首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-desethyl sunitinib is a major and pharmacologically active metabolite of the tyrosine kinase inhibitor and anticancer drug sunitinib. Because the combination of N-desethyl sunitinib and sunitinib represents total active drug exposure, we investigated the impact of several multidrug efflux transporters on plasma pharmacokinetics and brain accumulation of N-desethyl sunitinib after sunitinib administration to wild-type and transporter knockout mice. In vitro, N-desethyl sunitinib was a good transport substrate of human ABCB1 and ABCG2 and murine Abcg2, but not ABCC2 or Abcc2. At 5 μM, ABCB1 and ABCG2 contributed almost equally to N-desethyl sunitinib transport. In vivo, the systemic exposure of N-desethyl sunitinib after oral dosing of sunitinib malate (10 mg/kg) was unchanged when Abcb1 and/or Abcg2 were absent. However, brain accumulation of N-desethyl sunitinib was markedly increased (13.7-fold) in Abcb1a/1b(-/-)/Abcg2(-/-) mice, but not in Abcb1a/1b(-/-) or Abcg2(-/-) mice. In the absence of the ABCB1 and ABCG2 inhibitor elacridar, brain concentrations of N-desethyl sunitinib were detectable only in Abcb1a/1b(-/-)/Abcg2(-/-) mice after sunitinib administration. Combined elacridar plus N-desethyl sunitinib treatment increased N-desethyl sunitinib plasma and brain exposures, but not brain-to-plasma ratios in wild-type mice. In conclusion, brain accumulation of N-desethyl sunitinib is effectively restricted by both Abcb1 and Abcg2. The effect of elacridar treatment in improving brain accumulation of N-desethyl sunitinib in wild-type mice was limited compared with its effect on sunitinib brain accumulation.  相似文献   

2.
This study determined absolute transporter protein abundances in isolated microvessels of human noncancerous cerebral cortex as well as brain metastases of patients with lung and breast cancer, using a validated targeted proteomics approach. As compared with those in microvessels of noncancerous cerebral cortex, the median protein abundances of glucose transporter 1 (a brain endothelial marker) and sodium‐potassium pump (Na/K ATPase, a plasma membrane marker) were decreased by ~ 80% in brain metastasis microvessels. The major efflux transporters (ABCB1 and ABCG2) fell to undetectable in microvessels of more than 80% of brain metastasis specimens. Monocarboxylate transporter 1 was undetectable in microvessels of more than 80% of brain metastases, whereas large neutral amino acid transporter 1 levels remained unchanged. In conclusion, the integrity of the physical and biochemical barrier with respect to transporter protein expression is largely disrupted in brain metastasis tumor vasculatures. Differential transporter protein abundances at the blood‐brain barrier and blood‐brain tumor barrier provided mechanistic and quantitative basis for prediction of heterogeneous drug penetration into human brain and brain tumors, which is critical not only to the understanding of the success or failure of systemic chemotherapy in the treatment of brain tumors but also to the development of more effective therapeutic strategies.

Study Highlights
  • WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Systemic chemotherapy for brain metastases is controversial, at least partly due to the incomplete understanding of the blood‐brain barrier (BBB) and blood‐brain tumor barrier (BBTB) with respect to transporter protein expression and function.
  • WHAT QUESTION DID THIS STUDY ADDRESS?
This study determined the absolute protein abundances of major BBB transporters in isolated microvessels of brain metastases from lung and breast cancer patients as well as non‐cancerous brain cortex from primary or metastatic brain cancer patients.
  • WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
This study complemented our previous knowledge on transporter expression in microvessels of human normal brain cortex and glioblastoma, which collectively provided a comprehensive dataset on the quantitative protein expression of BBB transporters in the vasculatures of human normal brain, primary and metastatic brain tumors.
  • HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE?
Differential transporter protein abundances at the BBB and BBTB provided mechanistic and quantitative basis for prediction of heterogeneous drug penetration into human brain and brain tumors, which is critical not only to the understanding of the success or failure of systemic chemotherapy in the treatment of brain tumors but also to the development of more effective therapeutic strategies.  相似文献   

