首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
He F  Li L  Kim D  Wen B  Deng X  Gutin PH  Ling CC  Li GC 《Cancer research》2007,67(2):634-642
Ku70 is one component of a protein complex, the Ku70/Ku80 heterodimer, which binds to DNA double-strand breaks and activates DNA-dependent protein kinase (DNA-PK), leading to DNA damage repair. Our previous work has confirmed that Ku70 is important for DNA damage repair in that Ku70 deficiency compromises the ability of cells to repair DNA double-strand breaks, increases the radiosensitivity of cells, and enhances radiation-induced apoptosis. Because of the radioresistance of some human cancers, particularly glioblastoma, we examined the use of a radio-gene therapy paradigm to sensitize cells to ionizing radiation. Based on the analysis of the structure-function of Ku70 and the crystal structure of Ku70/Ku80 heterodimer, we designed and identified a candidate dominant negative fragment involving an NH(2)-terminal deletion, and designated it as DNKu70. We generated this mutant construct, stably overexpressed it in Rat-1 cells, and showed that it has a dominant negative effect (i.e., DNKu70 overexpression results in decreased Ku-DNA end-binding activity, and increases radiosensitivity). We then constructed and generated recombinant replication-defective adenovirus, with DNKu70 controlled by the cytomegalovirus promoter, and infected human glioma U-87 MG cells and human colorectal tumor HCT-8 cells. We show that the infected cells significantly express DNKu70 and are greatly radiosensitized under both aerobic and hypoxic conditions. The functional ramification of DNKu70 was further shown in vivo: expression of DNKu70 inhibits radiation-induced DNA-PK catalytic subunit autophosphorylation and prolongs the persistence of gamma-H2AX foci. If radiation-resistant tumor cells could be sensitized by down-regulating the cellular level/activity of Ku/DNA-PK, this approach could be evaluated as an adjuvant to radiation therapy.  相似文献   

2.
DNA-dependent protein kinase (DNA-PK) is activated by DNA strand breaks and participates in DNA repair. Its regulatory subunit, Ku autoantigen, binds to DNA and recruits the catalytic subunit (DNA-PKcs). We show here a new role of DNA-PK in the development of multidrug resistance (MDR). The Ku-DNA binding activity, the levels of Ku70/Ku80 and DNA-PKcs in MDR variants, CEM/VLB(10-2), CEM/VLB(55-8) and CEM/VLB100 were higher than those in their parental drug-sensitive CEM cells in a drug resistance-dependent fashion. Also, CEM/VLB100 cells showed about 3-fold increase of DNA-PK enzyme activity as compared with CEM cells. Similar results were observed in another MDR cell line, FM3A/M mouse mammary carcinoma cells. Moreover, we observed that CEM/VLB100 cells were about 11-fold sensitive to wortmannin, which inhibits DNA-PK, compared with the CEM cells, and sensitized the MDR cells when combined with either bleomycin or vincristine, but have a little effect on CEM cells. Wortmannin was shown to inhibit DNA-PK and Ku-DNA binding activity in CEM/VLB100 cells dose dependently but had a little or no effect on their parental cells. Our results suggested that enhanced expression of DNA-PK participates in the development of MDR, and the use of DNA-PK inhibitors such as wortmannin is likely to improve the effectiveness of anticancer drugs and thus could partially overcome drug resistance in MDR cells, through its ability to inhibit Ku/DNA-PK activity.  相似文献   

