首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Malaria is a tropical disease, leading to around half a million deaths annually. Antimalarials such as quinolines are crucial to fight against malaria, but malaria control is extremely challenged by the limited pipeline of effective pharmaceuticals against drug-resistant strains of Plasmodium falciparum which are resistant toward almost all currently accessible antimalarials. To tackle the growing resistance, new antimalarial drugs are needed urgently. Hybrid molecules which contain two or more pharmacophores have the potential to overcome the drug resistance, and hybridization of quinoline privileged antimalarial building block with other antimalarial pharmacophores may provide novel molecules with enhanced in vitro and in vivo activity against drug-resistant (including multidrug-resistant) P falciparum. In recent years, numerous of quinoline hybrids were developed, and their activities against a panel of drug-resistant P falciparum strains were screened. Some of quinoline hybrids were found to possess promising in vitro and in vivo potency. This review emphasized quinoline hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant P falciparum, covering articles published between 2010 and 2019.  相似文献   

2.
Little is known about resistance of Plasmodium falciparum to antimalarials in Sahelian countries. Here we investigated the drug susceptibilities of fresh isolates collected in Niger post-deployment of artemisinin-based combination therapies (ACTs). We found that the parasites remained highly susceptible to new (dihydroartemisinin, lumefantrine, pyronaridine, and piperaquine) and conventional (amodiaquine and chloroquine) antimalarial drugs. The introduction of ACTs in 2005 and their further deployment nationwide have therefore not resulted in a decrease in P. falciparum susceptibilities to these antimalarials.  相似文献   

3.
Cambodia''s first-line artemisinin combination therapy, dihydroartemisinin-piperaquine (DHA-PPQ), is no longer sufficiently curative against multidrug-resistant Plasmodium falciparum malaria at some Thai-Cambodian border regions. We report recent (2008 to 2013) drug resistance trends in 753 isolates from northern, western, and southern Cambodia by surveying for ex vivo drug susceptibility and molecular drug resistance markers to guide the selection of an effective alternative to DHA-PPQ. Over the last 3 study years, PPQ susceptibility declined dramatically (geomean 50% inhibitory concentration [IC50] increased from 12.8 to 29.6 nM), while mefloquine (MQ) sensitivity doubled (67.1 to 26 nM) in northern Cambodia. These changes in drug susceptibility were significantly associated with a decreased prevalence of P. falciparum multidrug resistance 1 gene (Pfmdr1) multiple copy isolates and coincided with the timing of replacing artesunate-mefloquine (AS-MQ) with DHA-PPQ as the first-line therapy. Widespread chloroquine resistance was suggested by all isolates being of the P. falciparum chloroquine resistance transporter gene CVIET haplotype. Nearly all isolates collected from the most recent years had P. falciparum kelch13 mutations, indicative of artemisinin resistance. Ex vivo bioassay measurements of antimalarial activity in plasma indicated 20% of patients recently took antimalarials, and their plasma had activity (median of 49.8 nM DHA equivalents) suggestive of substantial in vivo drug pressure. Overall, our findings suggest DHA-PPQ failures are associated with emerging PPQ resistance in a background of artemisinin resistance. The observed connection between drug policy changes and significant reduction in PPQ susceptibility with mitigation of MQ resistance supports reintroduction of AS-MQ, in conjunction with monitoring of the P. falciparum mdr1 copy number, as a stop-gap measure in areas of DHA-PPQ failure.  相似文献   

4.
Presently, the arsenal of antimalarial drugs is limited and needs to be replenished. We evaluated the potential antimalarial activity of two water-soluble derivatives of nocathiacin (BMS461996 and BMS411886) against the asexual blood stages of Plasmodium falciparum. Nocathiacins are a thiazolyl peptide group of antibiotics, are structurally related to thiostrepton, have potent activity against a wide spectrum of multidrug-resistant Gram-positive bacteria, and inhibit protein synthesis. The in vitro growth inhibition assay was done using three laboratory strains of P. falciparum displaying various levels of chloroquine (CQ) susceptibility. Our results indicate that BMS461996 has potent antimalarial activity and inhibits parasite growth with mean 50% inhibitory concentrations (IC50s) of 51.55 nM for P. falciparum 3D7 (CQ susceptible), 85.67 nM for P. falciparum Dd2 (accelerated resistance to multiple drugs [ARMD]), and 99.44 nM for P. falciparum K1 (resistant to CQ, pyrimethamine, and sulfadoxine). Similar results at approximately 7-fold higher IC50s were obtained with BMS411886 than with BMS461996. We also tested the effect of BMS491996 on gametocytes; our results show that at a 20-fold excess of the mean IC50, gametocytes were deformed with a pyknotic nucleus and growth of stage I to IV gametocytes was arrested. This preliminary study shows a significant potential for nocathiacin analogues to be developed as antimalarial drug candidates and to warrant further investigation.  相似文献   