3.
Breast cancer resistance protein (Bcrp/Abcg2) is a new efflux transporter found at the blood-brain barrier (BBB) of humans and pigs. Since it has been hypothesized that Bcrp may act as a new type of efflux transporter at the BBB, we investigated the involvement of Bcrp in the efflux transport of typical substrates, dehydroepiandrosterone sulfate (DHEAS) and mitoxantrone, across the mouse BBB. The expression of Bcrp in mouse brain capillaries was confirmed by quantitative polymerase chain reaction, Western blot, and immunohistochemical analysis. The role of Bcrp as an efflux transporter was evaluated using the in situ brain perfusion method in wild-type and P-glycoprotein (P-gp) knockout mice with or without treatment with GF120918 (Elacridar), an inhibitor of both Bcrp and P-gp. The increased brain uptake of [(3)H]DHEAS and [(3)H]mitoxantrone by GF120918 in wild-type and P-gp knockout mice suggested the existence of a GF120918-sensitive and P-gp-independent efflux transporter for DHEAS and mitoxantrone across the BBB. However, the brain uptake of [(3)H]DHEAS in Bcrp knockout mice was comparable with that in wild-type mice, and the effect of GF120918 was still observed in Bcrp knockout mice. In addition, the brain uptake of [(3)H]mitoxantrone was also similar in wild-type and Bcrp knockout mice. These results suggest that although BCRP is expressed at the BBB it plays a minor role in active efflux transport of DHEAS and mitoxantrone out of brain and that one or more GF120918-sensitive efflux transporters distinct from BCRP or P-gp contributes to the brain efflux of DHEAS and mitoxantrone.  相似文献   

4.
Mammalian P-glycoproteins are active drug efflux transporters located in the plasma membrane. In the early nineties, we generated knockouts of the three P-glycoprotein genes of mice, the Mdr1a, Mdr1b, and Mdr2 P-glycoproteins, now known as Abcb1a, Abcb1b, and Abcb4, respectively. In the JCI papers that are the subject of this Hindsight, we showed that loss of Mdr1a (Abcb1a) had a profound effect on the tissue distribution and especially the brain accumulation of a range of drugs frequently used in humans, including dexamethasone, digoxin, cyclosporin A, ondansetron, domperidone, and loperamide. All drugs were shown to be excellent substrates of the murine ABCB1A P-glycoprotein and its human counterpart, the MDR1 P-glycoprotein, ABCB1. We found that the ability of ABCB1 to prevent accumulation of some drugs in the brain is a prerequisite for their clinical use, as absence of the transporter led to severe toxicity or undesired CNS pharmacodynamic effects. Subsequent work has fully confirmed the profound effect of the drug-transporting ABCB1 P-glycoprotein on the pharmacokinetics of drugs in humans. In fact, every new drug is now screened for transport by ABCB1, as this limits oral availability and penetration into sanctuaries protected by ABCB1, such as the brain.  相似文献   

