首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Bone mineral content (BMC) and bone mineral density (BMD) of the spine (L2–L4) and hip (at femoral neck, Ward's triangle, and greater trochanter sites) were determined by dual-photon absorptiometry (DPA), and of the radius by single-photon absorptiometry (SPA) in healthy postmenopausal women aged 40–70 years. The relationships of BMC and BMD to years since menopause were examined separately in 97 women who were above 115% of ideal body weight (IBW) and in 128 women below. The heavier women had significantly greater mean BMC and BMD at each site than did the normal-weight women. In the normal-weight women, there was a significant negative correlation between BMD and years since menopause at each measurement site except the greater trochanter. In the obese women, BMD decreased with increasing years since menopause at the radius site only and BMC declined with increasing years after menopause at the hip (femoral neck and Ward's triangle region) as well as the radius. Thus, body size is a significant determinant of BMD in this population. The pattern of loss of BMD from Ward's triangle and femoral neck regions of hip are similar to that of the spine. The BMC and BMD findings in the hip suggest that remodeling occurs at this weight-bearing site which has a favorable effect on bone strength.  相似文献   

2.
Specker B  Binkley T  Fahrenwald N 《BONE》2004,35(6):1389-1398
Despite reports of lower fracture risk among rural versus urban populations, few studies have investigated rural versus urban differences in bone mineral content (BMC) and bone mineral density (BMD). Population differences in cross-sectional bone geometry and understanding lifestyle factors responsible for these differences may reveal insights into the reason for differences in fracture risk. We hypothesized that if lifestyle differences in bone mass, size, and geometry are a result of muscle strength, activity, or dietary differences, Hutterite and rural populations should have greater bone mass compared to nonrural populations. The study population consisted of 1189 individuals: 504 rural Hutterites (188 men), 349 rural individuals (>75% life farming, 184 men), and 336 nonrural individuals (never lived on farm, 134 men) aged 20 to 66 years. BMC, bone area, and areal BMD (aBMD) of the total body (TB), hip, femoral neck (FN), and spine by DXA; volumetric BMD (vBMD) and bone geometry at the 4% and 20% radius; polar stress strain index (pSSI), a measure of bone strength, at the 20% pQCT site; and strength, 7-day activity recall, and 24-h diet recall were collected and compared among groups. Hutterite women and men had greater grip strength compared to rural and nonrural populations (both, P < 0.001). Rural women had greater activity versus Hutterite and nonrural (P < 0.001), while both Hutterite and rural men had greater activity than nonrural (P < 0.001). Hutterite and rural populations tended to have greater BMC and areal size than the nonrural population, while Hutterites had greater BMC and areal size than rural population at some (TB, FN for females only), but not all (proximal hip), sites. Cortical vBMD was inversely associated with periosteal circumference at the 20% radius in women (r = −0.25, P < 0.001) and men (r = −0.28, P < 0.001) and was higher in nonrural versus Hutterite and rural men. Hutterite and rural women and men had greater pSSI at the 20% radius compared to nonrural; inclusion of strength measurements explained population differences among women, but not men. Lifestyle differences did not explain population differences in BMC, aBMD, vBMD, or bone size.  相似文献   

3.
Discordances between hip and spine areal density T-score values are common and incompletely understood. In a cohort of 1157 postmenopausal women, discordances of greater than 10% occurred in 91%, with spine bone mineral density (BMD) T-scores significantly less negative than femoral neck (FN) T-scores (p < 0.001). However, when T-scores based on bone mineral content (BMC) rather than BMD were used, the mean discordance was not significantly different from 0. This was largely because BMC at the FN had seemingly declined with age less rapidly than had BMD at that site. This can be explained by age-related areal expansion at the hip, which would be missed in the reported BMD output. One consequence is that if BMC-based T-scores are used to classify patients, substantially fewer individuals would have been judged osteoporotic in this cohort (two-thirds fewer for spine and three-fourths fewer for hip).  相似文献   

