首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: While rearing chicks in constant light (CL) inhibits anterior segment growth, these conditions also induce excessive enlargement of the vitreous chamber. The mechanisms underlying these effects are poorly understood although it has been speculated that the enlarged vitreous chambers are a product of emmetropization, a compensatory response to the altered anterior segments. We examined the ability of eyes to compensate to defocusing lenses in CL as a direct test of their ability to emmetropize. We also studied recovery responses, i.e. from lens-induced changes in CL as well as CL-induced changes alone or combined with lens-induced changes in eyes returned to normal diurnal lighting (NL). METHODS: Hatchling White-Leghorn chicks were reared in either CL or NL (control) lighting conditions (n=36) for 2 weeks, with lenses of either +10 or -10D power fitted to one eye of all chicks at the beginning of the second week. The lenses were removed at the end of the same week, at which time some CL chicks (n=14) were shifted to NL, the rest of the chicks remaining in their respective original lighting conditions. Retinoscopy, IR photo-keratometry and high-frequency A-scan ultrasonography were used to track refractions, corneal radii of curvature and ocular axial dimensions, respectively; data were collected on experimental days 0, 7, 9, 14 and 21. RESULTS: Under CL, eyes showed near normal, albeit slightly exaggerated responses to +10D lenses while the response to -10D lenses was disrupted. With +10D lenses, lens-wearing eyes became more hyperopic (RE), and had shorter vitreous chambers (VC) and optical axial lengths (OL) relative to their fellows by the end of the lens period [RE: +10.5+/-1.5D, CL, +8.25+/-2.5D, NL; VC: -0.363+/-0.129mm, CL; -0.306+/-0.110mm, NL; OL: -0.493+/-0.115mm, CL, -0.379+/-0.106mm, NL (mean interocular difference+/-SD)]. With -10D lenses, the NL group showed a myopic shift in RE and increased elongation of both VC depth and OL (RE: -10.75+/-2.0D; VC depth: 0.554+/-0.097mm; OL: 0.746+/-0.166mm), while the CL group showed a small hyperopic shift in RE (+4.0+/-6.0D). Nonetheless, CL eyes were able to recover from lens-induced hyperopia, whether they were left in CL or returned to NL. One week of exposure to NL was sufficient to reverse the effects of 2 weeks of CL on anterior and vitreous chamber dimensions. CONCLUSION: CL impairs emmetropization. Specifically, it disrupts compensation to lens-imposed hyperopia but not imposed myopia. However, CL eyes are able to recover from lens-induced hyperopia, suggesting that the mechanisms underlying the compensatory responses to defocusing lenses are different from those involved in recovery responses. The ocular growth effects of CL on young eyes are reversible under NL.  相似文献   

2.
Li T  Howland HC 《Vision research》2000,40(17):2249-2256
Our previous studies have shown that an environment of constant light (CL) can lead to development of high degree of hyperopia in newborn chicks by inducing severe corneal flattening, and compensatory growth of the vitreous chamber. We wish to know whether the abnormal eye growth and progressive hyperopia under CL conditions is accomplished by a mechanism that uses the visual processing pathways of the central nervous system (CNS) or by a mechanism located in the eye. Thirty white leghorn chicks (Cornell K-strain) were raised under 12 h light/12 h dark (12L/12D) for either optic nerve section (ONS) or ciliary ganglion section (CGS). Another 30 chicks were raised under CL for ONS or CGS. Refractive states and corneal curvatures were measured by infrared (IR) photoretinoscopy and IR keratometry, respectively. The axial lengths of the ocular components were measured by A-scan ultrasonography. Both ONS and CGS surgery produced dilated pupils and accommodative paralysis. Four weeks after surgery, CGS eyes exhibited a hyperopic defocus, flatter cornea, and shorter vitreous chamber depth under both CL and normal conditions, whereas ONS eyes showed a smaller radius of corneal curvature and shallow vitreous chamber only in the normal light cycle group. CGS eyes of CL chicks showed significantly deeper vitreous chambers than did fellow control eyes. Our results indicate that optic nerve section does not seem to influence CL effects. Thus, local mechanisms may play a major role in the ocular development of chicks. The ciliary nerve is necessary for the normal corneal and anterior chamber growth, and prevents CL effects. The progressively increasing vitreous chamber depth under CL may be influenced by both local and central mechanisms.  相似文献   