3.
The Ku70/80 heterodimer is the regulatory subunit of the DNA-dependent protein kinase (DNA-PK) and its DNA-binding activity mediates DNA double-strand breaks repair. Although Ku80 was recently proposed as a caretaker gene involved in the control of genome integrity, no data are available on Ku70/80 DNA-binding activity in human tumors. Heterodimer DNA-binding activity and protein expression were assayed by electrophoretic-mobility-shift-assay (EMSA) and Western blot analysis, in nuclear and cytoplasmic extracts from eight breast, seven bladder primary tumors and three metastatic nodes from breast cancers. Corresponding normal tissues of the same patients were used as controls. Ten out of 15 tumors showed nuclear Ku-binding activity 3-10 times higher than in the normal tissues, irrespective of bladder or breast origin. Conversely, in 5/15 primary tumors and in all the metastatic nodes analysed, nuclear Ku-activity was 1.5-4.5-fold lower than in the corresponding normal tissues. Cytoplasmic heterodimer activity significantly differed between tumor and normal tissues, displaying a 2-10-fold increase in neoplastic tissues. Three different patterns combining both Ku expression and activity with tumor characteristics were identified. In low aggressive breast tumors p70/p80 proteins were expressed in tumor but not in normal tissues. The heterodimer binding-activity matched the protein levels. In non-invasive bladder carcinomas no significant differences in protein expression between tumor and the corresponding normal tissues were found, however heterodimer binding-activity was increased in tumor samples. In breast and bladder tumors, at the advanced stage and in node metastases, the binding activity was strongly reduced in tumor biopsies, however no differences were demonstrated between normal and tumor protein levels. Our results suggest a different modulation of Ku70/80 DNA-binding activity in human neoplastic tissues, possibly related to tumor progression. Findings provide further data on tissue-specific protein expression and post-translational regulation of heterodimer activity.  相似文献   

4.
DNA-dependent protein kinase (DNA-PK) is a DNA-activated nuclear serine/threonine protein kinase. DNA-PK consists of a regulatory sub-unit, the heterodimeric Ku protein (composed of a 70- and a 86-kDa subunit) which binds DNA ends and targets the catalytic sub-unit, DNA-PKcs to DNA strand breaks. DNA-PK plays a major role in the repair of double-strand breaks induced in DNA after exposure to ionizing radiation as shown by the extreme radiosensitivity of cells with mutations in Ku86, Ku70 or DNA-PKcs genes. Cells deficient in DNA-PK activity also exhibit hypersensitivity to genotoxic drugs such as cisplatin and nitrogen mustards. In the first part of this review, the current knowledge on the biochemical characteristics of DNA-PK, its mechanism of action in DNA repair and the phenotype of DNA-PK deficient cells is summarized. These results suggest that DNA-PK might play a role in the acquisition of a resistant phenotype of human tumors to radiotherapy, chemotherapy using genotoxic drugs or to both treatments. In the second part of this review, the studies devoted to inhibition of DNA-PK in order to enhance cancer therapy by DNA-damaging agents are presented.  相似文献   

5.
Since DNA-dependent protein kinase (DNA-PK) has been known to play a protective role against drug-induced apoptosis, the role of DNA-PK in the regulation of mitochondrial heat shock proteins by anticancer drugs was examined. The levels of basal and drug-induced mitochondrial heat shock proteins of drug-sensitive parental cells were higher than those of multidrug-resistant (MDR) cells. We also demonstrated that the development of MDR might be correlated with the increased expression of Ku-subunit of DNA-PK and concurrent down-regulation of mitochondrial heat shock proteins. The basal mtHsp70 and Hsp60 levels of Ku70(-/-) cells, which were known to be sensitive to anticancer drugs, were higher than those of parental MEF cells, but conversely these mitochondrial heat shock proteins of R7080-6 cells over-expressing both Ku70 and Ku80 were lower than those of parental Rat-1 cells. Also, the mtHsp70 and Hsp60 levels of DNA-PKcs-deficient SCID cells were higher than those of parental CB-17 cells. Our results suggest the possibility that mitochondrial heat shock protein may be one of determinants of drug sensitivity and could be regulated by DNA-PK activity.  相似文献   

