmid, yet the kinetics and longevity of the secondary responses were comparable. Antiserum obtained after protein boosting displayed an immunoglobulin (Ig)G subclass profile skewed to the IgG1 isotype, regardless of the mouse strain. In contrast, mice receiving a second injection with plasmid responded with a more mixed IgG subclass profile. Inclusion of a P. falciparum circumsporozoite protein-derived T-helper epitope (CS.T3) in the immunization plasmid as well as in the fusion protein, did not significantly change the humoral responses to M3. The results show the potential of DNA vaccination for the purpose of priming an antibody response against the malarial blood-stage antigen Pf155/RESA. When combined with a protein boost, this DNA priming results in high-titred and long-lasting anamnestic responses.  相似文献   

3.
A heterologous prime-boost vaccination regime with DNA and recombinant vaccinia virus (rvv) vectors expressing relevant antigens has been shown to induce effective immune responses against several infectious pathogens. In this study, we describe the effectiveness of the prime-boost strategy by immunizing dogs with a recombinant plasmid followed by vaccinia virus, both of which expressed the glutamic acid-rich protein (BgGARP) of Babesia gibsoni. The dogs immunized with the prime-boost regime developed a significantly high level of specific antibodies against BgGARP when compared with the control groups. The antibody level was strongly increased after a booster immunization with a recombinant vaccinia virus. Two weeks after the booster immunization with a recombinant vaccinia virus expressing BgGARP, the dogs were challenged with B. gibsoni parasite. The dogs immunized with the prime-boost regime showed partial protection, manifested as a significantly low level of parasitemia. These results indicated that this type of DNA/rvv prime-boost immunization approach may have use against B. gibsoni infection in dogs.  相似文献   

4.
A dengue-1 DNA vaccine containing sequences encoding premembrane and envelope proteins (DIME) was previously shown to elicit virus neutralizing antibodies in rhesus and Aotus monkeys, and the primates were partially protected from viremia upon challenge. To increase the neutralizing antibody levels and subsequent protection from virus challenge, four strategies were evaluated: (a) coimmunization with a plasmid expressing Aotus GM-CSF gene; (b) coimmunization with a plasmid containing human immunostimulatory sequences (ISS); (c) coimmunization with both the GM-CSF gene and ISS; and (d) delivery of vaccine using the needle-free Biojector system. Vaccination with the mixed formulation containing DIME, GM-CSF gene, and ISS, by either needle injection or Biojector, led to neutralizing antibody titers that were stable for up to 6 months after vaccination. Furthermore, 6 of 7 monkeys (85%), and 7 of 8 monkeys (87%) receiving this formulation were completely protected from viremia when challenged 1 and 6 months after vaccination, respectively. This is a significant improvement compared to our previous study in which one of three monkeys (33%) receiving just the DIME vaccine was completely protected from viremia at 6 months after immunization.  相似文献   

5.
Recombinants based on vaccinia virus vectors, especially on the highly attenuated modified vaccinia virus Ankara (MVA) strain, are now being tested in clinical trials for safety and immunogenicity, using prime/boost heterologous regimes of vaccination. Due to the limited replication capacity of MVA, it is necessary to develop procedures that can enhance the specific cellular immune responses to the recombinant antigen delivered by the MVA vector. In this investigation, we have characterized the systemic immune responses in BALB/c mice using interferon-gamma (IFN-gamma) or interleukin-12 (IL-12) in an adjuvant-like manner elicited by MVA recombinants or naked DNA vectors expressing one of those cytokines in combination with the human immunodeficiency virus type 1 (HIV-1) envelope (Env) as antigen. In infected mice, virus gene expression in splenocytes and levels of cytokines IFN-gamma and IL-12 in serum were maximal by 6h post-infection (hpi) with MVA recombinants expressing IFN-gamma (MVAIFN-gamma) or IL-12 (MVAIL-12). In the infected animals, co-expression of HIV-1 env (MVAENV) and either IFN-gamma or IL-12 from MVA recombinants produced a two and three-fold increase of anti-env CD8+ T cell response, respectively. When priming was carried out with DNA vectors expressing HIV-1 env and either IFN-gamma or IL-12, the magnitude of the specific anti-env CD8+ T cell stimulation after MVAENV booster was further enhanced. Our findings revealed that IFN-gamma or IL-12 can be used to potentiate the cellular immune response to HIV-1 env, when delivered either from a single MVA recombinant or from a DNA vector. The increment of the CD8+ T cell response was higher in a DNA/MVA prime/boost protocol. Thus, the immune response of MVA vectors can be improved with the co-delivery of the cytokines IFN-gamma or IL-12.  相似文献   

