首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 911 毫秒
1.
Schizophrenia is a highly heritable, severe psychiatric disorder affecting approximately 1% of the world population. A substantial portion of heritability is still unexplained and the pathophysiology of schizophrenia remains to be elucidated. To identify more schizophrenia susceptibility loci, we performed a genome-wide association study (GWAS) on 498 patients with schizophrenia and 2025 controls from the Han Chinese population, and a follow-up study on 1027 cases and 1005 controls. In the follow-up study, we included 384 single nucleotide polymorphisms (SNPs) which were selected from the top hits in our GWAS (130 SNPs) and from previously implicated loci for schizophrenia based on the SZGene database, NHGRI GWAS Catalog, copy number variation studies, GWAS meta-analysis results from the international Psychiatric Genomics Consortium (PGC) and candidate genes from plausible biological pathways (254 SNPs).Within the chromosomal region Xq28, SNP rs2269372 in RENBP achieved genome-wide significance with a combined P value of 3.98×10−8 (OR of allele A = 1.31). SNPs with suggestive P values were identified within 2 genes that have been previously implicated in schizophrenia, MECP2 (rs2734647, P combined = 8.78×10−7, OR = 1.28; rs2239464, P combined = 6.71×10−6, OR = 1.26) and ARHGAP4 (rs2269368, P combined = 4.74×10−7, OR = 1.25). In addition, the patient sample in our follow-up study showed a significantly greater burden for pre-defined risk alleles based on the SNPs selected than the controls. This indicates the existence of schizophrenia susceptibility loci among the SNPs we selected. This also further supports multigenic inheritance in schizophrenia. Our findings identified a new schizophrenia susceptibility locus on Xq28, which harbor the genes RENBP, MECP2, and ARHGAP4.Key words: schizophrenia, genome-wide association study, Han Chinese, MECP2, ARHGAP4, RENBP  相似文献   

2.
Panic disorder (PD) is a moderately heritable anxiety disorder whose pathogenesis is not well understood. Due to the lack of power in previous association studies, genes that are truly associated with PD might not be detected. In this study, we conducted a genome-wide association study (GWAS) in two independent data sets using the Affymetrix Mapping 500K Array or Genome-Wide Human SNP Array 6.0. We obtained imputed genotypes for each GWAS and performed a meta-analysis of two GWAS data sets (718 cases and 1717 controls). For follow-up, 12 single-nucleotide polymorphisms (SNPs) were tested in 329 cases and 861 controls. Gene ontology enrichment and candidate gene analyses were conducted using the GWAS or meta-analysis results. We also applied the polygenic score analysis to our two GWAS samples to test the hypothesis of polygenic components contributing to PD. Although genome-wide significant SNPs were not detected in either of the GWAS nor the meta-analysis, suggestive associations were observed in several loci such as BDKRB2 (P=1.3 × 10−5, odds ratio=1.31). Among previous candidate genes, supportive evidence for association of NPY5R with PD was obtained (gene-wise corrected P=6.4 × 10−4). Polygenic scores calculated from weakly associated SNPs (P<0.3 and 0.4) in the discovery sample were significantly associated with PD status in the target sample in both directions (sample I to sample II and vice versa) (P<0.05). Our findings suggest that large sets of common variants of small effects collectively account for risk of PD.  相似文献   

3.
Bipolar disorder (BD) is a highly heritable psychiatric disease characterized by recurrent episodes of mania and depression. To identify new BD genes and pathways, the present study employed a three-step approach. First, gene-expression profiles of BD patients were assessed during both a manic and an euthymic phase. These profiles were compared intra-individually and with the gene-expression profiles of controls. Second, those differentially expressed genes that were considered potential trait markers of BD were validated using data from the Psychiatric Genomics Consortiums'' genome-wide association study (GWAS) of BD. Third, the implicated molecular mechanisms were investigated using pathway analytical methods. In the present patients, this novel approach identified: (i) sets of differentially expressed genes specific to mania and euthymia; and (ii) a set of differentially expressed genes that were common to both mood states. In the GWAS data integration analysis, one gene (STAB1) remained significant (P=1.9 × 10−4) after adjustment for multiple testing. STAB1 is located in close proximity to PBMR1 and the NEK4-ITIH1-ITIH3-ITIH4 region, which are the top findings from GWAS meta-analyses of mood disorder, and a combined BD and schizophrenia data set. Pathway analyses in the mania versus control comparison revealed three distinct clusters of pathways tagging molecular mechanisms implicated in BD, for example, energy metabolism, inflammation and the ubiquitin proteasome system. The present findings suggest that STAB1 is a new and highly promising candidate gene in this region. The combining of gene expression and GWAS data may provide valuable insights into the biological mechanisms of BD.  相似文献   

4.

