首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Systemic chemotherapeutic treatment for unresectable and/or aggressive meningiomas is still unsatisfying. PDGF receptor (PDGFR)-mediated activation of mitogenic signalling has been shown to be active in meningiomas. Therefore, we evaluate in vitro and in vivo the effects of inhibiting PDGFR using the clinically well-characterised tyrosine kinase inhibitors sorafenib or regorafenib in meningioma models. IOMM-Lee meningioma cells were used to assess cytotoxic effects, inhibition of proliferation, induction of apoptosis, as well as inhibition of migration and motility by sorafenib and regorafenib. Using an orthotopic mouse xenograft model, growth inhibition as monitored by magnetic resonance imaging, and overall survival of sorafenib- or regorafenib-treated mice compared with control animals was determined. Treatment of malignant IOMM-Lee cells resulted in significantly reduced cell survival and induction of apoptosis following regorafenib and sorafenib treatment. Western blots showed that both drugs target phosphorylation of p44/42 ERK via downregulation of the PDGFR. Both drugs additionally showed significant inhibition of cell motility and invasion. In vivo, mice with orthotopic meningioma xenografts showed a reduced volume (n.s.) of signal enhancement in MRI (mainly tumour) following sorafenib and regorafenib treatment. This was translated in a significantly increased overall survival time (p ≤ 0.05) for regorafenib-treated mice. Analyses of in vivo-grown tumours demonstrated again reduced PDGFR expression and expression/phosphorylation of p44/42. Sorafenib and regorafenib show antitumour activity in vitro and in vivo by targeting PDGFR and p44/42 ERK signalling.  相似文献   

2.
BackgroundPre-clinical and clinical evidence suggests a rationale for the use of anti-angiogenic agents, including sorafenib, in recurrent and/or metastatic salivary gland carcinomas (RMSGCs). This study evaluates the activity of sorafenib in patients with RMSGCs and also investigates whether the activity of sorafenib could be related to its main tailored targets (i.e. BRAF, vascular endothelial growth factor receptor 2 [VEGFR2], platelet-derived growth factor receptor α [PDGFRα] and β, RET, KIT).Patients and methodsPatients received sorafenib at 400 mg BID. The primary end-point was response rate (RR) including complete response or partial response (PR); secondary end-points included RR according to Choi criteria, disease control rate (DCR), overall survival (OS), and progression-free survival (PFS).ResultsThirty-seven patients (19 adenoid cystic cancers, ACC) were enrolled. Six PRs were recorded. RR was 16% (95% confidence interval [CI]: 6–32; 11% in ACC and 22% in non-ACC). Choi criteria could be applied in 30 out of 37 cases with a RR of 50% (95% CI: 31–69%); DCR was 76% (95% CI: 59–88%). Incidence of ≥G3 adverse events was 29.7%. Median PFS and OS for the entire population were 5.9 months and 23.4 months, respectively. Median PFS and OS were 8.9 and 26.4 months for ACC versus 4.2 and 12.3 months for non-ACC patients.All the cases showed expression of PDGFRβ in the stroma and VEGFR2 in endothelial cells; PDGFRα positivity was found in the stroma of four (27%) cases. All except for two cases showed no PDGFRβ, VEGFR2 and PDGFRα expression in the tumour cells. KIT expression was restricted to ACC and a weak RET expression was limited to one adenocarcinoma, not otherwise specified (NOS). No BRAF mutation was found. No correlation was observed between the sorafenib activity and the expression of its markers although all six responders (two ACC, one adenocarcinoma, NOS, one salivary duct cancer [SDC], one high-grade mucoepidermoid [HG-MEC] and one poorly-differentiated cancer) are enriched in the stromal component showing a PDGFRβ immunodecoration. In ACCs, immunohistochemistry revealed MYB protein expression in 15/16 cases (94%) and the MYB-NFIB fusion oncogene was observed in 9/14 (64%).ConclusionsSorafenib is the first anti-angiogenic agent to demonstrate activity in RMSGC patients, particularly in some histotypes such as HG-MEC, SDC and adenocarcinoma, NOS. The PDGFRβ-positive rich stromal component characterising these histotypes and the lack of correlation between the activity of sorafenib and its targets suggests anti-angiogenic effect as the prevalent mechanism of action of sorafenib in SGCs.  相似文献   