6.
Song Y  Zhang LS  Wang H  Jin H  Li Ch  Jin N 《Acta virologica》2010,54(4):293-296
Human immunodeficiency viruses 1 and 2 (HIV-1, 2) present a public health problem for which there is neither an effective antiviral therapy nor a preventive vaccine. In this study, the immune responses of mice to prime-boost vaccination with the recombinant DNA (rDNA) and recombinant Fowlpox virus (rFPV) both expressing HIV-2 Gag-gp105 chimeric protein, were compared to those elicited by each vector alone. Mice primed with the rDNA and boosted with the rFPV showed HIV-2-specific antibody levels, splenic CD4+ and CD8+ T-lymphocyte numbers, and Gag-gp105-specific cytotoxic T-lymphocytes (CTL) activity increased by 20-30% as compared with those elicited by these vaccines alone. These findings suggested that the prime-boost strategy combining rDNA and rFPV elicited significant Gag-gp105 - specific cellular and humoral immune responses, thus supporting this novel approach to the immunization against HIV infections.  相似文献   

7.
Thanks to the safety of administration, efficiency of in vivo transduction and persistence of transgene expression, vectors based on the adeno-associated virus (AAV) are extensively utilized in both preclinical and clinical experimentation. Here we thoroughly explore the potential of AAV-mediated antigen delivery for tumour vaccination. A recombinant AAV vector (rAAV) encoding a lymphoma idiotype (Id) in a single-chain variable fragment format was found to induce an efficient anti-Id immune response upon injection in immunocompetent animals. The intensity of the immune response and the protective effect of rAAV administration in vivo were systematically compared with those elicited by simple injection of naked DNA or biolistic immunization. The results indicate that Id delivery via rAAV enhances the intensity of immune response compared with injection of naked DNA, while anti-idiotypic antibodies titres are not considerably increased compared with biolistic vaccination. On the contrary, a prime-boost vaccination strategy combining biolistic and AAV DNA delivery results in a major increase in anti-Id antibody response compared with the repetitive biolistic immunization. This increased anti-Id humoral response strictly correlated with a significant improvement on tumour protection in vivo .  相似文献   

8.
Modified vaccinia Ankara (MVA) is being tested in humans as an alternative to the current smallpox vaccine Dryvax. Here, we compare the magnitude and longevity of protective immune responses elicited by a DNA/MVA HIV-1 vaccine with those elicited by Dryvax using a monkeypox virus/macaque model. The DNA/MVA vaccine elicited similar levels of vaccinia virus (VV)-specific antibody and 5-10-fold lower levels of VV-specific cellular responses than Dryvax. This MVA-elicited cellular and humoral immunity was long-lived. A subset of the DNA/MVA- and Dryvax-vaccinated macaques were subjected to a lethal monkeypox virus challenge at 3 years after vaccination. All of the vaccinated monkeys survived, whereas the unvaccinated controls succumbed to monkeypox. The viral control correlated with early postchallenge levels of monkeypox-specific neutralizing antibody but not with VV-specific cellular immune response. Thus, our results demonstrate the elicitation of long lasting protective immunity for a lethal monkeypox challenge by a DNA/MVA HIV-1 vaccine.  相似文献   