5.
Polymorphism in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) was shown to cause chloroquine resistance. In this report, we examined the antimalarial potential of novel 3-halo chloroquine derivatives (3-chloro, 3-bromo, and 3-iodo) against chloroquine-susceptible and -resistant P. falciparum. All three derivatives inhibited the proliferation of P. falciparum; with 3-iodo chloroquine being most effective. Moreover, 3-iodo chloroquine was highly effective at potentiating and reversing chloroquine toxicity of drug-susceptible and -resistant P. falciparum.  相似文献   

6.
Despite declining numbers of cases and deaths, malaria remains a major public health problem in many parts of the world. Today, case management relies heavily on a single class of antimalarial compounds: artemisinins. Hence, development of resistance against artemisinins may destroy current malaria control strategies. Beyond malaria control are elimination and eradication programs that will require drugs with good activity against acute infection but also with preventive and transmission-blocking properties. Consequently, new antimalarials are needed not only to ensure malaria control but also for elimination and eradication efforts. In this study, we introduce peptido sulfonyl fluorides (PSF) as a new class of compounds with antiplasmodial activity. We show that PSF target the plasmodial proteasome and act on all asexual stages of the intraerythrocytic cycle and on gametocytes. PSF showed activities at concentrations as low as 20 nM against multidrug-resistant and chloroquine-sensitive Plasmodium falciparum laboratory strains and clinical isolates from Gabon. Structural requirements for activity were identified, and cytotoxicity in human HeLa or HEK 293 cells was low. The lead PSF PW28 suppressed growth of Plasmodium berghei in vivo but showed signs of toxicity in mice. Considering their modular structure and broad spectrum of activity against different stages of the plasmodial life cycle, proteasome inhibitors based on PSF have a great potential for further development as preclinical candidate compounds with improved species-specific activity and less toxicity.  相似文献   

7.
Current antimalarials are under continuous threat due to the relentless development of drug resistance by malaria parasites. We previously reported promising in vitro parasite-killing activity with the histone methyltransferase inhibitor BIX-01294 and its analogue TM2-115. Here, we further characterize these diaminoquinazolines for in vitro and in vivo efficacy and pharmacokinetic properties to prioritize and direct compound development. BIX-01294 and TM2-115 displayed potent in vitro activity, with 50% inhibitory concentrations (IC50s) of <50 nM against drug-sensitive laboratory strains and multidrug-resistant field isolates, including artemisinin-refractory Plasmodium falciparum isolates. Activities against ex vivo clinical isolates of both P. falciparum and Plasmodium vivax were similar, with potencies of 300 to 400 nM. Sexual-stage gametocyte inhibition occurs at micromolar levels; however, mature gametocyte progression to gamete formation is inhibited at submicromolar concentrations. Parasite reduction ratio analysis confirms a high asexual-stage rate of killing. Both compounds examined displayed oral efficacy in in vivo mouse models of Plasmodium berghei and P. falciparum infection. The discovery of a rapid and broadly acting antimalarial compound class targeting blood stage infection, including transmission stage parasites, and effective against multiple malaria-causing species reveals the diaminoquinazoline scaffold to be a very promising lead for development into greatly needed novel therapies to control malaria.  相似文献   