3.
Melanoma is the most lethal human skin cancer. If metastatic, it becomes very aggressive and resistant to standard modalities of anticancer treatment. During the last 10 years, several therapeutic strategies have been tested including the use of single and combined small drugs. Experimental results indicate that RAS and PI3K pathways are important for the development and maintenance of melanoma. In this study, we assessed the in vitro and in vivo inhibition potential of PI‐103, a PI3K (p110α)/mTOR inhibitor and sorafenib, a BRAF inhibitor, as single agents and in combination in primary melanoma cell lines. Although PI‐103 and sorafenib inhibited melanoma in vitro cell proliferation and viability, the inhibition of RAS pathway appeared to be more effective. The combination of the two agents in in vitro showed a synergistic effect inhibiting RAS and PI3K pathways in a cell line dependent manner. However, no cooperative effect was observed in blocking in vivo tumor growth in immunocompetent mice. In contrary to the expected, the data indicate that PI‐103 induced immunosuppression promoting in vivo tumor growth and inhibiting apoptosis. Furthermore, in vitro studies examining the effects of the PI3K/mTOR inhibitor in tumor derived cell lines indicated that PI‐103 induced the anti‐apoptotic BH3 family proteins Mcl1, Bcl2 and BclxL favoring, the in vitro survival of sorafenib treated melanoma cells. These data certainly makes an argument for investigating unexpected effects of rational drug combinations on immunocompetent animal models prior to conducting clinical studies.  相似文献   

4.

Background:

We have previously demonstrated that overexpression of ankyrin repeat-rich membrane spanning (ARMS) protein facilitates melanoma formation via conferring apoptotic resistance. This study aims to investigate whether ARMS contributes to melanoma progression.

Method:

Using immunohistochemistry, we graded the expression level of ARMS in 54 cases of primary melanoma and 46 cases of metastatic melanoma. The immunointensity of ARMS was statistically correlated with individual clinicopathological characteristics. By RNA interference, stable melanoma cell clones with ARMS-knockdown were constructed, and were used for in vitro scratch wound, transwell invasion assays, and in vivo lung metastasis experiment.

Results:

Stronger immunointensity of ARMS was observed mostly in melanomas with Breslow tumour thickness >1.0 mm (Fisher''s exact test, P=0.002) or with nodal metastasis (Fisher''s exact test, P=0.026), and was correlated with a worse overall survival in melanoma patients (log-rank test, P=0.04). Depletion of ARMS inhibited migration, invasion, and metastatic potential of melanoma cells in vitro and in vivo. Moreover, ARMS mediated melanoma cell migration and invasion through activation of the extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK signalling pathway.

Conclusion:

Ankyrin repeat-rich membrane spanning expression, conjunctly with tumour thickness or ulceration, may serve as a prognostic factor in patients with cutaneous melanoma.  相似文献   

5.
The multikinase-inhibition action of sorafenib provides strong rationales for its combination use with radiotherapy. We investigated the in vitro and in vivo effect of sorafenib combined with irradiation on hepatocellular carcinoma (HCC). Sorafenib enhanced radiosensitivity of human HCC cell lines in a schedule-dependent manner. Sorafenib selectively inhibited radiation-induced activation of vascular endothelial growth factor receptor-2 (VEGFR2) and downstream extracellular signal-regulated kinase (ERK) pathway, induced DNA damage and suppressed DNA repair capacity, decreased radiation-activated NF-κB and increased radiation-induced apoptosis. In xenograft experiments, combination treatment produced marked tumor growth delay in both concurrent and sequential schedules. These results suggest that sorafenib could potentiate irradiation effect in HCC, which warrants further investigation for its potential clinical applications.  相似文献   