3.
Continuous ambient lighting and lens compensation in infant monkeys.   总被引:3,自引:0,他引:3  
PURPOSE: Protracted daily lighting cycles do not promote abnormal ocular enlargement in infant monkeys as they do in a variety of avian species. However, observations in humans suggest that ambient lighting at night may reduce the efficiency of the emmetropization process in primates. To test this idea, we investigated the ability of infant monkeys reared with continuous light to compensate for optically imposed changes in refractive error. METHODS: Beginning at about 3 weeks of age, a hyperopic or myopic anisometropia was imposed on 12 infant rhesus monkeys by securing either a -3 D or +3 D lenses in front of one eye and a zero-powered lens in front of the fellow eye. Six of these monkeys were reared with the normal vivarium lights on continuously, whereas the other six lens-reared monkeys were maintained on a 12-h-light/12-h-dark lighting cycle. The ocular effects of the lens-rearing procedures were assessed periodically during the treatment period by cycloplegic retinoscopy, keratometry, and A-scan ultrasonography. RESULTS: Five of six animals in each of the lighting groups demonstrated clear evidence for compensating anisometropic growth. In both lighting groups, eyes that experienced optically imposed hyperopic defocus (-3 D lenses) exhibited faster axial growth rates and became more myopic than their fellow eyes. In contrast, eyes treated with +3 D lenses showed relatively slower axial growth rates and developed more hyperopic refractive errors. The average amount of compensating anisometropia (continuous light, 1.6 +/- 0.5 D vs. control, 2.3 +/- 0.5 D), the structural basis for the refractive errors, and the ability to recover from the induced refractive errors were also not altered by continuous light exposure. CONCLUSION: Ambient lighting at night does not appear to overtly compromise the functional integrity of the vision-dependent mechanisms that regulate emmetropization in higher primates.  相似文献   

4.
When a young growing eye wears a negative or positive spectacle lens, the eye compensates for the imposed defocus by accelerating or slowing its elongation rate so that the eye becomes emmetropic with the lens in place. Such spectacle lens compensation has been shown in chicks, tree-shrews, marmosets and rhesus monkeys. We have developed a model of emmetropisation using the guinea pig in order to establish a rapid and easy mammalian model. Guinea pigs were raised with a +4D, +2D, 0D (plano), −2D or −4D lens worn in front of one eye for 10 days or a +4D on one eye and a 0D on the fellow eye for 5 days or no lens on either eye (littermate controls). Refractive error and ocular distances were measured at the end of these periods. The difference in refractive error between the eyes was linearly related to the lens-power worn. A significant compensatory response to a +4D lens occurred after only 5 days and near full compensation occurred after 10 days when the effective imposed refractive error was between 0D and 8D of hyperopia. Eyes wearing plano lenses were slightly more myopic than their fellow eyes (−1.7D) but showed no difference in ocular length. Relative to the plano group, plus and minus lenses induced relative hyperopic or myopic differences between the two eyes, inhibited or accelerated their ocular growth, and expanded or decreased the relative thickness of the choroid, respectively. In individual animals, the difference between the eyes in vitreous chamber depth and choroid thickness reached ±100 and ±40 μm, respectively, and was significantly correlated with the induced refractive differences. Although eyes responded differentially to plus and minus lenses, the plus lenses generally corrected the hyperopia present in these young animals. The effective refractive error induced by the lenses ranged between −2D of myopic defocus to +10D of hyperopic defocus with the lens in place, and compensation was highly linear between 0D and 8D of effective hyperopic defocus, beyond which the compensation was reduced. We conclude that in the guinea pig, ocular growth and refractive error are visually regulated in a bidirectional manner to plus and minus lenses, but that the eye responds in a graded manner to imposed effective hyperopic defocus.  相似文献   