9.
The liver- and blood-stage-expressed serine repeat antigen (SERA) of Plasmodium falciparum is a candidate protein for a human malaria vaccine. We compared the immune responses induced in mice immunized with SERA-expressing plasmid DNA vaccines delivered by intramuscular (i.m.) injection or delivered intradermally by Gene Gun immunization. Mice were immunized with a pcdna3 plasmid encoding the entire 47-kDa domain of SERA (amino acids 17 to 382) or the N-terminal domain (amino acids 17 to 110) of SERA. Minimal antibody responses were detected following DNA vaccination with the N-terminal domain of SERA, suggesting that the N-terminal domain alone is not highly immunogenic by this route of vaccine delivery. Immunization of mice by Gene Gun delivery of the 47-kDa domain of SERA elicited a significantly higher serum antibody titer to the antigen than immunization of mice by i.m. injection with the same plasmid did. The predominant isotype subclass of the antibodies elicited to the SERA protein following i.m. and Gene Gun immunizations with SERA plasmid DNA was immunoglobulin G1. Coimmunization of mice with SERA plasmid DNA and a plasmid expressing the hepatitis B surface antigen (pCMV-s) by the i.m. route resulted in higher anti-SERA titers than those generated in mice immunized with the SERA DNA plasmid alone. Vaccination with DNA may provide a viable alternative or may be used in conjunction with protein-based subunit vaccines to maximize the efficacy of a human malaria vaccine that includes immunogenic regions of the SERA protein.  相似文献   

10.
To establish a novel strategy of mucosal immunization against herpes simplex virus type 1 (HSV-1) infection, we studied the immune responses elicited by intranasal immunization with several forms of a recombinant glycoprotein D (gD) of HSV-1. A truncated gD (t-gD) co-administered with heat-labile enterotoxin B subunit (LTB) from Escherichia coli induced both a mucosal immune response involving secretion of anti-gD IgA and serum IgG production. The levels of these responses are comparable to those in mice which have recovered from intranasal HSV-1 infections. The fusion protein (t-gD-LTB), consisting of t-gD and LTB, induced the responses more efficiently than did co-administration of t-gD and LTB, although GM1 ganglioside binding activity was significantly reduced in t-gD-LTB. We found that another fusion protein, consisting of t-gD and human interleukin-2 (t-gD-IL-2), also elicited antibody responses comparable to those induced by t-gD-LTB. Immunity acquired by intranasal immunization with t-gD-IL-2 protected mice from intraperitoneal HSV-1 infections, whereas t-gD-LTB or t-gD alone failed to provide protection against infection. Even in a mouse strain that responded highly to subcutaneously administered gD, intranasally administered t-gD did not elicit antibody responses. The lack of response to gD was clearly abrogated by co-administration with IL-2, and administration of t-gD-IL-2 induced an excellent level of antibody responses in this strain. These results suggest that the IL-2 fusion strategy yields a new type of mucosal immunization, the mechanism of which differs from that speculated for the mucosal adjuvant activity of LTB.  相似文献   

11.
This study was designed to assess the parameters influencing the magnitude and type of immune responses generated to plasmids encoding the hemagglutinin/neuraminidase (HN) and fusion (F) proteins of bovine parainfluenzavirus type 3 (BPIV3). Mice immunized with plasmids expressing HN or F under control of the Rous sarcoma virus long terminal repeat promoter were primed, but they did not develop measurable immune responses. In contrast, strong humoral and cellular immune responses were induced with constructs containing the human cytomegalovirus immediate-early promoter and intron A. After immunization with both HN- and F-encoding plasmids, enhanced responses were observed. Analysis of in vitro protein synthesis confirmed that the presence of the intron is crucial for the expression of the BPIV3 HN gene. Plasmid encoding HN induced significantly higher serum antibody titers by intradermal injection than by intramuscular delivery, whereas antigen-specific T cell proliferation was stronger in intramuscularly injected mice. Both the isotype ratios and the cytokine profiles indicated a Th1-type response after intramuscular immunization and a mixed to Th2-type response in intradermally immunized mice. A plasmid encoding a truncated, secreted form of HN induced a Th2-type immune response, regardless of the route of delivery. In cotton rats, HN- and F-encoding plasmids conferred protection from BPIV3 challenge.  相似文献   