5.
Upregulation of intercellular adhesion molecule 1 (ICAM‐1) is an early event in lesion formation in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Monitoring its expression may provide a biomarker for early disease activity and allow validation of anti‐inflammatory interventions. Our objective was therefore to explore whether ICAM‐1 expression can be visualized in vivo during EAE with magnetic resonance imaging (MRI) using micron‐sized particles of iron oxide (MPIO), and to compare accumulation profiles of targeted and untargeted MPIO, and a gadolinium‐containing agent. Targeted αICAM‐1‐MPIO/untargeted IgG‐MPIO were injected at two model‐characteristic phases of EAE (in myelin oligodendrocyte glycoprotein35–55‐immunized C57BL/6 J mice), that is, at the peak of the acute phase (14 ± 1 days post‐immunization) and during the chronic phase (26 ± 1 days post‐immunization), followed by T2*‐weighted MRI. Blood–brain barrier (BBB) permeability was measured using gadobutrol‐enhanced MRI. Cerebellar microvessels were analyzed for ICAM‐1 mRNA expression using quantitative PCR (qPCR). ICAM‐1 and iron oxide presence was examined with immunohistochemistry (IHC). During EAE, ICAM‐1 was expressed by brain endothelial cells, macrophages and T‐cells as shown with qPCR and (fluorescent) IHC. EAE animals injected with αICAM‐1‐MPIO showed MRI hypointensities, particularly in the subarachnoid space. αICAM‐1‐MPIO presence did not differ between the phases of EAE and was not associated with BBB dysfunction. αICAM‐1‐MPIO were associated with endothelial cells or cells located at the luminal side of blood vessels. In conclusion, ICAM‐1 expression can be visualized with in vivo molecular MRI during EAE, and provides an early tracer of disease activity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Objective. The purpose of this study was to investigate the effects of targeted and reversible disruption of the blood‐brain barrier (BBB) by magnetic resonance imaging (MRI)‐guided focused ultrasound (FUS) and delivery of methotrexate (MTX) to the rabbit brain. Methods. The brains of 20 rabbits were sonicated by MRI‐guided FUS at different exposure times, and then Evans blue extravasation, contrast‐enhanced MRI, and histologic examination were performed to determine the optimal exposure time for reversible BBB disruption with minimal damage. Five rabbits were sonicated at the optimal exposure time after MTX was injected intravenously (IV); the targeted locations were included in the sonicated group, and the nontargeted contralateral counterparts were included in the IV control group. Five other rabbits were not subjected to sonication and were administered internal carotid artery (ICA) injections of MTX; the specimens of the counterpart brain tissue were harvested as the ICA group. The MTX concentration in all of the specimens was determined by high‐performance liquid chromatography. Results. The MTX concentration in the sonicated group (mean ± SD, 7.412 ± 1.471 μg/g of tissue) was notably higher than that in both the IV control group (0.544 ± 0.084 μg/g) and ICA group (1.984 ± 0.65 μg/g; P <.01). Conclusions. Magnetic resonance imaging–guided FUS can disrupt the BBB reversibly and deliver IV administered MTX to targeted brain locations; it brings about a greater than 10‐fold increase in the drug level and is much more effective (≈3.7‐fold) than drug delivery through the ICA without sonication. This may facilitate the development of improved treatment methods for central nervous system disorders.  相似文献   

7.
8.
Re‐emergence of vector‐borne diseases such as dengue and yellow fever, which are both transmitted by the Aedes aegypti mosquito, has been correlated with insecticide resistance. P‐glycoproteins (P‐gps) are ATP‐dependent efflux pumps that are involved in the transport of substrates across membranes. Some of these proteins have been implicated in multidrug resistance (MDR). In this study, we identified a putative P‐glycoprotein in the Ae. aegypti database based on its significantly high identity with Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster and human P‐gps. The basal ATPase activity of ATP‐binding cassette transporters in larvae was significantly increased in the presence of MDR modulators (verapamil and quinidine). An eightfold increase in Ae. aegypti P‐gp (AaegP‐gp) gene expression was detected in temephos‐treated larvae as determined by quantitative PCR. To analyse the potential role of AaegP‐gp in insecticide efflux, a temephos larvicide assay was performed in the presence of verapamil. The results showed an increase of 24% in temephos toxicity, which is in agreement with the efflux reversing effect. RNA interference (RNAi)‐mediated silencing of the AaegP‐gp gene caused a significant increase in temephos toxicity (57%). In conclusion, we have demonstrated for the first time in insects that insecticide‐induced P‐gp expression can be involved in the modulation of insecticide efflux.  相似文献   