4.
Optimizing bone mass in adulthood is of great importance to prevent the occurrence of osteoporosis in later age. Vitamin D is an essential component of bone health. Low-serum vitamin D is associated with low bone mineral density (BMD), which is an important predictor of fracture risk. However, most cells, apart from renal tubular cells, are exposed to free rather than to total 25-hydroxyvitamin D. Whether free vitamin D would be a better marker than total vitamin D is still under debate. The aim of the present study was to explore the relationships between serum total vitamin D, vitamin D-binding protein (BP), free vitamin D, and bone parameters in a group of young Lebanese women. This study included 88 young female adults aged between 18 and 35?yr. Body composition and BMD were assessed by dual-energy X-ray absorptiometry, and the lumbar spine trabecular bone score was derived. Bone mineral content (BMC) and BMD were measured at the whole body (WB), the lumbar spine (L1–L4), the total hip (TH), and the femoral neck (FN). To evaluate hip bone geometry, dual-energy X-ray absorptiometry scans were analyzed at the FN, the intertrochanteric region, and the femoral shaft by the Hip Structure Analysis program. The cross-sectional area, the index of axial compression strength, and the section modulus (Z), as well as index of bending strength, were measured from bone mass profiles. Composite indices of FN strength (compressive strength index [CSI], bending strength index, and impact strength index [ISI]) were calculated as previously described. Direct measurement of free 25-hydroxyvitamin D concentrations was performed by immunoassay, which detects free vitamin D by ELISA on a microtiter plate. Serum vitamin D BP was measured using a Quantikine ELISA kit, which employed the quantitative sandwich enzyme immunoassay technique. Serum free vitamin D was positively correlated with WB BMC (r?=?0.26, p?<?0.05), WB BMD (r?=?0.29, p?<?0.05), L1–L4 BMD (r?=?0.28, p?<?0.05), TH BMD (r?=?0.34, p?<?0.01), FN BMD (r?=?0.29, p?<?0.05), CSI (r?=?0.24, p?<?0.05), and ISI (r?=?0.28, p?<?0.05). No positive correlations were detected between the total vitamin D level, the vitamin D BPs, and BMD. The positive associations between free vitamin D and several bone variables (WB BMC, WB BMD, L1–L4 BMD, TH BMD, FN BMD, CSI, bending strength index, and ISI) remained significant after adjustment for weight. In conclusion, the current study suggests that the free vitamin D serum level is a stronger positive determinant of bone parameters and hip bone strength indices in young female adults than total serum vitamin D.  相似文献   

5.
Bone mineral density (BMD) measurement by hip dual-energy X-ray absorptiometry (DXA) is considered the best predictor of osteoporotic fracture risk. BMD takes into account only in part the bone cross-sectional area that is an important determinant of both bone compression strength and of bending breaking resistance. From DXA measurements of proximal radius (Osteoplan, NIM, Verona, Italy) we obtained the projected outer diameter (D) and the mean diameter of the medulla (d), by an algorithm based on the assumption of a constant cortical volumetric density of 1050 g/cm3. The algorithm was validated by the good correlation found (r= 0.8) between calculated d and that actually measured by peripheral quantitative tomography (pQCT; XCT 960, Stratec, Unitrem, Italy) at the same radial site. The D and d values were used to calculate a bending breaking resistance index (BBRI) that is a component of the cross-sectional moment of inertia. The BBRI measured in 5460 women aged 35–89 years, was stable up to the age of 65–70 years and rapidly declined thereafter by 0.7% per year. This profile appears to be due to the fact that the increase in medullary area is compensated in terms of mechanical resistance by enlargement of cross-sectional area. In 68 women with either previous femoral neck (n= 41) or pertrochanteric fracture (n= 27) DXA measurements at proximal and ultradistal radius, lumbar spine and femoral neck were obtained together with the evaluation of proximal radius BBRI. The diagnostic accuracy of BBRI was somewhat comparable to that of spine and femoral neck BMD and significantly superior to that of ultradistal and proximal radius BMD, from which it was derived. Despite the obvious limitation of the cross-sectional nature of this study, our results indicate that a simple re-elaboration of the data obtained by peripheral radial densitometry may achieve diagnostic accuracy for hip fracture risk assessment only marginally lower than that of the direct measure of the BMD of the femoral neck. They also give additional support to the view that bone geometry, particularly for compact skeletal segments, is a determinant of its strength at least as important as bone density. Received: 25 July 2000 / Accepted: 9 April 2001  相似文献   