Background and Purpose

Multiple sclerosis (MS) is a demyelinating and inflammatory disease of the central nervous system. The aim of this study was to identify more genes associated with MS.

Methods

Based on the publicly available data of the single-nucleotide polymorphism-based genome-wide association study (GWAS) from the database of Genotypes and Phenotypes, we conducted a powerful gene-based GWAS in an initial sample with 931 family trios, and a replication study sample with 978 cases and 883 controls. For interesting genes, gene expression in MS-related cells between MS cases and controls was examined by using publicly available datasets.

Results

A total of 58 genes was identified, including 20 "novel" genes significantly associated with MS (p<1.40×10-4). In the replication study, 44 of the 58 identified genes had been genotyped and 35 replicated the association. In the gene-expression study, 21 of the 58 identified genes exhibited differential expressions in MS-related cells. Thus, 15 novel genes were supported by replicated association and/or differential expression. In particular, four of the novel genes, those encoding myelin oligodendrocyte glycoprotein (MOG), coiled-coil alpha-helical rod protein 1 (CCHCR1), human leukocyte antigen complex group 22 (HCG22), and major histocompatibility complex, class II, DM alpha (HLA-DMA), were supported by the evidence of both.

Conclusions

The results of this study emphasize the high power of gene-based GWAS in detecting the susceptibility genes of MS. The novel genes identified herein may provide new insights into the molecular genetic mechanisms underlying MS.  相似文献   

5.
Bipolar disorder (BD) and attention deficit/hyperactivity disorder (ADHD) may share common genetic risk factors as indicated by the high co-morbidity of BD and ADHD, their phenotypic overlap especially in pediatric populations, the high heritability of both disorders, and the co-occurrence in families. We therefore examined whether known polygenic BD risk alleles are associated with ADHD. We chose the eight best SNPs of the recent genome-wide association study (GWAS) of BD patients of German ancestry and the nine SNPs from international GWAS meeting a ‘genome-wide significance’ level of α = 5 × 10?8. A GWAS was performed in 495 ADHD children and 1,300 population-based controls using HumanHap550v3 and Human660 W-Quadv1 BeadArrays. We found no significant association of childhood ADHD with single BD risk alleles surviving adjustment for multiple testing. Yet, risk alleles for BD and ADHD were directionally consistent at eight of nine loci with the strongest support for three SNPs in or near NCAN, BRE, and LMAN2L. The polygene analysis for the BP risk alleles at all 14 loci indicated a higher probability of being a BD risk allele carrier in the ADHD cases as compared to the controls. At a moderate power to detect association with ADHD, if true effects were close to estimates from GWAS for BD, our results suggest that the possible contribution of BD risk variants to childhood ADHD risk is considerably lower than for BD. Yet, our findings should encourage researchers to search for common genetic risk factors in BD and childhood ADHD in future studies.  相似文献   

6.
In addition to apolipoprotein E (APOE), recent large genome-wide association studies (GWASs) have identified nine other genes/loci (CR1, BIN1, CLU, PICALM, MS4A4/MS4A6E, CD2AP, CD33, EPHA1 and ABCA7) for late-onset Alzheimer''s disease (LOAD). However, the genetic effect attributable to known loci is about 50%, indicating that additional risk genes for LOAD remain to be identified. In this study, we have used a new GWAS data set from the University of Pittsburgh (1291 cases and 938 controls) to examine in detail the recently implicated nine new regions with Alzheimer''s disease (AD) risk, and also performed a meta-analysis utilizing the top 1% GWAS single-nucleotide polymorphisms (SNPs) with P<0.01 along with four independent data sets (2727 cases and 3336 controls) for these SNPs in an effort to identify new AD loci. The new GWAS data were generated on the Illumina Omni1-Quad chip and imputed at ∼2.5 million markers. As expected, several markers in the APOE regions showed genome-wide significant associations in the Pittsburg sample. While we observed nominal significant associations (P<0.05) either within or adjacent to five genes (PICALM, BIN1, ABCA7, MS4A4/MS4A6E and EPHA1), significant signals were observed 69–180 kb outside of the remaining four genes (CD33, CLU, CD2AP and CR1). Meta-analysis on the top 1% SNPs revealed a suggestive novel association in the PPP1R3B gene (top SNP rs3848140 with P=3.05E–07). The association of this SNP with AD risk was consistent in all five samples with a meta-analysis odds ratio of 2.43. This is a potential candidate gene for AD as this is expressed in the brain and is involved in lipid metabolism. These findings need to be confirmed in additional samples.  相似文献   