5.
Effects of continuous light on experimental refractive errors in chicks   总被引:1,自引:0,他引:1  
It is possible to induce ametropias in young chicks either by depriving the developing eye of clear form vision with a translucent goggle or by defocusing the retinal image with convex or concave lenses. The refractive properties of the developing chick eye are also altered by raising young birds in a continuous light environment. The effects of superimposing form deprivation or defocus treatments on chicks raised in continuous light are unclear. Newly hatched (n = 31) chicks were raised for 2 weeks under continuous light while wearing either translucent goggles or + 10 or ? 10 diopter (D) lenses over one eye. Refractive states, corneal curvature and intraocular dimensions were measured periodically by retinoscopy, keratometry and A-scan ultrasound. The birds were sacrificed after 2 weeks and the eyes removed and measured with calipers. Under continuous light, all eyes treated with translucent goggle and ? 10D lens developed moderate myopia (? 2.6 ± 0.5 D and ? 1.4 ± 0.3 D, respectively) by day 4. The eyes treated with a + 10 D lens developed moderate hyperopia (+ 4.8 ± 0.5 D) at day 4. Corneal curvatures of all treated eyes were slightly, but significantly, larger than contralateral control eyes by day 4. After 2 weeks of goggle or lens application, all the treated eyes were hyperopic due to corneal flattening. But the eyes treated with a goggle or a ? 10 D lens still showed relative myopia compared to the fellow eyes (treated minus untreated = ? 3.8 ± 0.4 D and ? 2.8 ± 0.4 D, respectively), and the eyes treated with a + 10 D lens showed more hyperopia than fellow eyes (treated minus untreated = + 5.1 ± 0.6 D). Compared with the control eyes, the axial length (mainly vitreous chamber depth) was slightly, but significantly, increased in the eyes treated with a goggle or a ? 10 D lens, and the axial length decreased slightly in the eyes treated with + 10 D lens. The results suggest that form deprivation and retinal defocus (induced by ± 10 D lenses) could still induce experimental refractive errors (myopia and hyperopia) in chicks kept under continuous light, but the effects of form deprivation and retinal defocus were partially suppressed by continuous light.  相似文献   

6.
Inducing myopia, hyperopia, and astigmatism in chicks   总被引:6,自引:0,他引:6  
Myopia and hyperopia have been produced in chicks by applying specially designed convex and concave soft contact lenses to the eyes of newly hatched birds. After 2 weeks of wear, the eyes develop refractive states equivalent in sign and amount (+8 and -10 D) to the lens used. However, the lenses produce an artificial hyperopic shift during the first week of wear due to corneal flattening. We have developed a new approach involving the use of goggles with hard convex and concave contact lens inserts placed between the frontal and lateral visual fields. Myopia and hyperopia (+10 and -10 D) can be produced within days (4 days for hyperopia and 7 days for myopia) if the defocus is applied from the day of hatching. We can also produce significant amounts of astigmatism (1 to 5 D) axis at 90 degrees and 180 degrees by using cylindrical contact lens inserts. Although these last results are preliminary, they suggest that accommodation is not likely involved at this stage of refractive development because we do not believe that the accommodative mechanism can cope with cylindrical defocus. All spherical refractive errors produced using the goggle system appear to result from alterations in vitreous chamber depth.  相似文献   

7.
An earlier report describing a lack of compensation to imposed myopic and hyperopic defocus in chicks reared in UV lighting has led to the belief that the spatial resolving power of the UV cone photoreceptor network in chicks is not capable of decoding optical defocus. However this study used dim light rearing conditions, of less than 10 lx. The purpose of the current study was to determine if emmetropization is possible in young chicks reared under higher luminance, UV lighting conditions. Young, 4 day-old chicks were reared under diurnal near UV (390 nm) illumination set to either 20 or 200 lx while wearing a monocular defocusing lens (+20, +10, −10 or −20 D), for 7 days. Similarly treated control groups were reared under diurnal white lighting (WL) of matching illuminance. The WL and UV LED sources were set to equivalent illuminances, measured in “chick lux”, calculated from radiometer readings taken through appropriate narrow band interference filters, and a mathematical model of the spectral sensitivity of the chick visual system. High resolution A-scan ultrasonography was undertaken on days 0 (before lenses were fitted), 2, 4, and 7 to track ocular dimensions and refractive errors were measured by retinoscopy on days 0 and 7. Compensation to negative lenses was unaffected by UV illuminance levels, with near full compensation being achieved under both conditions, as well as under both WL conditions. In contrast, compensation to the positive lenses was markedly impaired in 20 lx UV lighting, with increased instead of decreased axial elongation along with a myopic refractive shift being recorded with the +10 D lens. Compensation under both WL conditions was again near normal for the +10 D lens. However, with the +20 D lens, myopic shifts in refractive error were observed under both dim UV and WL conditions. The spatial resolving power of the UV cone photoreceptor network in the chick is sufficient to detect optical defocus and guide the emmetropization response, provided illumination is sufficiently high. However, compensation to imposed myopic defocus may be compromised, when either the amount of defocus is very high or illumination low, especially when the wavelength is restricted to the UV range.  相似文献   