6.
Receptors for the angiogenic factor VEGF are expressed by tumor cancer cells including melanoma, although their functionality remains unclear. Paired human melanoma cell lines WM115 and WM239 were used to investigate differences in expression and functionality of VEGF and VEGFR2 in vitro and in vivo with the anti-VEGF antibody bevacizumab. Both WM115 and WM239 cells expressed VEGF and VEGFR2, the levels of which were modulated by hypoxia. Detection of native and phosphorylated VEGFR2 in subcellular fractions under serum-free conditions showed the presence of a functional autocrine as well as intracrine VEGF/VEGFR2 signaling loops. Interestingly, treatment of WM115 and WM239 cells with increasing doses of bevacizumab (0–300 µg/ml) in vitro did not show any significant inhibition of VEGFR2 phosphorylation. Small-molecule tyrosine kinase inhibitor, sunitinib, caused an inhibition of VEGFR2 phosphorylation in WM239 but not in WM115 cells. An increase in cell proliferation was observed in WM115 cells treated with bevacizumab, whereas sunitinib inhibited proliferation. When xenografted to immune-deficient mice, we found bevacizumab to be an effective antiangiogenic but not antitumorigenic agent for both cell lines. Because bevacizumab is unable to neutralize murine VEGF, this supports a paracrine angiogenic response. We propose that the failure of bevacizumab to generate an antitumorigenic effect may be related to its generation of enhanced autocrine/intracrine signaling in the cancer cells themselves. Collectively, these results suggest that, for cancers with intracrine VEGF/ VEGFR2 signaling loops, small-molecule inhibitors of VEGFR2 may be more effective than neutralizing antibodies at disease control.  相似文献   

7.
Melanoma is the most common type of skin cancer and its incidence is rapidly increasing. AKT, and its related signaling pathways, are highly activated in many cancers including lung, colon, and esophageal cancers. Costunolide (CTD) is a sesquiterpene lactone that has been reported to possess neuroprotective, anti-inflammatory, and anti-cancer properties. However, the target and mechanism underlying its efficacy in melanoma have not been identified. In this study, we elucidated the mechanism behind the anti-cancer effect of CTD in melanoma in vitro and in vivo by identifying CTD as an AKT inhibitor. We first verified that p-AKT and AKT are highly expressed in melanoma patient tissues and cell lines. CTD significantly inhibited the proliferation, migration, and invasion of melanoma cells including SK-MEL-5, SK-MEL-28, and A375 that are overexpressed p-AKT and AKT proteins. We investigated the mechanism of CTD using a computational docking modeling, pull-down, and site directed mutagenesis assay. CTD directly bound to AKT thereby arresting cell cycle at the G1 phase, and inducing the apoptosis of melanoma cells. In addition, CTD regulated the G1 phase and apoptosis biomarkers, and inhibited the expression of AKT/mTOR/GSK3b/p70S6K/4EBP cascade proteins. After reducing AKT expression in melanoma cells, cell growth was significantly decreased and CTD did not showed further inhibitory effects. Furthermore, CTD administration suppressed tumor growth and weight in cell-derived xenograft mice models in vivo without body weight loss and inhibited the expression of Ki-67, p-AKT, and p70S6K in tumor tissues. In summary, our study implied that CTD inhibited melanoma progression in vitro and in vivo. In this study, we reported that CTD could affect melanoma growth by targeting AKT. Therefore, CTD has considerable potential as a drug for melanoma therapy.  相似文献   