7.
Hostility is a multidimensional personality trait with changing expression over the life course. We performed a genome-wide association study (GWAS) of the components of hostility in a population-based sample of Finnish men and women for whom a total of 2.5 million single-nucleotide polymorphisms (SNPs) were available through direct or in silico genotyping. Hostility dimensions (anger, cynicism and paranoia) were assessed at four time points over a 15-year interval (age range 15–30 years at phase 1 and 30–45 years at phase 4) in 982–1780 participants depending on the hostility measure. Few promising areas from chromosome 14 at 99 cM (top SNPs rs3783337, rs7158754, rs3783332, rs2181102, rs7159195, rs11160570, rs941898, P values <3.9 × 10−8 with nearest gene Enah/Vasp-like (EVL)) were found suggestively to be related to paranoia and from chromosome 7 at 86 cM (top SNPs rs802047, rs802028, rs802030, rs802026, rs802036, rs802025, rs802024, rs802032, rs802049, rs802051, P values <6.9 × 10−7 with nearest gene CROT (carnitine O-octanoyltransferase)) to cynicism, respectively. Some shared suggestive genetic influence for both paranoia and cynicism was also found from chromosome 17 at 2.8 cM (SNPs rs12936442, rs894664, rs6502671, rs7216028) and chromosome 22 at 43 cM (SNPs rs7510759, rs7510924, rs7290560), with nearest genes RAP1 GTPase activating protein 2 (RAP1GAP2) and KIAA1644, respectively. These suggestive associations did not replicate across all measurement times, which warrants further study on these SNPs in other populations.  相似文献   

8.
The superior frontal gyrus (SFG), an area of the brain frequently found to have reduced gray matter in patients with schizophrenia, is involved in self-awareness and emotion, which are impaired in schizophrenia. However, no genome-wide association studies of SFG volume have investigated in patients with schizophrenia. To identify single-nucleotide polymorphisms (SNPs) associated with SFG volumes, we demonstrated a genome-wide association study (GWAS) of gray matter volumes in the right or left SFG of 158 patients with schizophrenia and 378 healthy subjects. We attempted to bioinformatically ascertain the potential effects of the top hit polymorphism on the expression levels of genes at the genome-wide region. We found associations between five variants on 1p36.12 and the right SFG volume at a widely used benchmark for genome-wide significance (P<5.0 × 108). The strongest association was observed at rs4654899, an intronic SNP in the eukaryotic translation initiation factor 4 gamma, 3 (EIF4G3) gene on 1p36.12 (P=7.5 × 10−9). No SNP with genome-wide significance was found in the volume of the left SFG (P>5.0 × 10−8); however, the rs4654899 polymorphism was identified as the locus with the second strongest association with the volume of the left SFG (P=1.5 × 10−6). In silico analyses revealed a proxy SNP of rs4654899 had effect on gene expression of two genes, HP1BP3 lying 3′ to EIF4G3 (P=7.8 × 10−6) and CAPN14 at 2p (P=6.3 × 10−6), which are expressed in moderate-to-high levels throughout the adult human SFG. These results contribute to understand genetic architecture of a brain structure possibly linked to the pathophysiology of schizophrenia.  相似文献   

9.

Introduction

African Americans' (AAs) late-onset Alzheimer's disease (LOAD) genetic risk profile is incompletely understood. Including clinical covariates in genetic analyses using informed conditioning might improve study power.

Methods

We conducted a genome-wide association study (GWAS) in AAs employing informed conditioning in 1825 LOAD cases and 3784 cognitively normal controls. We derived a posterior liability conditioned on age, sex, diabetes status, current smoking status, educational attainment, and affection status, with parameters informed by external prevalence information. We assessed association between the posterior liability and a genome-wide set of single-nucleotide polymorphisms (SNPs), controlling for APOE and ABCA7, identified previously in a LOAD GWAS of AAs.