8.
PURPOSE. To describe the association of ocular dimensions and refraction with adult stature. METHODS. This was a population-based cross-sectional survey of adult Chinese aged 40 to 81 years residing in the Tanjong Pagar district in SINGAPORE: As part of the examination, ocular dimensions, including axial length, anterior chamber depth, lens thickness, and vitreous chamber depth, were measured using an A-mode ultrasound device. Corneal radius and refraction were determined with an autorefractor, with refraction further refined subjectively. Height (in meters) and weight (in kilograms) were measured using a standardized protocol, and body mass index (BMI) was calculated as weight divided by the square of the height (kilograms per square meter). RESULTS. Data on ocular biometry, refraction, height, and weight were available on 951 (55.4%) participants with phakic eyes. After controlling for age, sex, education, occupation, housing type, income, and weight, it was found that taller persons were more likely to have longer axial lengths (+0.23 mm longer axial length, for every 0.10 m difference in height), deeper anterior chambers (+0.07 mm), thinner lenses (-0.09 mm), longer vitreous chambers (+0.26 mm), and flatter corneas (+0.09 mm longer corneal radius), although refractions were similar. In contrast, heavier persons tended to have more hyperopic refractions (+0.22 D for every 10 kg difference in weight, +0.56 D for every 10 kg/m(2) difference in BMI) but similar ocular dimensions. CONCLUSIONS. Adult height is independently related to ocular dimensions, but does not appear to influence refraction. Thus, although taller persons are more likely to have longer globes, they also tend to have deeper anterior chambers, thinner lenses, and flatter corneas. Conversely, weight is independently related to refraction, although the exact biometric component responsible for this association is not apparent.  相似文献   

9.
The goal of this study was to investigate the effect of optical defocus and spatial contrast on refractive development and, in particular,on anterior chamber growth. Ninety chicks were raised from day 4-10 post-hatching wearing monocular lenses (+/-10 Dor 0 D), in an environment with either high, low or no spatial contrast patterns: 30%, 6% or 0% contrast, respectively. At day 10, the chicks' refractive state and ocular components were assessed using retinoscopy and A-scan ultrasonography. Ocular defocus resulted in sign-dependent significant differences in refractive error, axial length and vitreous chamber depth. Lens wear also led to significant spatial contrast dependent changes in anterior chamber depth. Varying ambient spatial contrast in the chick's environment did not inhibit emmetropization processes; however, anterior chamber growth was particularly susceptible to changes in spatial contrast.  相似文献   

10.
PURPOSE: To evaluate the relation between ocular shape and refractive error in children. METHODS: Ocular shape was assessed by measuring relative peripheral refractive error (the difference between the spherical equivalent cycloplegic autorefraction 30 degrees in the nasal visual field and in primary gaze) for the right eye of 822 children aged 5 to 14 years participating in the Orinda Longitudinal Study of Myopia in 1995. Axial ocular dimensions were measured by A-scan ultrasonography, crystalline lens radii of curvature by videophakometry, and corneal power by videokeratography. RESULTS: Myopic children had greater relative hyperopia in the periphery (+0.80 +/- 1.29 D), indicating a prolate ocular shape (longer axial length than equatorial diameter), compared with relative peripheral myopia and an oblate shape (broader equatorial diameter than axial length) for emmetropes (-0.41 +/- 0.75 D) and hyperopes (-1.09 +/- 1.02 D). Relative peripheral hyperopia was associated with myopic ocular component characteristics: deeper anterior and vitreous chambers, flatter crystalline lenses that were smaller in volume, and steeper corneas. Lens thickness had a more complex association. Relative peripheral hyperopia was associated with thinner lenses between refractive error groups but changed in sign to become associated with thicker lenses when analyzed within each refractive error group. Receiver operator characteristics analysis of the ocular components indicated that vitreous chamber depth was the most important ocular component for characterizing the myopic eye, but that peripheral refraction made a significant independent contribution. CONCLUSIONS: The eyes of myopic children were both elongated and distorted into a prolate shape. Thinner crystalline lenses were associated with more hyperopic relative peripheral refractions across refractive error groups, but failure of the lens to thin may account for the association between thicker lenses and more hyperopic relative peripheral refractions within a given refractive group. Increased ciliary-choroidal tension is proposed as a potential cause of ocular distortion in myopic eyes.  相似文献   