9.
Transport of new quinolone antibacterial agents (quinolones) at the blood-brain barrier (BBB) was studied in vitro by using immortalized rat brain capillary endothelial cells RBEC1, and in vivo by using the brain perfusion method in rats and multidrug-resistant mdr1a/1b gene-deficient mice. The permeability coefficient of grepafloxacin measured by brain perfusion was increased by an excess of unlabeled grepafloxacin, suggesting a participation of a saturable BBB efflux system. Uptake coefficients of [(14)C]grepafloxacin, [(14)C]sparfloxacin, and [(14)C]levofloxacin by RBEC1 cells at the steady state were increased in the presence of the unlabeled quinolones. The steady-state uptake of [(14)C]grepafloxacin was increased in the presence of various quinolones. Brain distributions of [(14)C]grepafloxacin and [(14)C]sparfloxacin evaluated in terms of the brain-to-plasma free concentration ratio in mdr1a/1b gene-deficient mice were significantly higher than those in wild-type mice, demonstrating an involvement of P-glycoprotein as the efflux transporter. Anionic compounds, including 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and genistein, increased the steady-state uptake of [(14)C]grepafloxacin by RBEC1 cells. Because [(14)C]grepafloxacin was transported by multidrug resistance-associated protein (MRP), in MRP1-overexpressing cells and because RBEC1 and primary cultured brain capillary endothelial cells expressed MRP1, this protein may be an additional efflux transporter for quinolones. Furthermore, the permeability coefficient of [(14)C]grepafloxacin across the BBB was increased by DIDS or in the absence of bicarbonate ions in the brain perfusion method. DIDS or bicarbonate ion did not affect MRP1 function. Accordingly, the brain distribution of quinolones is restricted by the action of multiple efflux transporters, including P-glycoprotein, MRP1, and an unknown anion exchange transporter.  相似文献   

10.
Statins, 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, are frequently used for the treatment of hypercholesterolemia. The present study aimed to examine the involvement of organic anion transporters in the efflux transport of pravastatin and pitavastatin across the blood-brain barrier (BBB). Transport studies using cDNA-transfected cells revealed that these statins are substrates of multispecific organic anion transporters expressed at the BBB (rOat3:Slc22a8 and rOatp2:Slco1a4). The efflux of these statins across the BBB was characterized using the brain efflux index method. The efflux clearance of pitavastatin across the BBB, obtained from the elimination rate constant and the distribution volume in the brain, was greater than that of pravastatin (364 versus 59 microl/min/g brain). The efflux of pravastatin and pitavastatin was saturable (apparent Km values: 18 and 5 muM, respectively) and inhibited by probenecid but unaffected by tetraethylammonium. Furthermore, an inhibitor of the efflux pathway for hydrophilic organic anions across the BBB (p-aminohippurate), and inhibitors of the efflux pathway for amphipathic organic anions (taurocholate and digoxin) inhibited the efflux of both statins. The degree of inhibition by p-aminohippurate was similar and partial for the efflux of pravastatin and pitavastatin. Taurocholate and digoxin completely inhibited the efflux of pitavastatin, whereas their effect was partial for the efflux of pravastatin. The results of the present study suggest the involvement of multiple transporters, including rOat3 and rOatp2, in the efflux transport of pravastatin and pitavastatin across the BBB, each making a different contribution.  相似文献   