6.
Li GC  He F  Shao X  Urano M  Shen L  Kim D  Borrelli M  Leibel SA  Gutin PH  Ling CC 《Cancer research》2003,63(12):3268-3274
Ku70 is one component of a protein complex, Ku70 and Ku80, that functions as a heterodimer to bind DNA double-strand breaks and activates DNA-dependent protein kinase. Our previous study with Ku70-/- and Ku80-/- mice, and cell lines has shown that Ku70- and Ku80-deficiency compromises the ability of cells to repair DNA double-strand breaks, increases radiosensitivity of cells, and enhances radiation-induced apoptosis. In this study, we examined the feasibility of using adenovirus-mediated, heat-activated expression of antisense Ku70 RNA as a gene therapy paradigm to sensitize cells and tumors to ionizing radiation. First, we performed experiments to test the heat inducibility of heat shock protein (hsp) 70 promoter and the efficiency of adenovirus-mediated gene transfer in rodent and human cells. Replication-defective adenovirus vectors were used to introduce a recombinant DNA construct, containing the enhanced green fluorescent protein (EGFP) under the control of an inducible hsp70 promoter, into exponentially growing cells. At 24 h after infection, cells were exposed to heat treatment, and heat-induced EGFP expression at different times was determined by flow cytometry. Our data clearly show that heat shock at 42 degrees C, 43 degrees C, or 44 degrees C appears to be equally effective in activating the hsp70 promoter-driven EGFP expression (>300-fold) in various tumor cells. Second, we have generated adenovirus vectors containing antisense Ku70 under the control of an inducible hsp70 promoter. Exponentially growing cells were infected with the adenovirus vector, heat shocked 24 h later, and the radiosensitivity determined 12 h after heat shock. Our data show that heat shock induces antisense Ku70 RNA, reduces the endogenous Ku70 level, and significantly increases the radiosensitivity of the cells. Third, we have performed studies to test whether Ku70 protein level can be down-regulated in a solid mouse tumor (FSa-II), and whether this results in enhanced radiosensitivity in vivo, as assessed by in vivo/in vitro colony formation and by the tumor growth delay. Our data demonstrate that heat-shock-induced expression of antisense Ku70 RNA attenuates Ku70 protein expression in FSa-II tumors, and significantly sensitizes the FSa-II tumors to ionizing radiation. Taken together, our results suggest that adenovirus-mediated, heat-activated antisense Ku70 expression may provide a novel approach to radiosensitize human tumors.  相似文献   

7.
Ku affects the CHK1-dependent G(2) checkpoint after ionizing radiation   总被引:7,自引:0,他引:7  
Wang X  Li GC  Iliakis G  Wang Y 《Cancer research》2002,62(21):6031-6034
There are two major pathways for repairing DNA double strand breaks in mammalian cells: nonhomologous end joining (NHEJ) and homologous recombination repair (HRR). The nonhomologous end joining repair is deficient in cells without Ku, whereas HRR is highly efficient in such cells compared with their wild-type counterparts. The mechanism remains unclear. We reported previously that Ku80(-/-) cells show a stronger ATM-dependent S-phase checkpoint response than Ku80(+/+) cells after ionizing radiation (IR; X-Y. Zhou et al., Oncogene, 21:6377-6381, 2002). We report in this study that Ku80(-/-) cells also show a much stronger G(2) accumulation than Ku80(+/+) cells after IR. The stronger G(2) checkpoint response in Ku80(-/-) cells is ATM independent but is accompanied with a higher activity of CHK1 kinase. Treatment with Chk1 antisense oligonucleotide abolishes the stronger G(2) checkpoint response and sensitizes Ku80(-/-) cells to IR. These data indicate that the stronger G(2) checkpoint response shown in Ku80(-/-) cells is CHK1 dependent and suggest that the CHK1-dependent checkpoint response contributes to the highly efficient HRR in such cells.  相似文献   

8.
Repair pathways of DNA are now better defined, and some important findings have been discovered in the last few years. DNA non-homologous end-joining (NEHJ) is a crucial process in the repair of radiation-induced double-strand breaks (DSBs). NHEJ implies at least three steps: the DNA free-ends must get closer, preparation of the free-ends by exonucleases and then a transient hybridisation in a region of DNA with weak homology. DNA-dependent protein kinase (DNA-PK) is the key enzyme in this process. DNA-PK is a nuclear serine/threonine kinase that comprises three components: a catlytic subunit (DNA-PKCS) and two regulatory subunits, DNA-binding proteins, Ku80 and Ku70. The severe combined immunodeficient (scid) mice are deficient in DNA-PKCS: this protein is involved both in DNA repair and in the V(D)J recombination of immunoglobulin and T-cell receptor genes. It is a protein-kinase of the P13-kinase family and which can phosphorylates Ku proteins, p53 and probably some other proteins still unknown. DNA-PK is an important actor of DSBs repair (induced by ionising radiations or by drugs like etoposide), but obviously it is not the only mechanism existing in the cell for this function. Some others, like homologous recombination, seem also to have a great importance for cell survival.  相似文献   