11.
Topical steroidal anti‐inflammatory drugs (SAID) and non‐steroidal anti‐inflammatory drugs (NSAID) are known to affect fluid balance. The effects of twice daily topical applications of Maxidex (dexamethasone, a SAID), Acular (ketorolac, a NSAID), and saline were examined biometrically on the development of refractive errors and eye growth in chicks raised from days 3–12 wearing either a monocular +10 D, 0 D, or –10 D lens. Biometric analysis showed that neither SAID nor NSAID nor saline affected refractive error compensation but that the anti‐inflammatory drugs affected eye growth. In chicks reared with a +10 D lens, dexamethasone induced a decrease in axial length (AL), vitreous chamber (VC) and anterior chamber (AC) depth, while ketorolac only induced a decrease in AC. In –10 D lens chicks dexamethasone again induced a decrease in AL and VC, but did not affect AC depth, whereas ketorolac only induced an increase in AC depth. Taken together, these results suggest that anti‐inflammatory drugs can induce changes in ocular size without affecting refractive state and, as such, have implications for the management of progressive myopia.  相似文献   

12.
Darkness causes myopia in visually experienced tree shrews   总被引:1,自引:0,他引:1  
PURPOSE: To examine the effect of a period of continuous darkness on the refractive state and vitreous chamber depth of normal light-reared juvenile tree shrew eyes, and to learn whether eyes that developed myopia in response to monocular minus-lens wear will recover in darkness. METHODS: Starting at 16 days of visual experience (VE), the refractive state of five dark-treatment tree shrews was measured daily to confirm that it was stable and nearly emmetropic. After corneal and ocular component dimension measures, the animals were placed into continuous darkness for 10 days. On removal of the animals from darkness, corneal and ocular component measures were repeated, and daily refractive measures were resumed. The refractive state of the dark-treatment group was compared with that of a normal-lighting group (n = 5) that received standard colony lighting throughout the measurement period. Five dark-recovery animals wore a monocular -5-D lens for 11 days to induce myopia before they were placed into continuous darkness for 10 days. RESULTS: The animals in the normal-lighting group completed the emmetropization process, stabilizing at approximately (mean +/- SEM) 0.7 +/- 0.3 D of hyperopia (noncycloplegic refraction, corrected for the small eye artifact) at 60 days of VE. Dark-treatment group eyes shifted toward myopia (mean +/- SEM, -4.3 +/- 0.5 D) in the dark. The vitreous chamber became elongated by 0.09 +/- 0.02 mm relative to normal eyes. Corneal power showed a small, near-normal decrease (1.4 +/- 0.3 D). Four of five myopic eyes in the dark-recovery group became more myopic (-2.2 +/- 0.9D) in darkness, and all the fellow control eyes shifted toward myopia (-2.8 +/- 0.5 D). CONCLUSIONS: Maintaining emmetropia is an active process. After eyes have achieved emmetropia or have compensated for a minus lens, continued visual guidance is necessary to maintain a match between the axial length and the focal plane or for recovery to occur. Absence of light is myopiagenic in tree shrews that have developed with normal diurnal lighting. This result contrasts with the apparent absence of a darkness effect in tree shrews reared in the dark from before normal eye opening.  相似文献   

13.
To compare the effects on the postnatal development of the eye of both total and partial form deprivation in diurnally reared chicks and of dark-rearing, chicks were reared with occluders covering one eye from hatching for up to 6 weeks. In diurnally reared birds, both total and partial form deprivation resulted in severe axial myopia and increased eye size. These effects were greatest for the eyes of chicks raised with total form deprivation; they had highly curved corneas and very deep anterior and vitreous chambers. In addition, the amount of myopia produced in eyes with total form deprivation was the same at 2 and 6 weeks, whereas eyes with partial form deprivation showed substantial remission even with the occluders left on. The partially deprived eyes developed a striking shape asymmetry: the posterior globe only became enlarged in the deprived region of the retina. The eyes of dark-reared chicks, regardless of whether or not an occluder was worn, also were enlarged but were hyperopic owing to a severe flattening of the cornea. This hyperopia was slow to develop compared to the myopia produced in the diurnally reared visually restricted eyes. Finally, the shape of the posterior globe of these hyperopic eyes was no different from that of normal eyes.  相似文献   