8.
BackgroundThis study aimed to investigate the roles of leucine-rich alpha-2-glycoprotein 1 (LRG1) in regulating angiogenesis during pancreatic cancer (PC) pathogenesis.MethodsLRG1 expression in tissues was detected by qRT-PCR and immunohistochemistry. LRG1 in BxPC-3 and Capan-2 cells was knocked down or overexpressed. Cell viability and the migration and invasion abilities of cells were analyzed using the Cell Counting Kit-8 (CCK-8) assay and Transwell system, respectively. Interleukin-1 beta (IL-1β), IL-18, and vascular endothelial growth factor A (VEGFA) contents in cell culture were measured by ELISA, and the angiogenesis of HUVECs was assessed by the in vitro tube formation assay. In vitro LRG1 expression in BxPC-3 and Capan-2 cells was determined using immunofluorescence.ResultsThe results showed that LRG1 expression was significantly increased in pancreatic cancer tissues and cell lines. LRG1 knockdown inhibited the viability, migration, invasion, and IL-1β and IL-18 synthesis of BxPC-3 and Capan-2 cells. VEGFA synthesis in BxPC-3 and Capan-2 cells was also inhibited by LRG1 knockdown, which caused impaired tube formation of co-cultured HUVECs. LRG1 overexpression enhanced the viability, migration, and invasion of BxPC-3 and Capan-2 cells, also causing elevated tube formation of HUVECs and IL-1β and IL-18 synthesis in co-cultures of HUVECs and BxPC-3 or Capan-2 cells. Silencing of VEGF receptor (VEGFR) abrogated the enhanced tube formation and IL-1β and IL-18 synthesis in HUVECs co-cultured with BxPC-3 or Capan-2 cells overexpressing LRG1.ConclusionsIn conclusion, LRG1, which is highly expressed in pancreatic cancer cells, promotes inflammatory factor synthesis and the angiogenesis of HUVECs though activating the VEGFR signaling pathway.  相似文献   

9.
10.
Liu L  Cao Y  Chen C  Zhang X  McNabola A  Wilkie D  Wilhelm S  Lynch M  Carter C 《Cancer research》2006,66(24):11851-11858
Angiogenesis and signaling through the RAF/mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK cascade have been reported to play important roles in the development of hepatocellular carcinomas (HCC). Sorafenib (BAY 43-9006, Nexavar) is a multikinase inhibitor with activity against Raf kinase and several receptor tyrosine kinases, including vascular endothelial growth factor receptor 2 (VEGFR2), platelet-derived growth factor receptor (PDGFR), FLT3, Ret, and c-Kit. In this study, we investigated the in vitro effects of sorafenib on PLC/PRF/5 and HepG2 HCC cells and the in vivo antitumor efficacy and mechanism of action on PLC/PRF/5 human tumor xenografts in severe combined immunodeficient mice. Sorafenib inhibited the phosphorylation of MEK and ERK and down-regulated cyclin D1 levels in these two cell lines. Sorafenib also reduced the phosphorylation level of eIF4E and down-regulated the antiapoptotic protein Mcl-1 in a MEK/ERK-independent manner. Consistent with the effects on both MEK/ERK-dependent and MEK/ERK-independent signaling pathways, sorafenib inhibited proliferation and induced apoptosis in both HCC cell lines. In the PLC/PRF/5 xenograft model, sorafenib tosylate dosed at 10 mg/kg inhibited tumor growth by 49%. At 30 mg/kg, sorafenib tosylate produced complete tumor growth inhibition. A dose of 100 mg/kg produced partial tumor regressions in 50% of the mice. In mechanism of action studies, sorafenib inhibited the phosphorylation of both ERK and eIF4E, reduced the microvessel area (assessed by CD34 immunohistochemistry), and induced tumor cell apoptosis (assessed by terminal deoxynucleotidyl transferase-mediated nick end labeling) in PLC/PRF/5 tumor xenografts. These results suggest that the antitumor activity of sorafenib in HCC models may be attributed to inhibition of tumor angiogenesis (VEGFR and PDGFR) and direct effects on tumor cell proliferation/survival (Raf kinase signaling-dependent and signaling-independent mechanisms).  相似文献   