11.
Tyrosine kinase inhibitor sunitinib (used in GIST, advanced RCC, and pancreatic neuroendocrine tumors) undergoes CYP3A4 metabolism and is an ABCB1B and ABCG2 efflux transporters substrate. We assessed the pharmacokinetic interaction with ibuprofen (an NSAID used by patients with cancer) in Balb/c male and female mice. Mice (study group) were coadministered (30 min apart) 30 mg/kg of ibuprofen and 60 mg/kg of sunitinib PO and compared with the control groups, which received sunitinib alone (60 mg/kg, PO). Sunitinib concentration in plasma, brain, kidney, and liver was measured by HPLC as scheduled and noncompartmental pharmacokinetic parameters estimated. In female control mice, sunitinib AUC0→∞ decreased in plasma (P < 0.05), was higher in liver and brain (P < 0.001), and lower in kidney (P < 0.001) vs. male control mice. After ibuprofen coadministration, female mice showed lower AUC0→∞ in plasma (P < 0.01), brain, liver, and kidney (all P < 0.001). However, in male mice, AUC0→∞ remained unchanged in plasma, increased in liver and kidney, and decreased in brain (all P < 0.001). The tissue‐to‐plasma AUC0→∞ ratio was similar between male and female control mice, but changed after ibuprofen coadministration: Male mice showed 1.6‐fold higher liver‐to‐plasma ratio (P < 0.001) while remained unchanged in female mice and in kidney (male and female mice) but decreased 55% in brain (P < 0.05). The tissue‐to‐plasma partial AUC ratio, the drug tissue targeting index, and the tissue‐plasma hysteresis‐like plots also showed sex‐based ibuprofen–sunitinib drug interaction differences. The results illustrate the relevance of this DDI on sunitinib pharmacokinetics and tissue uptake. These may be due to gender‐based P450 and efflux/transporters differences.  相似文献   

12.
13.
Pain is a dominant symptom associated with inflammatory conditions. Pharmacotherapy with opioids may be limited by poor blood-brain barrier (BBB) permeability. One approach that may improve central nervous system (CNS) delivery is to target endogenous BBB transporters such as organic anion-transporting polypeptide 1a4 (Oatp1a4). It is critical to identify and characterize biological mechanisms that enable peripheral pain/inflammation to "transmit" upstream signals and alter CNS drug transport processes. Our goal was to investigate, in vivo, BBB functional expression of Oatp1a4 in animals subjected to peripheral inflammatory pain. Inflammatory pain was induced in female Sprague-Dawley rats (200-250 g) by subcutaneous injection of 3% λ-carrageenan into the right hind paw; control animals were injected with 0.9% saline. In rat brain microvessels, Oatp1a4 expression was increased during acute pain/inflammation. Uptake of taurocholate and [d-penicillamine(2,5)]-enkephalin, two established Oatp substrates, was increased in animals subjected to peripheral pain, suggesting increased Oatp1a4-mediated transport. Inhibition of inflammatory pain with the anti-inflammatory drug diclofenac attenuated these changes in Oatp1a4 functional expression, suggesting that inflammation in the periphery can modulate BBB transporters. In addition, diclofenac prevented changes in the peripheral signaling cytokine transforming growth factor-β1 (TGF-β1) levels and brain microvascular TGF-β receptor expression induced by inflammatory pain. Pretreatment with the pharmacological TGF-β receptor inhibitor 4-[4-(1,3-benzodioxol-5-yl)-5-(2-pyridinyl)-1H-imidazol-2-yl]benzamide (SB431542) increased Oatp1a4 functional expression in λ-carrageenan-treated animals and saline controls, suggesting that TGF-β signaling is involved in Oatp1a4 regulation at the BBB. Our findings indicate that BBB transporters (i.e., Oatp1a4) can be targeted during drug development to improve CNS delivery of highly promising therapeutics.  相似文献   