14.
Potency of myopic defocus in spectacle lens compensation   总被引:6,自引:0,他引:6  
PURPOSE: Previous studies have shown that chick eyes compensate for positive or negative lenses worn for brief periods if the chicks are in darkness the remainder of the time. This study was undertaken to determine whether chicks can compensate for brief periods of lens wear if given unrestricted vision the remainder of the time. Previous studies have also shown that chick eyes alternately wearing positive and negative lenses for brief periods compensate for the positive lenses. The current study sought to determine whether brief periods of positive lens wear can outweigh daylong wearing of negative lenses. METHODS: Chicks wore +6 D or +10 D lenses for between 8 and 60 min/d, in two to six periods and wore either no lenses or negative lenses for the remainder of the 12-hour daylight period. Refraction and ultrasound biometry were performed before and after the 3-day-long experiments. RESULTS: Wearing positive lenses for as little as 12 min/d (six periods of 2 minutes) with unrestricted vision the remainder of the time caused eyes to become hyperopic and reduced the rate of ocular elongation. These effects also occurred when the scene viewed was beyond the far point of the lens-wearing eye and thus was myopically blurred. Even when chicks wore negative lenses for the entire day except for 8 minutes of wearing positive lenses, the eyes compensated for the positive lenses, as though the negative lenses had not been worn. When chicks wore binocular negative lenses for the entire day except for 8 minutes of wearing a positive lens on one eye and a plano lens on the other, the eye wearing the positive lens became less myopic than the eye wearing the plano lens. CONCLUSIONS: Brief periods of myopic defocus imposed by positive lenses prevent myopia caused by daylong wearing of negative lenses. This implies that periods of myopic and hyperopic defocus do not add linearly. If children are like chicks and if the hyperopic defocus of long daily periods of reading predisposes a child to myopia, regular, brief interruptions of reading might have use as a prophylaxis against progression of myopia.  相似文献   

15.
It has been suggested that ambient lighting at night influences eye growth and might play a causal role in human myopia. To test this hypothesis, we reared newly hatched chicks under 12 hr light-dark or light-dim cycles with a light phase intensity of 1500 microW/cm(2) and variable dim phase intensities between 0.01 and 500 microW/cm(2). Other chicks were reared under constant light conditions with intensities between 1 and 1500 microW/cm(2). After three weeks, the chicks were examined by refractometry, ultrasound and caliper measurements of enucleated eyes. To relate ocular parameters with a retinal neurotransmitter likely involved in eye growth control, retinal and vitreal levels of dopamine and its principal metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), were measured by high performance liquid chromatography with electrochemical detection in the light, dark and dim phases. Diurnal fluctuations in axial length and choroidal thickness also were measured twice daily by partial coherence interferometry (PCI) in chicks under light-dark and the two brightest light-dim conditions. The eyes of chicks reared under most light-dim conditions had refractions and ocular dimensions comparable to those reared under light-dark conditions. At dim phase light intensities of 10 microW/cm(2) and above, the day-night changes in retinal dopamine metabolism were not observed. The daily fluctuations of axial length and choroidal thickness were altered with rearing under the two brightest dim light intensities, compared to the light-dark condition. Rearing under constant light with intensities ranging between 1 and 1500 microW/cm(2) produced a shallow anterior chamber and other eye alterations previously described for constant light rearing even though rearing under continuous light that fluctuated between these same intensities generally permitted normal eye growth. Thus, continuous but fluctuating light exerts different developmental effects on the eye than constant non-fluctuating light. Light-dim rearing may be more relevant to daily human light exposures than other laboratory lighting conditions and may provide an opportunity to study developmental interactions of visual quality (e.g. blur, defocus, etc.) and features of the light-dark cycle under conditions that perturb daily rhythms in dopamine metabolism and ocular dimensions. Such studies also could provide mechanistic insights into whether and how daily rhythms in retinal dopamine metabolism, axial length or choroidal thickness modulate refractive development.  相似文献   

16.
Infant marmosets were fitted with zero-powered (plano) soft contact lenses from 4 to 8 weeks of age worn either continuously (24 h per day) (n = 4), for 12 h (n = 4), or for 8 h (n = 3) per day to determine whether limiting the daily duration of lens-wear could significantly reduce or eliminate the effects of continuous lens-wear on ocular growth and refractive state. As in macaques (Hung, L. F., & Smith, E. L. (1996). Extended-wear, soft, contact lenses produce hyperopia in young monkeys. Optometry and Vision Science, 73, 579-584), eyes fitted with contact lenses worn continuously developed more hyperopic refractions (mean +3.22 +/- 1.49 D SE) compared to their fellow untreated eyes, inconsistent changes in vitreous chamber depth (-0.02 +/- 0.09 mm SE) and flatter corneas (mean decrease in corneal power 4.22 +/- 0.39 D SE). Eyes wearing lenses for only 12 h per day showed similar but reduced effects compared to the 24-h group. Most importantly, ocular growth, corneal power and refraction were unaffected in the 8-h group. Future studies using contact lenses in infant primates should employ a reduced daily duration of lens-wear to eliminate the undesirable effect of contact lens-wear per se on ocular development.  相似文献   