9.
DNA-dependent protein kinase (DNA-PK), including Ku80, Ku70 and DNA-PK catalytic subunit (DNA-PKcs), is the key protein in non-homologous end-joining (NHEJ) after DNA double-strand breaks (DSBs) appear. In this study, small hairpin interfering RNAs (siRNAs) targeting Ku80 and DNA- PKcs were used both individually and in combination, to explore the effects of these DSB proteins on HeLa cell functional changes after X-ray irradiation. HeLa cells co-transfected with Ku80-siRNA and DNA-PKcs-siRNA were more radiosensitive than the ones transfected individually. HeLa in the absence of Ku80 and pretreated with LY294002, a chemically specific PI 3-kinase inhibitor, resulted in cells that were even more sensitive to X-rays than HeLa/Ku80-siRNA transfected with DNA- PKcs-siRNA. The cells inhibited by Ku80 either individually or in combination with DNA-PKcs showed cell accumulation in the G2/M phase 48 h post-irradiation, similarly to control cells. However, cells transfected with DNA-PKcs-siRNA or pretreated with LY294002 had a prolonged G2/M delay, suggesting the accumulation of significant un-repaired DNA damage following inhibition of DSB repair proteins. In conclusion, these data indicate that the role of Ku80 in DSB repair could be compensated by other DSB repair proteins; co-inhibition would be a suitable strategy to enhance the radiosensitivity of cancer cells.  相似文献   

10.
Um JH  Kang CD  Lee BG  Kim DW  Chung BS  Kim SH 《Oncogene》2001,20(42):6048-6056
In this study, we investigated possible engagement of NF-kappaB and Ku autoantigen (Ku) activation in development of multidrug resistance (MDR) and circumvention of MDR by modulation of NF-kappaB and Ku. The NF-kappaB activity and NF-kappaB p65 subunit level were constitutively higher in MDR cells than in drug-sensitive parental cells. Interestingly, a faster running NF-kappaB DNA binding complex was identified as Ku, a DNA damage sensor and a key double strand break repair protein, and was positively correlated with the NF-kappaB activity in MDR cells and Ku- or both subunits of NF-kappaB-transfected cells. Also both NF-kappaB and Ku activities were activated or inhibited by treatment with etoposide (VP-16) or MG-132 (a proteasome inhibitor), respectively. Furthermore, PKA inhibitor suppressed markedly the constitutive and drug-induced activities of NF-kappaB and Ku in MDR cells and subsequently potentiated the cytotoxic activity of anticancer drugs. Our results proposed that the NF-kappaB and Ku activation could be one of multi-factorial MDR mechanism, and PKA inhibitor, likely via inhibition of NF-kappaB and Ku activities, could enhance the effectiveness of anticancer drugs against MDR cells with high activities of NF-kappaB and Ku.  相似文献   

11.
We previously showed that dietary treatment with the N-acetylcysteine conjugate of phenethyl isothiocyanate (PEITC-NAC) inhibited benzo(a)pyrene-induced lung tumorigenesis in A/J mice, and that tumor inhibition was associated with induction of activator protein-1 (AP-1) activity and stimulation of apoptosis in the lungs of mice. In the present study, we show that PEITC-NAC also induces apoptosis and AP-1 activity in human lung adenocarcinoma A549 cells, and that activation of AP-1 is important in PEITC-NAC induced apoptosis in these cells. PEITC-NAC induced AP-1 binding activity in A549 cells in a dose- and time-dependent manner; peak activity appeared at 10 micromol/L after 24 hours. At that time, flow cytometric analysis showed a sub-G1 peak, indicating that approximately 4.5% of the cells had undergone apoptosis. When wild-type c-jun cDNA was transfected into A549 cells, PEITC-NAC-mediated apoptosis was greatly increased in the c-jun-transfected cells compared with the control vector-transfected cells, based on cell morphology and analysis of DNA fragmentation. Furthermore, cells that were pretreated with 100 nmol/L 12-O-tetradecanoyl phorbol-13-acetate, and then treated with 25 micromol/L PEITC-NAC, underwent enhanced apoptosis compared with cells that were treated with PEITC-NAC alone; cells treated with 12-O-tetradecanoyl phorbol-13-acetate alone showed active cell growth without apoptosis. Bivariate flow cytometric analysis of DNA strand breaks versus DNA content showed that apoptosis induced by PEITC-NAC occurred predominantly in the G2-M phase. These findings suggest that growth-stimulated cells with an elevated basal AP-1 activity, i.e., A549 cells transfected with wild-type c-jun or treated with a tumor promoter, were more sensitive to PEITC-NAC-mediated apoptosis. The observation that PEITC-NAC induces apoptosis predominantly in growth-promoted cells, such as neoplastic cells, suggests a selective mechanism by which PEITC-NAC inhibits lung carcinogenesis.  相似文献   