Results

Two SNPs at novel loci, rs112404845 (P = 3.8 × 10?8), upstream of COBL, and rs16961023 (P = 4.6 × 10?8), downstream of SLC10A2, obtained genome-wide significant evidence of association with the posterior liability.

Discussion

An informed conditioning approach can detect LOAD genetic associations in AAs not identified by traditional GWAS.  相似文献   

10.
Cognitive impairments are a core feature in patients with schizophrenia. These deficits could serve as effective tools for understanding the genetic architecture of schizophrenia. This study investigated whether genetic variants associated with cognitive impairments aggregate in functional gene networks related to the pathogenesis of schizophrenia. Here, genome-wide association studies (GWAS) of a range of cognitive phenotypes relevant to schizophrenia were performed in 411 healthy subjects. We attempted to replicate the GWAS data using 257 patients with schizophrenia and performed a meta-analysis of the GWAS findings and the replicated results. Because gene networks, rather than a single gene or genetic variant, may be strongly associated with the susceptibility to schizophrenia and cognitive impairments, gene-network analysis for genes in close proximity to the replicated variants was performed. We observed nominal associations between 3054 variants and cognitive phenotypes at a threshold of P < 1.0 × 10 4. Of the 3054 variants, the associations of 191 variants were replicated in the replication samples (P < .05). However, no variants achieved genome-wide significance in a meta-analysis (P > 5.0 × 10 8). Additionally, 115 of 191 replicated single nucleotide polymorphisms (SNPs) have genes located within 10 kb of the SNPs (60.2%). These variants were moderately associated with cognitive phenotypes that ranged from P = 2.50 × 10 5 to P = 9.40 × 10 8. The genes located within 10 kb from the replicated SNPs were significantly grouped in terms of glutamate receptor activity (false discovery rate (FDR) q = 4.49 × 10 17) and the immune system related to major histocompatibility complex class I (FDR q = 8.76 × 10 11) networks. Our findings demonstrate that genetic variants related to cognitive trait impairment in schizophrenia are involved in the N-methyl-d-aspartate glutamate network.Key words: schizophrenia, genome-wide association study, cognitive phenotypes, glutamate receptor activity, immune function, functional gene network  相似文献   

11.
12.
BackgroundSuicide claims one million lives worldwide annually, making it a serious public health concern. The risk for suicidal behaviour can be partly explained by genetic factors, as suggested by twin and family studies (reviewed in (Zai et al. 2012)). Recently, genome-wide association studies (GWASs) of suicide attempt on large samples of bipolar disorder (BD) patients from multiple sites have identified a number of novel candidate genes. GWASs of suicide behaviour severity, from suicidal ideation to serious suicide attempt, have not been reported for BD.MethodsWe conducted a GWAS of suicide behaviour severity in three independent BD samples:212 small nuclear families with BD probands from Toronto, Canada, 428 BD cases from Toronto, and 483 BD cases from the UK. We carried out imputation with 1000 Genome Project data as reference using IMPUTE2. Quality control and data analysis was conducted using PLINK and R. We conducted the quantitative analyses of suicide behaviour severity in the three samples separately, and derived an overall significance by a meta-analysis using the METAL software.ResultsWe did not find genome-wide significant association of any tested markers in any of the BD samples, but we found a number of suggestive associations, including regions on chromosomes 8 and 10 (p < 1e-5).ConclusionsOur GWAS findings suggest that likely many gene variants of small effects contribute collectively to the risk for suicidal behaviour severity in BD. Larger independent replications are required to strengthen the findings from the GWAS presented here.  相似文献   