6.
Summary  The effects of physical activity on bone strength acquisition during growth are not well understood. In our cluster randomized trial, we found that participation in a novel school-based physical activity program enhanced bone strength acquisition and bone mass accrual by 2–5% at the femoral neck in girls; however, these benefits depended on teacher compliance with intervention delivery. Our intervention also enhanced bone mass accrual by 2–4% at the lumbar spine and total body in boys. Introduction  We investigated the effects of a novel school-based physical activity program on femoral neck (FN) bone strength and mass in children aged 9–11 yrs. Methods  We used hip structure analysis to compare 16-month changes in FN bone strength, geometry and bone mineral content (BMC) between 293 children who participated in Action Schools! BC (AS! BC) and 117 controls. We assessed proximal femur (PF), lumbar spine (LS) and total body (TB) BMC using DXA. We compared change in bone outcomes between groups using linear regression accounting for the random school effect and select covariates. Results  Change in FN strength (section modulus, Z), cross-sectional area (CSA), subperiosteal width and BMC was similar between control and intervention boys, but intervention boys had greater gains in BMC at the LS (+2.7%, p = 0.05) and TB (+1.7%, p = 0.03) than controls. For girls, change in FN-Z tended to be greater (+3.5%, p = 0.1) for intervention girls than controls. The difference in change increased to 5.4% (p = 0.05) in a per-protocol analysis that included girls whose teachers reported 80% compliance. Conclusion  AS! BC benefits bone strength and mass in school-aged children; however, our findings highlight the importance of accounting for teacher compliance in classroom-based physical activity interventions.  相似文献   

7.
Bone mass is an important determinant of resistance to fractures. Whether bone mineral density (BMD) in subjects with a fracture of the proximal femur (hip fracture) is different from that of age-matched controls is still debated. We measured BMD of the femoral neck (FN) on the opposite side to the fracture, as well as femoral shaft (FS) and lumbar spine (LS) BMD by dual-photon absorptiometry in 68 patients (57 women and 11 men, mean age 78.8±1.0) 12.4±0.8 days after hip fracture following a moderate trauma. These values were compared with BMD of 93 non-fractured elderly control subjects (82 women and 11 men), measured during the same period. As compared with the controls, FN BMD was significantly lower in fractured women (0.592±0.013 v. 0.728±0.014 g/cm2,P<0.001) and in fractured men (0.697±0.029 v. 0.840±0.052,P<0.05). Expressed as standard deviations above or below the mean BMD of age and sex-matched normal subjects (Z-score), the difference in FN BMD between fractured women and controls was highly significant (–0.6±0.1 v. +0.1±0.1,P<0.001). As compared with mean BMD of young normal subjects, BMD was decreased by 36.9±1.4 and 22.4±1.5% (P<0.001) in fractured and control women, respectively. There was no significant difference between FN BMD of 33 women with cervical and 24 with trochanteric hip fractures (0.603±0.017 v. 0.577±0.020). FN BMD was lower than 0.705 g/cm2 in 90% of fractured women. The prevalence of fracture increased with decreasing FN BMD, reaching 100% with values below 0.500 g/cm2. FS and LS BMD were significantly lower in women with hip fracture than in controls (1.388±0.036 v. 1.580±0.030,P<0.001, for FS, and 0.886±0.027 v. 0.985±0.023,P<0.01, for LS), but these differences were not significant when expressed as a Z-score. In men with a recent hip fracture, FS BMD was significantly lower than in controls (1.729±0.096 v. 2.069±0.062,P<0.01), but the difference at the LS level did not reach statistical significance. These results indicate that both women and men with a recent hip fracture had decreased bone mineral density of the femoral neck, femoral shaft and lumbar spine. However, the difference appeared to be of higher magnitude for the femoral neck suggesting a preferential bone loss at this site.  相似文献   