11.
12.
Tumor angiogenesis and receptor tyrosine kinases (RTK) are major novel targets in anticancer molecular therapy. Accordingly, we characterized the vascular network and the expression pattern of angiogenic RTK in the most frequent pediatric brain tumors. In a retrospective collection of 44 cases (14 astrocytoma, 16 ependymoma and 14 medulloblastoma), immunohistochemistry for VEGFR1, VEGFR2, PDGFRα, PDGFRβ, and c-Kit as well as microvessel labeling with CD34 and SMA were conducted on surgical specimens. We found a significantly higher vascular density in ependymoma. Glomeruloid formations were abundant in medulloblastoma but rare or almost absent in astrocytoma and ependymoma, respectively. C-Kit and VEGFR2 labeled blood vessels were more abundant in ependymoma than in the other two types of tumors. In contrast, medulloblastoma contained higher number of PDGFRα expressing vessels. In tumor cells, we found no VEGFR2 but VEGFR1 expression in all three tumor types. PDGFRα was strongly expressed on the tumor cells in all three malignancies, while PDGFRβ tumor cell expression was present in the majority of medulloblastoma cases. Interestingly, small populations of c-Kit expressing cancer cells were found in a number of medulloblastoma and ependymoma cases. Our study suggests that different angiogenic mechanisms are present in ependymoma and medulloblastoma. Furthermore ependymoma patients may benefit from anti-angiogenic therapies based on the high vascularization as well as the endothelial expression of c-kit and VEGFR2. The expression pattern of the receptors on tumor cells also suggests the targeting of specific angiogenic tyrosine kinase receptors may have direct antitumor activity. Further preclinical and biomarker driven clinical investigations are needed to establish the application of tyrosine kinase inhibitors in the treatment of pediatric brain tumors.  相似文献   

13.
Sorafenib is a first-line molecular-target drug for advanced hepatocellular carcinoma (HCC), and reducing sorafenib resistance is an important issue to be resolved for the clinical treatment of HCC. In the current study, we identified that ABCC5 is a critical regulator and a promising therapeutic target of acquired sorafenib resistance in human hepatocellular carcinoma cells. The expression of ABCC5 was dramatically induced in sorafenib-resistant HCC cells and was remarkably associated with poor clinical prognoses. The down-regulation of ABCC5 expression could significantly reduce the resistance of sorafenib to HCC cells. Importantly, activation of PI3K/AKT/NRF2 axis was essential for sorafenib to induce ABCC5 expression. ABCC5 increased intracellular glutathione (GSH) and attenuated lipid peroxidation accumulation by stabilizing SLC7A11 protein, which inhibited ferroptosis. Additionally, the inhibition of ABCC5 enhanced the anti-cancer activity of sorafenib in vitro and in vivo. These findings demonstrate a novel molecular mechanism of acquired sorafenib resistance and also suggest that ABCC5 is a new regulator of ferroptosis in HCC cells.  相似文献   

14.
Sorafenib (Nexavar), a multiple kinase inhibitor, is the only clinically approved drug for patients with advanced HCC. However, its therapeutic success is limited by the emergence of drug resistance. Here we found that p21 and pGSK3βSer9 are major players in the resistance to sorafenib. We recently reported that aberrant Notch3 expression in HCC contributes to doxorubicin resistance in vitro and, therefore, we focused on the mechanisms that associate Notch3 to acquired drug resistance. In this study we first found that Notch3 inhibition significantly increased the apoptosis inducing effect of sorafenib in HCC cells via specific down-regulation of p21 and up-regulation of pGSK3βSer9. Using a mouse xenograft model we further found that Notch3 depletion combined with 21 days of sorafenib treatment exerts a substantial antitumor effect in vivo. Interestingly, we showed that, upon exposure to sorafenib treatment, Notch3 depleted xenografts maintain lower levels of p21 and higher levels of pGSK3βSer9 than control xenografts. Thus, this study demonstrated that inhibition of Notch3 signaling prevents HCC-mediate drug resistance and sensitizes HCC cells to sorafenib. Finally, we validated our in vitro and in vivo results in primary human HCCs showing that Notch3 protein expression positively correlated with p21 protein expression and negatively correlated with pGSK3βSer9 expression. In conclusion, the results presented in this study demonstrated that Notch3 silencing enhances the effect of sorafenib by overcoming drug resistance. Notch3 inhibition in combination with sorafenib can be a promising strategy for treatment of HCC.  相似文献   