13.
Affecting about 1 in 12 Americans annually, depression is a leading cause of the global disease burden. While a range of effective antidepressants are now available, failure and relapse rates remain substantial, with intolerable side effect burden the most commonly cited reason for discontinuation. Thus, understanding individual differences in susceptibility to antidepressant therapy side effects will be essential to optimize depression treatment. Here we perform genome-wide association studies (GWAS) to identify genetic variation influencing susceptibility to citalopram-induced side effects. The analysis sample consisted of 1762 depression patients, successfully genotyped for 421K single-nucleotide polymorphisms (SNPs), from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study. Outcomes included five indicators of citalopram side effects: general side effect burden, overall tolerability, sexual side effects, dizziness and vision/hearing side effects. Two SNPs met our genome-wide significance criterion (q<0.1), ensuring that, on average, only 10% of significant findings are false discoveries. In total, 12 additional SNPs demonstrated suggestive associations (q<0.5). The top finding was rs17135437, an intronic SNP within EMID2, mediating the effects of citalopram on vision/hearing side effects (P=3.27 × 10−8, q=0.026). The second genome-wide significant finding, representing a haplotype spanning ∼30 kb and eight genotyped SNPs in a gene desert on chromosome 13, was associated with general side effect burden (P=3.22 × 10−7, q=0.096). Suggestive findings were also found for SNPs at LAMA1, AOX2P, EGFLAM, FHIT and RTP2. Although our findings require replication and functional validation, this study demonstrates the potential of GWAS to discover genes and pathways that potentially mediate adverse effects of antidepressant medications.  相似文献   

14.
Prion diseases are rare neurodegenerative conditions causing highly variable clinical syndromes, which often include prominent neuropsychiatric symptoms. We have recently carried out a clinical study of behavioural and psychiatric symptoms in a large prospective cohort of patients with prion disease in the United Kingdom, allowing us to operationalise specific behavioural/psychiatric phenotypes as traits in human prion disease. Here, we report exploratory genome-wide association analysis on 170 of these patients and 5200 UK controls, looking for single-nucleotide polymorphisms (SNPs) associated with three behavioural/psychiatric phenotypes in the context of prion disease. We also specifically examined a selection of candidate SNPs that have shown genome-wide association with psychiatric conditions in previously published studies, and the codon 129 polymorphism of the prion protein gene, which is known to modify various aspects of the phenotype of prion disease. No SNPs reached genome-wide significance, and there was no evidence of altered burden of known psychiatric risk alleles in relevant prion cases. SNPs showing suggestive evidence of association (P<10−5) included several lying near genes previously implicated in association studies of other psychiatric and neurodegenerative diseases. These include ANK3, SORL1 and a region of chromosome 6p containing several genes implicated in schizophrenia and bipolar disorder. We would encourage others to acquire phenotype data in independent cohorts of patients with prion disease as well as other neurodegenerative and neuropsychiatric conditions, to allow meta-analysis that may shed clearer light on the biological basis of these complex disease manifestations, and the diseases themselves.  相似文献   

15.
Research suggests that clinical symptom dimensions may be more useful in delineating the genetics of bipolar disorder (BD) than standard diagnostic models. To date, no study has applied this concept to data from genome-wide association studies (GWAS). We performed a GWAS of factor dimensions in 927 clinically well-characterized BD patients of German ancestry. Rs9875793, which is located in an intergenic region of 3q26.1 and in the vicinity of the solute carrier family 2 (facilitated glucose transporter), member 2 gene (SLC2A2), was significantly associated with the factor analysis-derived dimension ‘negative mood delusions'' (n=927; P=4.65 × 10−8, odds ratio (OR)=2.66). This dimension was comprised of the symptoms delusions of poverty, delusions of guilt and nihilistic delusions. In case–control analyses, significant association with the G allele of rs9875793 was only observed in the subgroup of BD patients who displayed symptoms of ‘negative mood delusions'' (allelic χ2 model: PG=0.0001, OR=1.92; item present, n=89). Further support for the hypothesis that rs9875793 is associated with BD in patients displaying ‘negative mood delusions'' symptom, such as delusions of guilt, was obtained from an European American sample (GAIN/TGEN), which included 1247 BD patients and 1434 controls (PEA=0.028, OR=1.27).  相似文献   