12.
Chen ZH  Guo X  Ge XN  Jia H  Yang HC 《Acta virologica》2007,51(3):163-170
The immune efficacy of DNA vaccines containing three plasmids encoding gB, gC, and gD glycoproteins (Mix DNA) of Pseudorabies virus (PRV) or the plasmid for gC only (gC DNA), killed virus (KV) vaccine or combination of gC DNA, Mix DNA and KV vaccines was evaluated in mice using primeboost strategy. The mice vaccinated twice with Mix DNA, and once with KV generated higher levels of gCspecific and virus neutralization (VN) antibodies and a stronger cellular immune response than the mice vaccinated three times with the Mix DNA vaccine only. The highest level of VN antibodies were detected in mice vaccinated twice with KV vaccines alone or with combination of DNA and KV vaccines. The challenge of vaccinated mice with the lethal dose of PRV showed that the complete protection against PRV was achieved in the group of mice immunized with the DNA and KV vaccines combined. The results suggested that DNA priming followed by KV vaccine boosting could enhance the antibody response and cellular immunity against PRV infection in mice.  相似文献   

13.
目的:探讨BCG初次免疫(BCG-prime),结核杆菌共表达DNA疫苗加强免疫(DNA疫苗-boost)的策略对小鼠的免疫效果。方法:将BCG及结核杆菌重组DNA疫苗依次免疫小鼠,通过检测CTL和NK细胞的杀伤活性和特异性淋巴细胞增殖,以及小鼠血清抗体及细胞因子的水平,观测BCG-prime、共表达结核杆菌Ag85A/GM-CSFDNA疫苗boost策略对小鼠的免疫效果。结果:采用prime-boost免疫策略组的小鼠CTL的杀伤活性明显增强、特异性淋巴细胞明显增殖、IFN-γ的水平明显增高,NK细胞杀伤活性与对照组相比也有一定提高,但未超过BCG单独免疫效果。免疫小鼠血清特异性抗体的滴度超过单独DNA疫苗免疫组。结论:在采用BCG-prime-结核杆菌DNA疫苗boost免疫策略后,能增强对小鼠的免疫效应,尤其是Th1型细胞免疫反应增强明显,为进一步在动物体内进行保护性效应试验的研究提供了实验依据。  相似文献   

14.
The immune responses to an HIV-1 p55Gag vaccine encoded as a DNA chimera with the lysosomal associated membrane protein-1 (LAMP) have been examined for the effect of the addition of the inverted terminal repeat (ITR) sequences of the adeno-associated virus (AAV) to the DNA plasmid construct, and of packaging the LAMP/gag gene as a recombinant AAV vector (rAAV). DNA plasmids encoding Gag and the LAMP/Gag protein chimera were constructed in two vectors, the pcDNA3.1 and a corresponding plasmid containing the ITR sequences (pITR) flanking the expression elements of the plasmid, and the pITR LAMP/gag DNA plasmid was encapsidated in the rAAV vector. Human 293 cells transfected in vitro with LAMP/gag plasmids either in pcDNA3.1 or pITR produced much Gag protein in cell extracts (1.6 and 2.2 ng of Gag/mg of protein, respectively). The immune responses of mice to immunization with these constructs were examined under three protocols: DNA prime/DNA boost, DNA prime/rAAV boost, and a single rAAV immunization. The results demonstrated that under DNA prime/DNA boost protocol, the "naked" DNA vaccines encoding the LAMP/gag chimera, either as pcDNA3.1 or pITR DNA plasmid constructs, elicited strong CD4(+) T cell responses. In contrast, significantly higher levels of CD8(+) and antibody responses were observed with the pITR-DNA constructs. Immunization with the rAAV vector under the DNA prime/rAAV boost protocol resulted in sustained T cell responses and a markedly increased antibody response, predominantly of the IgG(1) isotype resulting from the activation of the Th2 subset of CD4(+) T cells, that was sustained for at least 5 months after immunization.  相似文献   