17.
BACKGROUND: Young chicks can adjust their eye growth to compensate for both imposed hyperopia and myopia (using negative and positive spectacle lenses); the rate of eye elongation increases in the former and slows in the latter case. This emmetropizing behavior implies that the eye can distinguish the sign and magnitude of defocus, although the identity of the cue(s) involved is unknown. As the spectacle lenses used in these studies generally introduce significant retinal image size differences that are in opposite directions for negative and positive lenses (minification vs. magnification), we asked whether retinal image size might provide the required sign information. METHODS: This question was addressed by manipulating retinal image size while keeping lens power constant. We also investigated the effect of eliminating other potential cues, accommodation and chromatic aberration, under these conditions. Three negative "size" lenses of approximately -11 D optical power were used, with 2 of the lenses producing magnification rather than minification as typical of negative lenses (i.e. +1.9% and +6.9% compared to -2.9%). The lenses were fitted monocularly to 7-day-old chicks, which were subsequently measured at 9 and 11 days of age (refractive error and axial dimensions). The same lens-wearing schedule was applied to two other groups of chicks that had monocular ciliary nerve section surgery to prevent accommodation 2 days posthatching; one of these groups was reared under monochromatic yellow light instead of white light. RESULTS: Near-perfect refractive compensation was seen by the end of the treatment period with all three lenses, for all three treatment groups, and there was also little difference in the rate of compensation among the various groups. In all cases, the typical responses of axial (mainly vitreous chamber) elongation and myopia were observed. CONCLUSIONS: That manipulations to retinal image size, which either decrease or reverse the usual effects of negative lenses, did not disrupt compensation to the imposed hyperopic defocus, even in the absence of accommodation and chromatic aberration cues, argues against imposed retinal image size changes being the directional cue to defocus in experimental emmetropization.  相似文献   

18.
PURPOSE: To investigate further the emmetropization process in young chicks by studying the diurnal fluctuations and developmental changes in the ocular dimensions and optical aberrations, including refractive errors, of normal eyes and eyes that had the ciliary nerve sectioned (CNX). METHODS: The ocular dimensions and aberrations in both eyes of eight CNX (surgery on right eyes only) and eight normal chicks were measured with high-frequency A-scan ultrasonography and aberrometry, respectively, four times a day on five different days from posthatching day 13 to 35. A fixed pupil size of 2 mm was used to analyze aberration data. Repeated-measures ANOVA was applied to examine the effects of age, time of day, and surgery. RESULTS: Refractive errors and most higher-order aberrations decreased with development in both normal and CNX eyes. However, although normal eyes showed a positive shift in spherical aberration with age, changing from negative spherical aberration initially, CNX eyes consistently exhibited positive spherical aberration. Anterior chamber depth, lens thickness, vitreous chamber depth, and thus optical axial length all increased with development. Many of these ocular parameters also underwent diurnal changes, and mostly these dynamic characteristics showed no age dependency and no effect of CNX. Anterior chamber depth, vitreous chamber depth, and optical axial length were all greater in the evening than in the morning, whereas the choroids were thinner in the evening. Paradoxically, eyes were more hyperopic in the evening, when they were longest. Although CNX eyes, having enlarged pupils, were exposed to larger higher-order aberrations, their growth pattern was similar to that of normal eyes. CONCLUSIONS: Young chicks that are still emmetropizing, show significant diurnal fluctuations in ocular dimensions and some optical aberrations, superimposed on overall increases in the former and developmental decreases in the latter, even when accommodation is prevented. The possibility that these diurnal fluctuations are used to decode the eye's refractive error status for emmetropization warrants investigation. That eyes undergoing ciliary nerve section have more higher-order aberrations but do not become myopic implies a threshold for retinal image degradation below which the emmetropization process is not affected.  相似文献   