12.
Jin  S; Inoue  S; Weaver  DT 《Carcinogenesis》1998,19(6):965-971
Etoposides block cell division by interfering with the action of topoisomerase II, leaving enzyme-DNA double-strand breaks. We found that certain components of the trimeric DNA-dependent protein kinase influence cell survival following etoposide damage. Interestingly, either Ku70- or Ku80-deficient cell lines, but not mutant cell lines of the DNA-PK catalytic sub-unit (DNA-PKcs), were found to be hypersensitive to the effects of etoposide VP16. Ku70- and Ku80- deficient cells can be complemented to an etoposide resistant phenotype by introducing wildtype Ku70 or Ku80 cDNAs. Mutational analysis of introduced Ku70 cDNAs into murine embryonic stem cells deleted for Ku70 (-/-) showed that mutants where heterodimerization and DNA binding functions of Ku were disrupted, also blocked the restoration of etoposide resistance. In contrast with the differential etoposide sensitivity of DNA-PK mutants, both Ku- and DNA-PKcs-deficient cell lines showed G2 ionizing radiation-induced delays, a cell cycle phase where topoisomerase II function is critical. Thus, the topoisomerase II cleaved complexes may be an example of DNA lesions requiring the Ku heterodimer, but not DNA-PK for DNA repair.   相似文献   

13.
The Ku heterodimer, which consists of Ku70 and Ku86 subunits, is a major sensor of DNA breaks. A truncated form of Ku86 lacking its C-terminus, termed Ku86 variant, has been detected in extracts from different human cells. Here we report that in human lymphocytes the Ku86 variant is not present in vivo but is generated in vitro upon cell lysis by a trypsin-like protease. The resulting Ku86 variant exists exclusively in complexes with Ku70, which possess strong affinity to DNA double strand termini. In different blood donors the levels of Ku86 variant correlated with the magnitude of radiation induced DNA breaks.  相似文献   

14.
This study reports a histone deacetylation-independent mechanism whereby histone deacetylase (HDAC) inhibitors sensitize prostate cancer cells to DNA-damaging agents by targeting Ku70 acetylation. Ku70 represents a crucial component of the nonhomologous end joining repair machinery for DNA double-strand breaks (DSB). Our data indicate that pretreatment of prostate cancer cells with HDAC inhibitors (trichostatin A, suberoylanilide hydroxamic acid, MS-275, and OSU-HDAC42) led to increased Ku70 acetylation accompanied by reduced DNA-binding affinity without disrupting the Ku70/Ku80 heterodimer formation. As evidenced by increased Ser(139)-phosphorylated histone H2AX (gammaH2AX), impaired Ku70 function diminished cellular capability to repair DNA DSBs induced by bleomycin, doxorubicin, and etoposide, thereby enhancing their cell-killing effect. This sensitizing effect was most prominent when cells were treated with HDAC inhibitors and DNA-damaging agents sequentially. Mimicking acetylation was done by replacing K282, K317, K331, K338, K539, or K542 with glutamine via site-directed mutagenesis, which combined with computer docking analysis was used to analyze the role of these lysine residues in the interactions of Ku70 with DNA broken ends. Mutagenesis of K282, K338, K539, or K542 suppressed the activity of Ku70 to bind DNA, whereas mutagenesis of K317 or K331 with glutamine had no significant effect. Moreover, overexpression of K282Q or K338Q rendered DU-145 cells more susceptible to the effect of DNA-damaging agents on gammaH2AX formation and cell killing. Overall, the ability of HDAC inhibitors to regulate cellular ability to repair DNA damage by targeting Ku70 acetylation underlies the viability of their combination with DNA-damaging agents as a therapeutic strategy for prostate cancer.  相似文献   