15.
In preparation for a clinical trial in patients diagnosed with colorectal cancer, a vaccination strategy targeting the carcinoembryonic antigen (CEA) was evaluated in mice using a GMP-produced plasmid DNA vaccine, CEA66, encoding a truncated form of the tumour-associated antigen, CEA. The GMP-produced CEA DNA vaccine was also evaluated for toxicity. Repeated intradermal administration of the GMP-produced vaccine using a novel needle-free jet injection device (Biojector) induced robust CD4 and CD8 T-cell responses in mice, and did not result in any vaccine-related toxicity. In a heterologous DNA prime/protein boost setting, cellular immune responses were of higher magnitude in animals primed with CEA66 DNA than in animals receiving repeated doses of recombinant CEA protein. These responses were further enhanced if recombinant murine granulocyte-macrophage colony-stimulating factor was given as an adjuvant prior to vaccination. In contrast to repeated administration of recombinant CEA protein as a single modality vaccine, the heterologous CEA66 DNA prime/rCEA boost vaccination strategy resulted in a qualitatively broader immune response, and supports clinical testing of this vaccination regimen in humans.  相似文献   

16.
Plasmid DNA expressing the major outer membrane protein (MOMP) of an avian Chlamydia psittaci serovar A strain has been tested for its ability to raise an immune response and induce protection against challenge with the same serovar. A combined parenteral (intramuscular injection) and mucosal route (DNA drops administered to the nares) of DNA inoculation was compared with gene gun-based immunization. The gene gun delivery of pcDNA1/MOMP as well as the intramuscular-intranasal DNA delivery primed both T-helper and B cell memory, although rMOMP-expressing cells did not induce high antibody responses. Evidence for the priming of the memory was provided by the fact that the pcDNA1/MOMP inoculations raised antibodies belonging to the IgG and not IgM isotype. However, in response to challenge only five out of 15 vaccinated turkeys showed four-fold increases in serum IgG after challenge. By contrast, evidence for the priming of T cell memory in response to challenge was found in all vaccinated turkeys, as shown by the significantly heightened proliferative responses of peripheral blood lymphocytes following vaccination. Both immunization methods produced similar serological and lymphocyte proliferative responses. Notwithstanding the immunization method, a significant level of protection was observed in all pcDNA1/MOMP-immunized turkeys. The efficacy of MOMP-based DNA vaccination as a means of preventing severe clinical signs, lesions and chlamydia excretion in a turkey model of C. psittaci infection was demonstrated.  相似文献   

17.
Construction of a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) is described. BAC vector sequences were inserted into the thymidine kinase gene of HSV-2 by homologous recombination. DNA from cells infected with the resulting recombinant virus was transformed into E. coli, and colonies containing the HSV-2 BAC (HSV2-BAC) were isolated and analyzed for the expected genotype. HSV2-BAC DNA was infectious when transfected back into mammalian cells and the resulting virus was thymidine kinase negative. When used to immunize mice, the HSV2-BAC DNA elicited a strong HSV-2 specific antibody response that was equal to or greater than live virus immunization. Further, HSV2-BAC immunization was protective when animals were challenged with a lethal dose of virus. The utility of the HSV2-BAC for construction of recombinant virus genomes was demonstrated by elimination of the HSV-2 glycoprotein D (gD) gene. A recombinant HSV-2 BAC with the gD gene deleted was isolated and shown to be incapable of producing infectious virus following transfection unless an HSV gD gene was expressed in a complementing cell line. Immunization of mice with the HSV2 gD-BAC also elicited an HSV-2 specific antibody response and was protective. The results demonstrate the feasibility of DNA immunization with HSV-2 bacterial artificial chromosomes for replicating and nonreplicating candidate HSV-2 vaccines, as well as the utility of BAC technology for construction and maintenance of novel HSV-2 vaccines. The results further suggest that such technology will be a powerful tool for dissecting the immune response to HSV-2.  相似文献   