8.
The aim of this study was to compare bone mineral content (BMC), bone mineral density (BMD), and geometric indices of hip bone strength among 3 groups of adult obese premenopausal women (severely obese, morbidly obese, and super morbidly obese). This study included 65 young adult premenopausal women whose body mass index (BMI) > 35 kg/m2. They were divided into 3 groups using international cut-offs for BMI. Body composition and bone variables were measured by DXA. DXA measurements were completed for the whole body (WB), lumbar spine, total hip (TH), and femoral neck (FN). Geometric indices of FN strength (cross-sectional area, cross-sectional moment of inertia [CSMI], section modulus [Z], strength index [SI], and buckling ratio) were calculated by DXA. Results showed that age and height were not significantly different among the 3 groups. WB BMC values were higher in super morbidly obese women compared to severely and morbidly obese women. WB BMD, L1-L4 BMD, total hip BMD, FN BMD, cross-sectional area, CSMI, Z, and buckling ratio values were not significantly different among the 3 groups. SI values were lower in super morbidly obese compared to morbidly and severely obese women. In the whole population (n = 65), body weight, BMI, lean mass, fat mass, and trunk fat mass were positively correlated to WB BMC and negatively correlated to SI. Weight and lean mass were positively correlated to WB BMD and CSMI. Our findings suggest that the severity of obesity does not influence BMD values in premenopausal women.  相似文献   

9.
The aim of this study was to explore the relationships between physical performance variables and bone parameters such as bone mineral density (BMD), bone mineral content, hip geometry indices, and trabecular bone score in a group of young overweight and obese adult women. Sixty-eight overweight/obese (body mass index ≥25 kg/m2; 25.5–42.4 kg/m2) young women whose ages range from 18 to 35 yr participated in this study. Body composition and bone outcomes were measured by dual-energy X-ray absorptiometry. Maximum oxygen consumption (VO2 max, in liter per minute) was determined indirectly using a progressive shuttle run test. One-repetition-maximum half-squat was directly measured. Vertical jump was measured and maximum power (P max) of the lower limbs was calculated. Lean mass was positively correlated to whole body (WB) BMD, total hip BMD, femoral neck (FN) BMD, femoral neck cross-sectional area (FN CSA) and femoral neck cross sectional moment of inertia (FN CSMI) (p < 0.05). VO2 max (in liter per minute) and muscle power were positively correlated to WB BMD, total hip BMD, FN BMD, FN CSA, and FN CSMI (p < 0.05). One-repetition-maximum half-squat was positively correlated with lumbar spine trabecular bone score, WB BMD, FN BMD, FN CSA and FN CSMI (p < 0.05). This study suggests that lean mass, vertical jump, VO2 max (liter per minute), muscle power and one-repetition-maximum half squat are positive determinants of BMD and hip geometry indices in young overweight and obese women.  相似文献   

10.
In South Africa, appendicular and lumbar spine bone mineral density (BMD) have been found to be similar in black and white women. However, femoral BMD has been found to be higher in black than in white women. Two different techniques were used to recalculate BMD to eliminate the possible confounding influence of ethnic differences in height on areal BMD measurements. Volumetric bone mineral apparent density (BMAD) values were calculated and bone mineral content (BMC) was corrected for body and bone size. This report analyses differences in BMD (corrected for height and weight), BMAD, BMC (corrected for body and bone size), femoral neck axis length (FNAL), mineral homeostasis and bone turnover (BT) in a group of 20 to 49-year-old premenopausal (105 whites and 74 blacks) and 45 to 64-year-old postmenopausal (50 whites and 65 blacks) female South African nurses. The corrected BMD and BMC findings were congruous, showing that both pre- and postmenopausal blacks and whites have similar distal radius and lumbar spine bone mass but that whites have lower femoral neck bone mass than blacks. In contrast, BMAD findings suggest that pre- and postmenopausal whites have lower bone mass at the lumbar spine and femoral neck than blacks but similar bone mass at the distal radius to blacks. There is a greater rate of decline in BMD in postmenopausal whites than in blacks. BMD at the femoral neck was 12.1% lower in premenopausal whites and 16.5% lower in postmenopausal whites than in blacks. There was a positive association between femoral neck BMD and weight in premenopausal blacks (R 2=0.5,p=0.0001) but not in whites. Blacks had shorter FNAL than whites in both the pre- and postmenopausal groups. Blacks had lower serum 25-hydroxyvitamin D (25-(OH)D) and higher 1,25-dihydroxyvitamin D (1,25-(OH)2D) levels than whites. There were no ethnic differences in biochemical markers of bone formation (serum alkaline phosphatase and osteocalcin) or bone resorption (urine hydroxyproline and pyridinoline), or in dietary calcium intake in either the pre- or postmenopausal groups. In the postmenopausal group, whites had higher ionized serum calcium (p=0.003), similar serum albumin, lower serum parathyroid hormone (p=0.003) and higher urinary calcium excretion (p=0.0001) than blacks. These results suggest that the higher peak femoral neck BMD in South African blacks than in whites might be determined by greater weight-bearing in blacks and that the significantly lower femoral neck BMD in postmenopausal whites than in blacks is determined by lower peak femoral neck BMD and a faster postmenopausal decline in BMD in whites. The higher incidence of femoral neck fractures in South African whites than in blacks is probably determined by the lower femoral neck BMD and longer FNAL in whites. The greater rate of decline in BMD in postmenopausal whites than in blacks is associated with an increase in urinary calcium excretion in whites. Measurement of biochemical markers of BT has not contributed to the understanding of ethnic differences in BMD and skeletal metabolism in our subjects.  相似文献   