8.
The in vitro activity of ferroquine (FQ) (SR97193), a 4-aminoquinoline antimalarial compound that contains a ferrocenic nucleus, against 15 Plasmodium falciparum strains was assessed and compared with those of chloroquine (CQ), quinine (QN), monodesethylamodiaquine (MDAQ), and mefloquine (MQ). These 15 strains were genotyped for polymorphisms in quinoline resistance-associated genes such as Pfcrt, Pfmdr1, Pfmrp, and Pfnhe-1. FQ was highly active against CQ-resistant parasites or in parasites with reduced susceptibility to QN, MDAQ, or MQ. Encouragingly, we did not find a correlation between responses to FQ and those to other quinoline drugs. These results suggest that no cross-resistance exits between FQ and CQ or quinoline antimalarial drugs. Mutations in codons 74, 75, 76, 220, 271, 326, 356, and 371 of the Pfcrt gene; codons 86, 184, 1034, 1042, and 1246 of the Pfmdr1 gene; and codons 191 and 437 of the Pfmrp gene were not significantly associated with P. falciparum susceptibility to FQ. Neither the number of ms4760 DNNND or DDNHNDNHNN repeats in Pfnhe-1 nor the profile of ms4760 was significantly associated with the FQ in vitro response. These data suggest the FQ may not interact with transport proteins in quinoline-resistant parasites. The present results justify further clinical trials of FQ in multidrug resistance areas.  相似文献   

9.
The decreasing effectiveness of antimalarial therapy due to drug resistance necessitates constant efforts to develop new drugs. Artemisinin derivatives are the most recent drugs that have been introduced and are considered the first line of treatment, but there are already indications of Plasmodium falciparum resistance to artemisinins. Consequently, drug combinations are recommended for prevention of the induction of resistance. The research here demonstrates the effects of novel combinations of the new artemisinin derivative, artemisone, a recently described 10-alkylamino artemisinin derivative with improved antimalarial activity and reduced neurotoxicity. We here investigate its ability to kill P. falciparum in a high-throughput in vitro assay and to protect mice against lethal cerebral malaria caused by Plasmodium berghei ANKA when used alone or in combination with established antimalarial drugs. Artemisone effects against P. falciparum in vitro were synergistic with halofantrine and mefloquine, and additive with 25 other drugs, including chloroquine and doxycycline. The concentrations of artemisone combinations that were toxic against THP-1 cells in vitro were much higher than their effective antimalarial concentration. Artemisone, mefloquine, chloroquine, or piperaquine given individually mostly protected mice against cerebral malaria caused by P. berghei ANKA but did not prevent parasite recrudescence. Combinations of artemisone with any of the other three drugs did completely cure most mice of malaria. The combination of artemisone and chloroquine decreased the ratio of proinflammatory (gamma interferon, tumor necrosis factor) to anti-inflammatory (interleukin 10 [IL-10], IL-4) cytokines in the plasma of P. berghei-infected mice. Thus, artemisone in combinations with other antimalarial drugs might have a dual action, both killing parasites and limiting the potentially deleterious host inflammatory response.  相似文献   

10.
Plasmodium falciparum has the capacity to escape the actions of essentially all antimalarial drugs. ATP-binding cassette (ABC) transporter proteins are known to cause multidrug resistance in a large range of organisms, including the Apicomplexa parasites. P. falciparum genome analysis has revealed two genes coding for the multidrug resistance protein (MRP) type of ABC transporters: Pfmrp1, previously associated with decreased parasite drug susceptibility, and the poorly studied Pfmrp2. The role of Pfmrp2 polymorphisms in modulating sensitivity to antimalarial drugs has not been established. We herein report a comprehensive account of the Pfmrp2 genetic variability in 46 isolates from Thailand. A notably high frequency of 2.8 single nucleotide polymorphisms (SNPs)/kb was identified for this gene, including some novel SNPs. Additionally, we found that Pfmrp2 harbors a significant number of microindels, some previously not reported. We also investigated the potential association of the identified Pfmrp2 polymorphisms with altered in vitro susceptibility to several antimalarials used in artemisinin-based combination therapy and with parasite clearance time. Association analysis suggested Pfmrp2 polymorphisms modulate the parasite''s in vitro response to quinoline antimalarials, including chloroquine, piperaquine, and mefloquine, and association with in vivo parasite clearance. In conclusion, our study reveals that the Pfmrp2 gene is the most diverse ABC transporter known in P. falciparum with a potential role in antimalarial drug resistance.  相似文献   