18.
The safety, immunogenicity, and efficacy of DNA and modified vaccinia virus Ankara (MVA) prime-boost regimes were assessed by using either thrombospondin-related adhesion protein (TRAP) with a multiple-epitope string ME (ME-TRAP) or the circumsporozoite protein (CS) of Plasmodium falciparum. Sixteen healthy subjects who never had malaria (malaria-naive subjects) received two priming vaccinations with DNA, followed by one boosting immunization with MVA, with either ME-TRAP or CS as the antigen. Immunogenicity was assessed by ex vivo gamma interferon (IFN-gamma) enzyme-linked immunospot assay (ELISPOT) and antibody assay. Two weeks after the final vaccination, the subjects underwent P. falciparum sporozoite challenge, with six unvaccinated controls. The vaccines were well tolerated and immunogenic, with the DDM-ME TRAP regimen producing stronger ex vivo IFN-gamma ELISPOT responses than DDM-CS. One of eight subjects receiving the DDM-ME TRAP regimen was completely protected against malaria challenge, with this group as a whole showing significant delay to parasitemia compared to controls (P = 0.045). The peak ex vivo IFN-gamma ELISPOT response in this group correlated strongly with the number of days to parasitemia (P = 0.033). No protection was observed in the DDM-CS group. Prime-boost vaccination with DNA and MVA encoding ME-TRAP but not CS resulted in partial protection against P. falciparum sporozoite challenge in the present study.  相似文献   

19.
Neonates and infants display an intrinsic disability to mount protective immune responses to influenza viruses or conventional influenza vaccines. We investigated the ability of naked DNA to prime protective immune responses by inoculating newborn and adult mice with a plasmid (pHA) expressing hemagglutinin (HA) from the neurovirulent strain A/WSN/33 of influenza virus. Continuous exposure to small doses of antigen subsequent to neonatal DNA immunization led to effective priming of specific B and Th cells, rather than tolerance induction. The pHA immunization of adult mice primed a strongly biased Th1 response, whereas in neonates it induced a mixed Th1/Th2 response. In contrast to the effect of live-virus immunization, DNA immunization of neonates was followed by enhanced cytotoxic T lymphocyte responses subsequent to challenge with A/WSN/33 influenza virus. Mice immunized as neonates or adults with pHA plasmid exhibited significant increases in survival and decreases in virus lung titers following lethal challenge with the A/WSN/33 virus or the A/PR8/34 drift variant. Our results demonstrate that DNA vaccination is an efficient and safe means to generate broad humoral and cellular immune responses to influenza viruses, during the earliest stages of postnatal life.   相似文献   

20.
Accumulation of aggregated amyloid beta-protein (Abeta) in the brain is thought to be the initiating event leading to neurodegeneration and dementia in Alzheimer's disease (AD). Therefore, therapeutic strategies that clear accumulated Abeta and/or prevent Abeta production and its aggregation are predicted to be effective against AD. Immunization of AD mouse models with synthetic Abeta prevented or reduced Abeta load in the brain and ameliorated their memory and learning deficits. The clinical trials of Abeta immunization elicited immune responses in only 20% of AD patients and caused T-lymphocyte meningoencephalitis in 6% of AD patients. In attempting to develop safer vaccines, we previously demonstrated that an adenovirus vector, AdPEDI-(Abeta1-6)11, which encodes 11 tandem repeats of Abeta1-6 can induce anti-inflammatory Th2 immune responses in mice. Here, we investigated whether a DNA prime-adenovirus boost regimen could elicit a more robust Th2 response using AdPEDI-(Abeta1-6)11 and a DNA plasmid encoding the same antigen. All mice (n=7) subjected to the DNA prime-adenovirus boost regimen were positive for anti-Abeta antibody, while, out of 7 mice immunized with only AdPEDI-(Abeta1-6)11, four mice developed anti-Abeta antibody. Anti-Abeta titers were indiscernible in mice (n=7) vaccinated with only DNA plasmid. The mean anti-Abeta titer induced by the DNA prime-adenovirus boost regimen was approximately 7-fold greater than that by AdPEDI-(Abeta1-6)11 alone. Furthermore, anti-Abeta antibodies induced by the DNA prime-adenovirus boost regimen were predominantly of the IgG1 isotype. These results indicate that the DNA prime-adenovirus boost regimen can enhance Th2-biased responses with AdPEDI-(Abeta1-6)11 in mice and suggest that heterologous prime-boost strategies may make AD immunotherapy more effective in reducing accumulated Abeta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号