11.
Summary The bone mineral density (BMD) of the radius and spine was determined by photo absorptiometry in a large number of controls (radius: n=111; spine: n=85; age range: 50–79 years) and osteoporotic women (radius: n=98; spine n=140; age range: 50–79 years) with at least one “atraumatic” vertebral compression fracture. Compared to age-matched controls, the BMD of the osteoporotic women showed the following diminutions: sixth decade: radius:−9.1%; spine:−25%; femur: −33%; seventh decade: radius:−16%; spine: −19%; femur:−23%; eighth decade: radius: −21%; spine:−20%; femur:−24%. The BMD was significantly diminished at all sites in all decades but in contrast to the radius, the difference from controls was bigger in the spine and femur in the sixth decade than in the seventh and eighth decade. In the osteoporotic women there was a significant correlation between radius BMD and age (4=−0.56;P<0.01) but not between spine or femoral BMD and age. The femoral neck BMD was also determined in a subset group of female controls (n=68), patients with crush fractures of the spine without a fracture of the hip (n=46), and in patients with fractures of the proximal femur (n=21). There was no difference among these groups in mean age (64±7, range: 50–79 years). Patients with hip fracture and spine fracture showed bone diminution in all three regions that was significantly below controls (P<0.001). The Ward's triangle region was specially diminished (−35%) and as a consequence the neck BMD was low (−26%). Trochanteric density was lower (−25%) in spine fracture cases than in hip fracture (−16%). The difference between the two groups of osteoporotic women was significant (P<0.05). In the hip fractures cases, spine BMD was reduced only moderately compared to controls (−14%,P<0.01) and slightly elevated compared to spinal osteoporosis where the diminution was greater (−24%,P<0.001). Again, the difference between the two osteoporotic groups was significant (P<0.05). It appeared that spinal osteoporosis involved loss of bone from both the spine and hip, whereas femoral osteoporosis showed a preferential loss of bone from the femur neck region, and a lesser loss from the trochanter or the spine.  相似文献   

12.
Bone mineral density (BMD) measured by dual‐energy X‐ray absorptiometry (DXA) is used for clinical assessment of fracture risk; however, measurements that incorporate bone strength could improve predictive ability. The aim of this study was to determine whether bone strength derived from finite element (FE) analysis was associated with hip fracture risk in a longitudinal study. We studied 728 women (mean age 82 years), 182 with subsequent hip fracture. FE models were generated from baseline DXA scans of the hip to determine femoral bone strength and load‐to‐strength ratio (LSR). The baseline LSR was significantly higher in fracture cases (median 1.1) compared with controls (0.7, p < 0.0001). Femoral strength and BMD were also significantly lower in cases (median 1820 N, 0.557 g/cm2) compared with controls (2614 N, 0.618 g/cm2) both p < 0.0001. Fracture risk increased per standard deviation decrease in femoral strength (odds ratio [OR] = 2.2, 95% confidence interval [CI] 1.8–2.8); femoral neck (FN) BMD (OR = 2.1, 95% CI 1.7–2.6); total hip BMD (OR = 1.8, 95% CI 1.5–2.1); and per SD increase in LSR (OR = 1.8, 95% CI 1.5–2.1). After adjusting for FN BMD, the odds ratio for femoral strength (OR = 1.7, 95% CI 1.2–2.4) and LSR (OR = 1.4, 95% CI 1.1–1.7) remained significantly greater than 1. The area under the curve (AUC) for LSR combined with FN BMD (AUC 0.69, 95% CI 0.64–0.73) was significantly greater than FN BMD alone (AUC 0.66, 95% CI 0.62–0.71, p = 0.004). Strength and LSR remained significant when adjusted for prevalent fragility fracture, VFA, and FRAX score. In conclusion, the DXA‐based FE model was able to discriminate incident hip fracture cases from controls in this longitudinal study independently from FN BMD, prior fracture, VFA, and FRAX score. Such an approach may provide a useful tool for better assessment of bone strength to identify patients at high risk of hip fracture who may benefit from treatment to reduce fracture risk. © 2013 American Society for Bone and Mineral Research.  相似文献   