14.
Role of multidrug transporters in pharmacoresistance to antiepileptic drugs   总被引:36,自引:0,他引:36  
Epilepsy, one of the most common neurologic disorders, is a major public health issue. Despite more than 20 approved antiepileptic drugs (AEDs), about 30% of patients are refractory to treatment. An important characteristic of pharmacoresistant epilepsy is that most patients with refractory epilepsy are resistant to several, if not all, AEDs, even though these drugs act by different mechanisms. This argues against epilepsy-induced alterations in specific drug targets as a major cause of pharmacoresistant epilepsy, but rather points to nonspecific and possibly adaptive mechanisms, such as decreased drug uptake into the brain by intrinsic or acquired over-expression of multidrug transporters in the blood-brain barrier (BBB). There is accumulating evidence demonstrating that multidrug transporters such as P-glycoprotein (PGP) and members of the multidrug resistance-associated protein (MRP) family are over-expressed in capillary endothelial cells and astrocytes in epileptogenic brain tissue surgically resected from patients with medically intractable epilepsy. PGP and MRPs in the BBB are thought to act as an active defense mechanism, restricting the penetration of lipophilic substances into the brain. A large variety of compounds, including many lipophilic drugs, are substrates for either PGP or MRPs or both. It is thus not astonishing that several AEDs, which have been made lipophilic to penetrate into the brain, seem to be substrates for multidrug transporters in the BBB. Over-expression of such transporters in epileptogenic tissue is thus likely to reduce the amount of drug that reaches the epileptic neurons, which would be a likely explanation for pharmacoresistance. PGP and MRPs can be blocked by specific inhibitors, which raises the option to use such inhibitors as adjunctive treatment for medically refractory epilepsy. However, although over-expression of multidrug transporters is a novel and reasonable hypothesis to explain multidrug resistance in epilepsy, further studies are needed to establish this concept. Furthermore, there are certainly other mechanisms of pharmacoresistance that need to be identified.  相似文献   

15.
We previously observed that ivermectin‐induced detoxification genes, including ATP binding cassette transporter C4 (PhABCC4) and cytochrome P450 6CJ1 (CYP6CJ1) were identified from body lice following a brief exposure to a sublethal dose of ivermectin using a non‐invasive induction assay. In this current study, the functional properties of PhABCC4 and CYP6CJ1 were investigated after expression in either X. laevis oocytes or using a baculovirus expression system, respectively. Efflux of [3H]‐9‐(2‐phosphonomethoxyethyl) adenine ([3H]‐PMEA), a known ABCC4 substrate in humans, was detected from PhABCC4 cRNA‐injected oocytes by liquid scintillation spectrophotometric analysis and PhABCC4 expression in oocytes was confirmed using ABC transporter inhibitors. Efflux was also determined to be ATP‐dependent. Using a variety of insecticides in a competition assay, only co‐injection of ivermectin and dichlorodiphenyltrichloroethane led to decreased efflux of [3H]‐PMEA. PhABCC4‐expressing oocytes also directly effluxed [3H]‐ivermectin, which increased over time. In addition, ivermectin appeared to be oxidatively metabolized and/or sequestered, although at low levels, following functional expression of CYP6CJ1 along with cytochrome P450 reductase in Sf9 cells. Our study suggests that PhABCC4 and perhaps CYP6CJ1 are involved in the Phase III and Phase I xenobiotic metabolism of ivermectin, respectively, and may play an important role in the evolution of ivermectin resistance in lice and other insects as field selection occurs.  相似文献   

16.

Essentials

  • Risk stratification for venous thromboembolism (VTE) in patients with brain tumors is challenging.
  • Patients with IDH1 wildtype and high podoplanin expression have a 6‐month VTE risk of 18.2%.
  • Patients with IDH1 mutation and no podoplanin expression have a 6‐month VTE risk of 0%.
  • IDH1 mutation and podoplanin overexpression in primary brain tumors appear to be exclusive.

Summary

Background

Venous thromboembolism (VTE) is a frequent complication in primary brain tumor patients. Independent studies revealed that podoplanin expression in brain tumors is associated with increased VTE risk, whereas the isocitrate dehydrogenase 1 (IDH1) mutation is associated with very low VTE risk.

Objectives

To investigate the interrelation between intratumoral podoplanin expression and IDH1 mutation, and their mutual impact on VTE development.

Patients/Methods

In a prospective cohort study, intratumoral IDH1 R132H mutation and podoplanin were determined in brain tumor specimens (mainly glioma) by immunohistochemistry. The primary endpoint of the study was symptomatic VTE during a 2‐year follow‐up.