15.
Chang HW  Kim SY  Yi SL  Son SH  Song do Y  Moon SY  Kim JH  Choi EK  Ahn SD  Shin SS  Lee KK  Lee SW 《Oral oncology》2006,42(10):979-986
The Ku protein is essential for the repair of a majority of DNA double-strand breaks in mammalian cells. The purpose of this study was to investigate the relationship between the expression of Ku70/80 and sensitivity to radiation in cancer cell lines of the head and neck. The sensitivity to radiation in various head and neck cancer cell lines (AMC-HN-1 to -9) was analyzed by colony forming assay. Of the nine cell lines examined, the most radiosensitive cell line (AMC-HN-3) and the most radioresistant cell line (AMC-HN-9) were selected for this experiments. The expression of Ku70/80 was examined after irradiation using real time PCR, Western blotting and immunofluorescence in two different cell lines. Cell cycle distribution after irradiation were analysed. A differential radioresponse was demonstrated by expression of Ku70/80 in AMC-HN-3 and AMC-HN-9 cells. While the expression of Ku70 was slightly increased in the radioresistant AMC-HN-9 cell line, the expression of Ku80 was remarkably increased, suggesting a correlation between Ku80 expression and radiation resistance. Overexpression of Ku80 plays an important role in the repair of DNA damage induced by radiation. Ku80 expression may provide an effective predictive assay of radiosensitivity in head and neck cancers.  相似文献   

16.
Hsu JL  Leong PK  Ho YF  Hsu LC  Lu PH  Chen CS  Guh JH 《Cancer letters》2012,319(2):214-222
The knockdown of Pim-1 or inhibition of Pim-1 activity significantly increased γ-H2A.X expression. The effect was correlated to apoptosis and was attributed to the inhibition of nonhomologous DNA-end-joining (NHEJ) repair activity supported by the following observations: (1) inhibition of ATM and DNA-PKcs activities, (2) down-regulation of Ku expression and nuclear localization and (3) decrease of DNA end-binding of both Ku70 and Ku80. The data suggest that Pim-1 plays a crucial role in the regulation of NHEJ repair. In the absence of Pim-1, the ability of DNA repair significantly decreases when exposed to paclitaxel, leading to severe DNA damage and apoptosis.  相似文献   

17.
Wang H  Wang X  Zhou XY  Chen DJ  Li GC  Iliakis G  Wang Y 《Cancer research》2002,62(9):2483-2487
Camptothecin (CPT) that targets DNA topoisomerase I is one of the most promising broad-spectrum anticancer drugs in development today. The cytotoxicity of CPT is S phase (S)-specific because the collision of advancing replication forks with CPT-topoisomerase I-DNA complexes results in DNA damage. After DNA damage, proliferating cells could actively slow down the DNA replication through an S checkpoint to provide time for repair. We report now that there is an activated S checkpoint response in CPT-treated mammalian cells. This response is regulated by Ataxia and Rad3-related (ATR)/CHK1 pathway. Compared with their wild-type counterparts, CPT-treated Ku80-/- cells showed stronger inhibition of DNA replication. This stronger inhibition had no relationship with DNA-dependent protein kinase (DNA-PK) activity but correlated with the higher activities of ATR and the higher activities of CHK1 in such cells. Not only caffeine, the nonspecific inhibitor of ATR, or UCN-01, the nonspecific inhibitor of CHK1, but also the specific CHK1 antisense oligonucleotide abolished the stronger inhibition of DNA replication in CPT-treated Ku80-/- cells. These results in aggregate indicated that the stronger S checkpoint in CPT-treated Ku80-/- cells is regulated through the highly activated ATR/CHK1 pathway.  相似文献   