13.
Normative bone mineral density (BMD) and bone mineral content (BMC) values for the total body (TB), proximal femur (PF), and antero-posterior lumbar spine (LS) were obtained from a large cross-sectional sample of children and adolescents who were 8–17 years of age. There were 977 scans for the TB, 892 for the PF, and 666 for the LS; bone mineral values were obtained using a HOLOGIC QDR 2000 in array mode. Data are presented for the subregions of the PF (femoral neck, trochanter, intertrochanter, and the total region) and for the LS (L1–L4 and L3). Female and male values for the FN, LS (L1–L4), and the TB were compared across age groups using a two-way ANOVA. In addition, we compared the 17-year-old female values to a separate sample of young adult women (age 21). At all these sites, BMC and BMD increased significantly with age. There was no gender difference in TB BMC until age 14 or in TB BMD until age 16, when male values were significantly greater. Females had significantly greater LS BMC at ages 12 and 13, but by age 17 the male values were significantly greater. Females had significantly greater LS BMD across all age groups, however. Males had significantly greater FN BMC and BMD across all age groups. There were no significant differences in BMC or BMD at any sites between the 17- and 21-year-old women. Received: 29 September 1995 / Accepted: 1 April 1996  相似文献   

14.
A retrospective study was carried out to determine the relationship between parity and bone mineral density (BMD) in middle-aged women. Eight hundred and twenty-five woman aged 41–76 years were recruited from four general practice registers in Cambridge. Subjects were unselected as to their health status. Each subject completed a detailed health questionnaire. Participation rate was 50%. The main outcome measure was BMD measured at the spine (L2–4,n=825) and hip (neck, intertrochanter and Ward's triangle;n=817) by dual-energy X-ray absorptiometry (DXA) using the Hologic QDR-1000 densitometer. It was found that the unadjusted mean BMD was significantly higher at all sites among the parous women (p=0.031 to <0.00001), and remained significantly higher at the femoral neck (p=0.025), intertrochanter (p=0.001) and Ward's triangle (p=0.045) after adjusting for age and body mass index (BMI). Similar findings were seen after stratifying for potential confounding variables. There was a consistent upward trend of BMD with increasing parity at all sites. Parity remained a significant independent predictor of BMD at all sites after controlling for age, BMI, menopausal status, oral contraceptive and hormone replacement therapy use, smoking status and breast-feeding status in multiple linear regression analyses. There was, on average, a 1.0% increase in BMD per live birth. Our findings therefore suggest a positive relationship between parity and bone mass.  相似文献   

15.
Summary Interrelationships between percent of ideal body weight (%IBW), serum estrogen levels, and change in bone mineral density (BMD) and bone mineral content (BMC) were studied in 288 postmenopausal women aged 41–71 years who participated in a 2-year calcium supplement trial. The spine (L2–L4) and femoral neck were measured by dualphoton absorptiometry, and the radius was measured by single-photon absorptiometry. Years since menopause, calcium intake, and initial BMD or BMC were included as independent variables in two-phase regressions of BMD and BMC on %IBW. Increased %IBW protected against loss of spine BMD [regression slope estimate=0.05, 95% C.I.: (0.03, 0.26)] and BMC in women up through about 106 %IBW but not in heavier women. Increased %IBW was not significantly related to BMD or BMC at the femoral neck or radius. Women above 106%IBW had significant gains in spine and femoral neck area (P< 0.05). Serum estrone and estradiol were positively correlated with BMD and BMC at the femoral neck only.  相似文献   