16.
17.
We conducted a three-stage genome-wide association study (GWAS) of response to antidepressant drugs in an ethnically homogeneous sample of Korean patients in untreated episodes of nonpsychotic unipolar depression, mostly of mature onset. Strict quality control was maintained in case selection, diagnosis, verification of adherence and outcome assessments. Analyzed cases completed 6 weeks of treatment with adequate plasma drug concentrations. The overall successful completion rate was 85.5%. Four candidate single-nucleotide polymorphisms (SNPs) on three chromosomes were identified by genome-wide search in the discovery sample of 481 patients who received one of four allowed selective serotonin reuptake inhibitor (SSRI) antidepressant drugs (Stage 1). In a focused replication study of 230 SSRI-treated patients, two of these four SNP candidates were confirmed (Stage 2). Analysis of the Stage 1 and Stage 2 samples combined (n=711) revealed GWAS significance (P=1.60 × 10-8) for these two SNP candidates, which were in perfect linkage disequilibrium. These two significant SNPs were confirmed also in a focused cross-replication study of 159 patients treated with the non-SSRI antidepressant drug mirtazapine (Stage 3). Analysis of the Stage 1, Stage 2 and Stage 3 samples combined (n=870) also revealed GWAS significance for these two SNPs, which was sustained after controlling for gender, age, number of previous episodes, age at onset and baseline severity (P=3.57 × 10-8). For each SNP, the response rate decreased (odds ratio=0.31, 95% confidence interval: 0.20–0.47) as a function of the number of minor alleles (non-response alleles). The two SNPs significantly associated with antidepressant response are rs7785360 and rs12698828 of the AUTS2 gene, located on chromosome 7 in 7q11.22. This gene has multiple known linkages to human psychological functions and neurobehavioral disorders. Rigorous replication efforts in other ethnic populations are recommended.  相似文献   

18.
BackgroundDepression is a debilitating mental disorder that often coexists with anxiety. The genetic mechanisms of depression and anxiety have considerable overlap, and studying depression in non-anxiety samples could help to discover novel gene. We assess the genetic variation of depression in non-anxiety samples, using genome-wide association studies (GWAS) and linkage disequilibrium score regression (LDSC).MethodsThe GWAS of depression score and self-reported depression were conducted using the UK Biobank samples, comprising 99,178 non-anxiety participants with anxiety score <5 and 86,503 non-anxiety participants without self-reported anxiety, respectively. Replication analysis was then performed using two large-scale GWAS summary data of depression from Psychiatric Genomics Consortium (PGC). LDSC was finally used to evaluate genetic correlations with 855 health-related traits based on the primary GWAS.ResultsTwo genome-wide significant loci for non-anxiety depression were identified: rs139702470 (p = 1.54 × 10−8, OR = 0.29) locate in PIEZO2, and rs6046722 (p = 2.52 × 10−8, OR = 1.09) locate in CFAP61. These associated genes were replicated in two GWAS of depression from PGC, such as rs1040582 (preplication GWAS1 = 0.02, preplication GWAS2 = 2.71 × 10−3) in CFAP61, and rs11661122 (preplication GWAS1 = 8.16 × 10−3, preplication GWAS2 = 8.08 × 10−3) in PIEZO2. LDSC identified 19 traits genetically associated with non-anxiety depression (p < 0.001), such as marital separation/divorce (rg = 0.45, SE = 0.15).ConclusionsOur findings provide novel clues for understanding of the complex genetic architecture of depression.  相似文献   

19.
Most pathway and gene-set enrichment methods prioritize genes by their main effect and do not account for variation due to interactions in the pathway. A portion of the presumed missing heritability in genome-wide association studies (GWAS) may be accounted for through gene–gene interactions and additive genetic variability. In this study, we prioritize genes for pathway enrichment in GWAS of bipolar disorder (BD) by aggregating gene–gene interaction information with main effect associations through a machine learning (evaporative cooling) feature selection and epistasis network centrality analysis. We validate this approach in a two-stage (discovery/replication) pathway analysis of GWAS of BD. The discovery cohort comes from the Wellcome Trust Case Control Consortium (WTCCC) GWAS of BD, and the replication cohort comes from the National Institute of Mental Health (NIMH) GWAS of BD in European Ancestry individuals. Epistasis network centrality yields replicated enrichment of Cadherin signaling pathway, whose genes have been hypothesized to have an important role in BD pathophysiology but have not demonstrated enrichment in previous analysis. Other enriched pathways include Wnt signaling, circadian rhythm pathway, axon guidance and neuroactive ligand-receptor interaction. In addition to pathway enrichment, the collective network approach elevates the importance of ANK3, DGKH and ODZ4 for BD susceptibility in the WTCCC GWAS, despite their weak single-locus effect in the data. These results provide evidence that numerous small interactions among common alleles may contribute to the diathesis for BD and demonstrate the importance of including information from the network of gene–gene interactions as well as main effects when prioritizing genes for pathway analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号