Results

All brain tumors that expressed podoplanin to a medium‐high extent showed also an IDH1 wild‐type status. A score based on IDH1 status and podoplanin expression levels allowed prediction of the risk of VTE. Patients with wild‐type IDH1 brain tumors and high podoplanin expression had a significantly increased VTE risk compared with those with mutant IDH1 tumors and no podoplanin expression (6‐month risk 18.2% vs. 0%).

Conclusions

IDH1 mutation and podoplanin overexpression seem to be exclusive. Although brain tumor patients with IDH1 mutation are at very low risk of VTE, the risk of VTE in patients with IDH1 wild‐type tumors is strongly linked to podoplanin expression levels.  相似文献   

17.
18.
The objective of the present study was to examine the time course and concentration dependence of modulation of P-glycoprotein (P-gp) activity in the blood-brain barrier (BBB) with consequent influence on substrate uptake into brain tissue. Potential P-gp inducers (rifampin and morphine) were administered subchorionically to P-gp-competent [mdr1a(+/+)] mice to induce P-gp expression in brain; the impact of rifampin pretreatment on brain penetration of verapamil also was evaluated with an in situ brain perfusion technique. In addition, the effect of single-dose rifampin on P-gp BBB transport activity was assessed with brain perfusion using verapamil and quinidine as model P-gp substrates. Chronic exposure to rifampin or morphine induced P-gp expression in mouse brain to a modest extent. However, single-dose rifampin treatment increased the brain uptake of verapamil and quinidine in mdr1a(+/+) mice in a dose- and concentration-dependent manner, consistent with P-gp inhibition. Maximum inhibition of P-gp-mediated efflux of verapamil by rifampin pretreatment in vivo (150 mg/kg) was approximately 55%, whereas there was only approximately 12% inhibition of P-gp-mediated efflux of quinidine at that rifampin dose. Coperfusion of rifampin at a concentration of 500 microM abolished P-gp-mediated efflux of verapamil at the BBB. However, only approximately 40% inhibition of P-gp-mediated efflux of quinidine was observed with coperfusion of rifampin, even at a 2-fold higher rifampin concentration (1000 microM). The present studies demonstrate that P-gp function at the BBB can be modulated by rifampin in a dose- and concentration-dependent manner. The degree to which rifampin inhibits P-gp-mediated transport is dependent on the substrate molecule.  相似文献   

19.
Objective. The purpose of this study was to use enhanced magnetic resonance imaging (MRI) to evaluate the changes of blood‐brain barrier (BBB) permeability in target and nontarget areas of rabbit brains after BBB disruption induced by focused ultrasound‐mediated microbubble destruction. Methods. Focused ultrasound (1.1 MHz) in combination with a sulfur hexafluoride microbubble contrast agent was applied at 2 or 3 target locations in 1 hemisphere of 29 rabbit brains to induce BBB disruption. The opposite side was used as a control, and a normal group contained another 14 rabbits that did not undergo sonication. The MRI signal intensity enhancement in the target locations was detected to evaluate gadolinium (Ga) retention after sonication, and extravasation of Evans blue (EB) dye was detected to evaluate the BBB disruption quantitatively at different times after sonication (0.5, 2, 4, 6, 8, and 24 hours and 1 week). Results. Compared with the control group, Ga retention, changes in EB content, and extravasation in the cerebral cortex of the sonicated group peaked at 2 hours (P < .01) and decreased to the normal level 8 hours after sonication (P < .01). There was no visual evidence of injury or hemorrhage within the brain parenchyma of all of the rabbits' treated hemispheres. Conclusions. Magnetic resonance imaging–guided focused ultrasound can disrupt the BBB reversibly and can allow targeted delivery of some molecules that normally cannot cross the BBB to locations in the brain. Changes in BBB permeability develop within minutes after sonication as a result of a combination of factors. The BBB has a self‐repairing characteristic, which is activated after ultrasound sonication. This may offer an improvement in future clinical applications for central nervous system diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号