16.
The effect of 18 months of training on the ovarian hormone concentrations and bone mineral density (BMD) accrual was assessed longitudinally in 14 adolescent rowers and 10 matched controls, aged 14–15 years. Ovarian hormone levels were assessed by urinary estrone glucuronide (E1G) and pregnanediol glucuronide (PdG) excretion rates, classifying the menstrual cycles as ovulatory or anovulatory. Total body (TB), total proximal femur (PF), femoral neck (FN) and lumbar spine (LS) (L2–4) bone mass were measured at baseline and 18 months using dual-energy X-ray densitometry. Results were expressed as bone mineral content (BMC), BMD and bone mineral apparent density (BMAD). Five rowers had anovulatory menstrual cycles compared with zero prevalence for the control subjects. Baseline TB BMD was significantly higher in the ovulatory rowers, with PF BMD, FN BMD and LS BMD similar for all groups. At completion, the LS bone accrual of the ovulatory rowers was significantly greater (BMC 8.1%, BMD 6.2%, BMAD 6.2%) than that of the anovulatory rowers (BMC 1.1%, BMD 3.9%, BMAD 1.6%) and ovulatory controls (BMC 0.5%, BMD 1.1%, BMAD 1.1%). No difference in TB, PF or FN bone accrual was observed among groups. This study demonstrated an osteogenic response to mechanical loading, with the rowers accruing greater bone mass than the controls at the lumbar spine. However, the exercise-induced osteogenic benefits were less when rowing training was associated with low estrogen and progesterone metabolite excretion. Received: 8 December 1998 / Accepted: 15 March 1999  相似文献   

17.
Evidence of the effect of exercise on bone loss comes mainly from studies in voluntary postmenopausal women, and no population-based, long-term interventions have been performed. The purpose of this population-based, randomized, controlled trial was to determine the effect of long-term impact exercise on bone mass at various skeletal sites in elderly women with low bone mineral density (BMD) at the radius and hip. Participants ( n =160) were randomly assigned to 30 months either of supervised and home-based impact exercise training or of no intervention. The primary outcome measures were femoral neck, trochanter and total hip BMD, and the secondary outcomes were bone density measures at the radius and calcaneum. Outcomes were assessed at baseline, 12 months and 30 months using blinded operators. The analyses were performed on an intention-to-treat analysis. Mean femoral neck and trochanter BMD decreased in the control group [–1.1%, 95% confidence interval (CI) –0.1% to –2.1% and –1.6%, 95% CI –0.4% to –2.7%], while no change occurred in the exercise group. Mean trochanter BMC decreased more in the control group (–7.7%, 95% CI –9.7% to –5.6% vs. –2.9%, 95% CI –5.3 to –0.9). There were six falls that resulted in fractures in the exercise group and 16 in the control group during the 30-month intervention ( P =0.019). A significant bone loss occurred in both groups at the radius and calcaneum. In multivariate analysis, weight gain was associated with increased BMD and BMC at all femur sites both in the exercise group and in the pooled groups. In conclusion, impact exercise had no effect on BMD, while there was a positive effect on BMC at the trochanter. Exercise may prevent fall-related fractures in elderly women with low bone mass.There was no conflict of interest.  相似文献   

18.
The aim of this study was to compare hip bone strength indices in obese, overweight, and normal-weight adolescent girls using hip structure analysis (HSA). This study included 64 postmenarcheal adolescent girls (14 obese, 21 overweight, and 29 normal weight). The 3 groups (obese, overweight, and normal weight) were matched for maturity (years since menarche). Body composition and bone mineral density (BMD) of whole body, lumbar spine, and proximal femur were assessed by dual-energy X-ray absorptiometry (DXA). To evaluate hip bone strength, DXA scans were analyzed at the femoral neck (FN) at its narrow neck (NN) region, the intertrochanteric (IT), and the femoral shaft (FS) by the HSA program. Cross-sectional area and section modulus were measured from hip BMD profiles. Total hip BMD and FN BMD were significantly higher in obese and overweight girls in comparison with normal-weight girls (p < 0.05). However, after adjusting for weight, using a one-way analysis of covariance, there were no significant differences among the 3 groups regarding HSA variables. This study suggests that in obese and overweight adolescent girls, axial strength and bending strength indices of the NN, IT, and FS are adapted to the increased body weight.  相似文献   