18.
J C Li  E Kaminskas 《Cancer research》1987,47(11):2755-2758
We have previously demonstrated an accumulation of strand breaks in mature DNA of cultured Ehrlich ascites tumor cells treated with methotrexate. We postulated that the strand breaks arose from unrepaired spontaneous DNA lesions. The present study describes a progressive accumulation of strand breaks in mature DNA of Ehrlich ascites cells treated with hydroxyurea (HU). Strand breaks were determined by alkaline elution. Accumulation of strand breaks was dependent on the length of incubation (0-16 h) and on HU concentration (0-10 mM). About 70% of strand breaks were repaired when cells were incubated without HU. About 67% of strand breaks were prevented by 0.4 mM deoxyadenosine, deoxyguanosine, and deoxycytidine, with or without thymidine. Prevention was less effective by deoxyadenosine and deoxyguanosine and ineffective by deoxycytidine. Free radical scavengers did not prevent strand breaks. S-phase cells accumulated about twice the number of strand breaks as non-S-phase cells. Cell survival decreased in proportion to the increase in HU concentration (0-10 mM). The results demonstrate that lack of purine, as well as of pyrimidine, nucleotides results in strand breaks in mature DNA, suggest that HU cytotoxicity is due to fragmentation of mature DNA, and caution against the use of HU in DNA repair studies.  相似文献   

19.
Double strand breaks (DSBs) are considered the most lethal form of DNA damage for eukaryotic cells, and misrepair of DSB can cause cell death, chromosome instability, and cancer. Nonhomologous end-joining (NHEJ) is a major mechanism for the repair of DSBs. We previously reported that the cancer predisposition Bloom's syndrome and myeloid leukemias demonstrate increased NHEJ activity and consequent misrepair. In this study, we link this increased NHEJ activity and infidelity to ongoing or induced DNA damage at sites that recruit key NHEJ proteins. We show here that in myeloid leukemia cells and normal hemopoietic cells, agents that induce DSBs produce an up to 2-fold increase in this DSB misrepair activity, whereas an alkylating agent produces little or no increases. Furthermore, NHEJ overactivity after induction of DSBs is dependent on the presence of Ku70/Ku86. We also present data to explain the constitutively activated NHEJ in myeloid leukemias. Using an immunofluorescence-based assay for DNA damage, myeloid leukemias demonstrate constitutive DNA damage in the absence of treatment with DSB-inducing agents compared with normal hemopoietic cells. Importantly, damaged foci from myeloid leukemia and normal cells colocalize with NHEJ proteins Ku70 and Ku86. These data suggest that the generation of increased constitutive DNA damage may be a common pathway for the creation of NHEJ-dependent genomic instability.  相似文献   

20.
There is considerable evidence that ionizing radiation (IR) and chemotherapeutic drugs mediate apoptosis through the intrinsic death pathway via the release of mitochondrial cytochrome c and activation of caspases -9 and -3. Here we show that MCF-7 cells that lack caspase-3 undergo a caspase-dependent apoptotic cell death in the absence of DNA fragmentation and alpha-fodrin cleavage following treatment with etoposide or doxorubicin, but not after exposure to IR. Re-expression of caspase-3 restored DNA fragmentation and alpha-fodrin cleavage following drug treatment, but it did not alter the radiation-resistant phenotype of these cells. In contrast to the anticancer drugs, IR failed to induce the intrinsic death pathway in MCF-7/casp-3 cells, an event readily observed in IR-induced apoptosis of HeLa cells. Although IR-induced DNA double-strand breaks were repaired with similar efficiencies in all cell lines, cell cycle analyses revealed a persistent G2/M arrest in the two MCF-7 cell lines, but not in HeLa cells. Together, our data demonstrate that caspase-3 is required for DNA fragmentation and alpha-fodrin cleavage in drug-induced apoptosis and that the intrinsic death pathway is fully functional in MCF-7 cells. Furthermore, they show that the radiation-resistant phenotype of MCF-7 cells is not due to the lack of caspase-3, but is caused by the failure of IR to activate the intrinsic death pathway. We propose (1) different signaling pathways are induced by anticancer drugs and IR, and (2) IR-induced G2/M arrest prevents the generation of an apoptotic signal required for the activation of the intrinsic death pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号