15.
Matrine is a quinazoline alkaloid extracted from Sophora flavescens. The aim of the present study was to determine whether matrine can induce autophagy in the human HeLa and SiHa cervical cancer cell lines in vitro and in vivo. Cell viability assay was used to assess the suppressive effect of matrine and cisplatin on the proliferation of HeLa and SiHa cells. A total of 28 4-week-old female BALB/c nude mice were used for the in vivo study. Autophagy and protein expression were observed via transmission electron microscopy, monodansylcadaverine and immunohistochemical staining and western blotting. The inhibitory effect of matrine on the proliferation of cervical cancer cells was time- and dose-dependent. The combination of matrine and cisplatin synergistically inhibited the proliferation of cervical cancer cells in vitro and in vivo. Transmission electron microscopy showed that after the addition of matrine, numerous autophagosomes and autophagolysosomes were observable in HeLa and SiHa cells, as demonstrated by monodansylcadaverine staining. Western blotting and immunohistochemical staining showed that as the concentration of matrine increased, the expression of the autophagy marker LC3A/B-II also increased significantly in vitro and in vivo. These findings suggested that matrine inhibited the proliferation of cervical cancer cells and induced autophagy by inhibiting the Akt/mTOR signaling pathway. Thus, matrine may represented a potential candidate in combination therapy for cervical cancer as an inducer of autophagy.  相似文献   

16.
There has been little evidence to support EGR1 and PTEN function on the EMT of cancer cells. We tried to evaluate how these genes affect cancer cell invasion and EMT through investigating the molecular mechanism(s) of 2′-benzoyloxycinnamaldehyde (BCA). Matrigel invasion and wound healing assay, and in vivo mice model were used to evaluate the effect of BCA on colon cancer cell migration. The molecular mechanism(s) of BCA were evaluated by knock-down or overexpression of EGR1 and PTEN. BCA at 50 nM increased E-cadherin and EGR1 expression without cytotoxicity. Cell migration was inhibited significantly by BCA both in vitro and in vivo. Moreover, BCA inhibits Snail and Vimentin expression, as well as β-catenin nuclear accumulation. Suppression of EGR1 by siRNA attenuated the inhibition of matrigel invasion by BCA, indicating that EGR1 is responsible for BCA effect. PTEN was upregulated by BCA treatment or EGR1 overexpression. In addition, shPTEN transfection stimulated EMT and cell invasion in vitro. Our data suggest that BCA leads to a remarkable upregulation of EGR1 expression, and that EMT and invasion is decreased via EGR1-dependent PTEN activation. These data showed a critical role of EGR1-PTEN signaling pathway in the EMT of colon cancer, as well as metastasis.  相似文献   

17.
KP1339 is a promising ruthenium-based anticancer compound in early clinical development. This study aimed to test the effects of KP1339 on the in vitro and in vivo activity of the multi-kinase inhibitor sorafenib, the current standard first-line therapy for advanced hepatoma. Anticancer activity of the parental compounds as compared to the drug combination was tested against a panel of cancer cell lines with a focus on hepatoma. Combination of KP1339 with sorafenib induced in the majority of all cases distinctly synergistic effects, comprising both sorafenib-resistant as well as sorafenib-responsive cell models. Several mechanisms were found to underlie these multifaceted synergistic activities. Firstly, co-exposure induced significantly enhanced accumulation levels of both drugs resulting in enhanced apoptosis induction. Secondly, sorafenib blocked KP1339-mediated activation of P38 signalling representing a protective response against the ruthenium drug. In addition, sorafenib treatment also abrogated KP1339-induced G2/M arrest but resulted in check point-independent DNA-synthesis block and a complete loss of the mitotic cell populations. The activity of the KP1339/sorafenib combination was evaluated in the Hep3B hepatoma xenograft. KP1339 monotherapy led to a 2.4-fold increase in life span and, thus, was superior to sorafenib, which induced a 1.9-fold prolonged survival. The combined therapy further enhanced the mean survival by 3.9-fold. Synergistic activity was also observed in the VM-1 melanoma xenograft harbouring an activating braf mutation. Together, our data indicate that the combination of KP1339 with sorafenib displays promising activity in vitro and in vivo especially against human hepatoma models.  相似文献   