19.
PURPOSE: Active emmetropization describes the process by which young eyes regulate their growth to eliminate refractive errors. The purpose of this study was to re-investigate the role of the brain in compensation to imposed hyperopic defocus (negative lenses), specifically, to assess whether a retina-brain link and/or an intact ciliary nerve are required for this emmetropizing response. Data from previous related studies are equivocal. METHODS: Unilateral lesion surgery involving either or both optic nerve section (ONS) and ciliary nerve section (CNS), was performed on 2-3 day old White-Leghorn chicks to interrupt communication between the eye (retina in the case of ONS) and brain. After a recovery period of 4 days, lesioned eyes were fitted with either -5 or -15 D lenses or diffusers (6-9 per group). An additional lesion group underwent unilateral CNS and was fitted with -5 D lenses bilaterally. Finally 3 groups that underwent the same unilateral optical treatments but no surgery were included as controls for analyzing lesion-induced changes. Complete sets of measurements, involving retinoscopy for refractive errors, and high frequency A-scan ultrasonography for axial ocular dimensions, were made at the beginning (baseline), and end of a 4 day treatment period. Additional ultrasonography data were collected after 1 and 2 days of treatment. Optical treatment effects were expressed as changes in interocular differences from baseline values. RESULTS: All three lesions produced hyperopic shifts in refraction (evident in baseline values), although this effect was minimal for the ONS+CNS group. Choroidal thickening as well as increased anterior chamber depth and lens thinning were observed in all cases but vitreous chamber depth was reduced in only the ONS group. In response to the -5 D lens, the control (nonlesioned) group showed nearly complete compensation, while full compensation was not achieved to the -15 D lens over this short treatment period. The diffuser group showed the largest change, which was also in the direction of myopia. Both the ONS and CNS groups showed near normal compensation, as indexed by the changes in refractive errors relative to their respective baseline values. In contrast, the ONS+CNS lens groups overcompensated, by 130% and 54% for the -5 D and the -15 D lens groups respectively. Form deprivation responses were slightly exaggerated in both ONS and ONS+CNS groups, the latter group again showing the largest response. Enhanced vitreous chamber growth was evident under all conditions and correlated well with the refractive changes across the groups. DISCUSSION: The data imply that an intact retina-brain link is not required for compensation to hyperopic defocus and thus emmetropization. However, the data also imply interactions between higher centers and the eye. The emmetropization set-point appears to be recalibrated after ONS surgery. The data also indicate a role of the ciliary nerve as an important conduit for signals that exercise a restraining influence on eye growth.  相似文献   

20.
In a matter of minutes, the eye can know which way to grow   总被引:3,自引:0,他引:3  
PURPOSE: The fitting of chick eyes with positive or negative lenses causes eye growth to decelerate or accelerate, respectively, thereby minimizing the imposed blur. This study was conducted to determine whether the eye can initially assess the correct direction of growth or whether it relies on trial and error, reversing its direction if the magnitude of blur increases. The rapid changes in choroidal thickness in response to brief periods of defocus were measured. METHODS: After their eyes were measured by ultrasound biometry, chicks wore either a +10-D lens over one eye for 10 minutes while restrained in the center of a 60-cm drum (to ensure myopic blur), or a negative lens (-7 or -8.6 D) over one eye for 10 minutes or 1 hour in a normal cage environment. They were then kept in darkness until they were remeasured 2 hours, 1 day, or 2 days after the first measurement. Other chicks wore +10 or -8.6-D lenses briefly and were measured several times over the next 7 hours in darkness. RESULTS: Wearing positive or negative lenses for only 10 minutes produced significantly different effects on choroidal thickness measured 2 hours later. Wearing positive lenses for 10 minutes caused an increase in choroidal thickness (in 28 of 32 eyes) and a concomitant decrease in vitreous chamber depth, relative to the amount of change in the untreated fellow eye over the same period. Wearing negative lenses for 1 hour caused significant changes in the opposite direction. Wearing lenses for 2 hours resulted in choroidal changes that persisted in darkness for up to 6 hours after positive lens wear, but returned to normal after negative lens wear. Finally, 1 hour of positive lens wear caused significant inhibition of ocular elongation over the next 2 days. CONCLUSIONS: The eyes of chicks require only a brief period of lens wear to initiate compensation in the appropriate direction. Because the refractive status changes little during the period of lens wear, the authors conclude that eyes can rapidly determine the sign of the imposed blur without resorting to a trial-and-error method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号