19.
Yan L  Crabtree NJ  Reeve J  Zhou B  Dequeker J  Nijs J  Falch JA  Prentice A 《BONE》2004,34(3):584-588
To explore whether there are ethnic differences in calculated hip strength that might explain the low incidence of hip fracture in China, we used Lunar DPX 'beta' version of hip strength analysis (HAS) and hip axis length (HAL) programs to compare hip geometry, calculated strength and densitometric values from Chinese subjects in Shenyang to those of Caucasian subjects in Oslo and Leuven participating in the European Prospective Osteoporosis Study (EPOS). Subjects were 210 Chinese and 403 Caucasian men and women aged 53-77 years. Parameters investigated included bone mineral density (BMD), bone mineral content (BMC), bone area (BA), cross-sectional moment of inertia (CSMI) and section modulus (both indicating strength and rigidity of the femoral neck), HAL, neck length (NL), neck diameter, tensile stress (Tstress) and compressive stress (Cstress) (indicating the stress in the femoral neck at its weakest cross section arising from walking or a standard fall, respectively), safety factor (SF, indicating the resistance to fracture for forces generated during walking) and fall index (FI, indicating the resistance to fracture from force generated during a fall in the greater trochanter). The Chinese men and women were significantly shorter and lighter than their Caucasian counterparts (P<0.01) and had significantly lower BMD, BMC and BA of the femoral neck (P<0.01). After adjusting for BA, weight and height, there was no significant ethnic difference in either gender in BMC. CSMI and section modulus were significantly lower, and HAL, NL and neck diameter were significantly shorter in the Chinese men and women (P<0.01). These differences all remained after adjusting for weight and height. There were no significant differences in Tstress, Cstress, SF and FI between ethnic groups in either gender. Most of the parameters of calculated hip strength in the Chinese subjects were similar to or poorer than those in the Caucasian subjects. There was no evidence to indicate that Shenyang Chinese have superior BMD or BMC or better calculated hip strength. The short HAL and NL of the population, however, could be an independent factor contributing to the low incidence of hip fracture.  相似文献   

20.
The purpose of the study was to compare the bone mineral density (BMD) at the hip and spine, the grip strength and the skinfold thickness in Chinese hip fracture patients and controls, and to document the relative risk of hip fracture associated with different levels of these risk factors. The study was conducted on 163 elderly patients with hip fracture (32 men and 131 women) and 317 controls (104 men and 213 women). BMD at the hip and spine was measured by dual-energy X-ray densitometry (Norland NR26). The mean grip strength was measured in both hands by a hand dynamometer; and bicep, tricep and iliac skinfold thicknesses were measured by a caliper (Holstain). Student'st-test was used to compare the mean bone densities, recalled body weight, grip strength and skinfold thickness; and multiple logistic regression was used to calculate the relative risk and 95% confidence intervals in quartiles of bone density, grip strength and skinfold thickness. In women, the mean BMD and anthropometric measurements were significantly lower in patients than controls. However, in men the mean recalled body weight and measured skinfold thickness were not significantly different between patients and controls. In both men and women the relative risk of hip fracture increased significantly with diminishing bone density at the spine, femoral neck and intertrochanteric area, but not at the Ward's triangle. In women the relative risk of hip fracture also increased significantly with a low recalled body weight, grip strength and skinfold thickness. The relative risk of hip fracture in the lowest quartiles compared with the highest quartiles was 4.3 (95% CI 2.3–9.0) for BMD at the femoral neck, 9.7 (95% CI 4.6–20.6) for iliac skinfold thickness and 2.0 (95% CI 4.6–20.6) for grip strength. The results of multiple logistic regression shows that a low iliac skin fold thickness was associated with a higher risk of hip fracture than grip strength and BMD in women, but not in men. It is concluded that low BMD is a significant risk factor for hip fracture in elderly Chinese living in Hong Kong; however, poor muscle strength and lack of subcutaneous fat are as important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号