18.
Despite the substantial data supporting the oncogenic role of Ack1, the predictive value and biologic role of Ack1 in hepatocellular carcinoma (HCC) metastasis remains unknown. In this study, both correlations of Ack1 expression with prognosis of HCC, and the role of Ack1 in metastasis of HCC were investigated in vitro and in vivo. Our results showed that Ack1 was overexpressed in human HCC tissues and cell lines. High Ack1 expression was associated with HCC metastasis and determined as a significant and independent prognostic factor for HCC after liver resection. Ack1 promoted HCC invasion and metastasis in vitro and in vivo. Mechanistically, we confirmed that Ack1 enhanced invasion and metastasis of HCC via EMT by mediating AKT phosphorylation. In conclusion, our study shows Ack1 is a novel prognostic biomarker for HCC and promotes metastasis of HCC via EMT by activating AKT signaling.  相似文献   

19.
Epithelial-to-mesenchymal transition (EMT), in which epithelial cells loose their polarity and become motile mesenchymal cells, is a determinant of melanoma metastasis. We compared gene expression signatures of mesenchymal-like melanoma cells with those of epithelial-like melanoma cells, and identified Thrombospondin 1 (THBS1) as highly up-regulated in the mesenchymal phenotype. This study investigated whether THBS1, a major physiological activator of transforming growth factor (TGF)-beta, is involved in melanoma EMT-like process. We sought to examine expression patterns in distinct melanoma phenotypes including invasive, de-differentiated, label-retaining and drug resistant populations that are putatively associated with an EMT-like process.Here we show that THBS1 expression and secretion was elevated in melanoma cells exhibiting invasive, drug resistant, label retaining and mesenchymal phenotypes and correlated with reduced expression of genes involved in pigmentation. Elevated THBS1 levels were detected in Vemurafenib resistant melanoma cells and inhibition of THBS1 led to significantly reduced chemoresistance in melanoma cells. Notably, siRNA-mediated silencing of THBS1 and neutralizing antibody to THBS1 reduced invasion in mesenchymal-like melanoma cells, while ectopic THBS1 expression in epithelial-like melanoma cells enhanced invasion. Furthermore, the loss of THBS1 inhibited in vivo motility of melanoma cells within the embryonic chicken neural tube. In addition, we found aberrant THBS1 protein expression in metastatic melanoma tumor biopsies. These results implicate a role for THBS1 in EMT, and hence THBS1 may serve as a novel target for strategies aimed at the treatment of melanoma invasion and drug resistance.  相似文献   

20.
The c-Kit receptor tyrosine kinase is commonly over-expressed in different types of cancer. p53 activation is known to result in the down-regulation of c-Kit. However, the underlying mechanism has remained unknown. Here, we show that the p53-induced miR-34 microRNA family mediates repression of c-Kit by p53 via a conserved seed-matching sequence in the c-Kit 3''-UTR. Ectopic miR-34a resulted in a decrease in Erk signaling and transformation, which was dependent on the down-regulation of c-Kit expression. Furthermore, ectopic expression of c-Kit conferred resistance of colorectal cancer (CRC) cells to treatment with 5-fluorouracil (5-FU), whereas ectopic miR-34a sensitized the cells to 5-FU. After stimulation with c-Kit ligand/stem cell factor (SCF) Colo320 CRC cells displayed increased migration/invasion, whereas ectopic miR-34a inhibited SCF-induced migration/invasion. Activation of a conditional c-Kit allele induced several stemness markers in DLD-1 CRC cells. In primary CRC samples elevated c-Kit expression also showed a positive correlation with markers of stemness, such as Lgr5, CD44, OLFM4, BMI-1 and β-catenin. On the contrary, activation of a conditional miR-34a allele in DLD-1 cells diminished the expression of c-Kit and several stemness markers (CD44, Lgr5 and BMI-1) and suppressed sphere formation. MiR-34a also suppressed enhanced sphere-formation after exposure to SCF. Taken together, our data establish c-Kit as a new direct target of miR-34 and demonstrate that this regulation interferes with several c-Kit-mediated effects on cancer cells. Therefore, this regulation may be potentially relevant for future diagnostic and therapeutic approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号