11.
The antimalarial activity and pharmacology of a series of phenylthiazolyl-bearing hydroxamate-based histone deacetylase inhibitors (HDACIs) was evaluated. In in vitro growth inhibition assays approximately 50 analogs were evaluated against four drug resistant strains of Plasmodium falciparum. The range of 50% inhibitory concentrations (IC50s) was 0.0005 to >1 μM. Five analogs exhibited IC50s of <3 nM, and three of these exhibited selectivity indices of >600. The most potent compound, WR301801 (YC-2-88) was shown to cause hyperacetylation of P. falciparum histones, which is a marker for HDAC inhibition in eukaryotic cells. The compound also inhibited malarial and mammalian HDAC activity in functional assays at low nanomolar concentrations. WR301801 did not exhibit cures in P. berghei-infected mice at oral doses as high as 640 mg/kg/day for 3 days or in P. falciparum-infected Aotus lemurinus lemurinus monkeys at oral doses of 32 mg/kg/day for 3 days, despite high relative bioavailability. The failure of monotherapy in mice may be due to a short half-life, since the compound was rapidly hydrolyzed to an inactive acid metabolite by loss of its hydroxamate group in vitro (half-life of 11 min in mouse microsomes) and in vivo (half-life in mice of 3.5 h after a single oral dose of 50 mg/kg). However, WR301801 exhibited cures in P. berghei-infected mice when combined at doses of 52 mg/kg/day orally with subcurative doses of chloroquine. Next-generation HDACIs with greater metabolic stability than WR301801 may be useful as antimalarials if combined appropriately with conventional antimalarial drugs.  相似文献   

12.
OBJECTIVES: The in vitro and in vivo efficacy and drug-drug interactions of the novel semi-synthetic endoperoxide artemisone with standard antimalarials were investigated in order to provide the basis for the selection of the best partner drug. METHODS: Antimalarial activity and drug interactions were evaluated in vitro against Plasmodium falciparum by the incorporation of [(3)H]hypoxanthine. In vivo efficacy and drug interactions were assessed using the standard 4-day Peters' test. RESULTS: Artemisone was 10 times more potent than artesunate in vitro against a panel of 12 P. falciparum strains, independent of their susceptibility profile to antimalarial drugs, and consistently 4 to 10 times more potent than artesunate in rodent models against drug-susceptible and primaquine- or sulfadoxine/pyrimethamine-resistant Plasmodium berghei lines and chloroquine- or artemisinin-resistant lines of Plasmodium yoelii. Slight antagonistic trends were found between artemisone and chloroquine, amodiaquine, tafenoquine, atovaquone or pyrimethamine and additive to slight synergistic trends with artemisone and mefloquine, lumefantrine or quinine. Various degrees of synergy were observed in vivo between artemisone and mefloquine, chloroquine or clindamycin. CONCLUSIONS: These results confirm the increased efficacy of artemisone over artesunate against multidrug-resistant P. falciparum and provide the basis for the selection of potential partner drugs for future deployment in areas of multidrug-resistant malaria. Artemisone represents an important addition to the repertoire of artemisinin combination therapies currently in use, as it has enhanced antimalarial activity, improved bioavailability and stability over current endoperoxides.  相似文献   

13.
The high incidence of malaria and drug-resistant strains of Plasmodium have turned this disease into a problem of major health importance. One of the approaches used to control it is to search for new antimalarial agents, such as quinoline derivates. This class of compounds composes a broad group of antimalarial agents, which are largely employed, and inhibits the formation of β-haematin (malaria pigment), which is lethal to the parasite. More specifically, 4-aminoquinoline derivates represent potential sources of antimalarials, as the example of chloroquine, the most used antimalarial worldwide. In order to assess antimalarial activity, 12 4-aminoquinoline derived drugs were obtained and some of these derivatives were used to obtain platinum complexes platinum (II). These compounds were tested in vivo in a murine model and revealed remarkable inhibition of parasite multiplication values, whose majority ranged from 50 to 80%. In addition they were not cytotoxic. Thus, they may be object of further research for new antimalarial agents.  相似文献   

14.
Myxobacteria are Gram-negative soil-dwelling bacteria belonging to the phylum Proteobacteria. They are a rich source of promising compounds for clinical application, such as epothilones for cancer therapy and several new antibiotics. In the course of a bioactivity screening program of secondary metabolites produced by Sorangium cellulosum strains, the macrolide chlorotonil A was found to exhibit promising antimalarial activity. Subsequently, we evaluated chlorotonil A against Plasmodium falciparum laboratory strains and clinical isolates from Gabon. Chlorotonil A was highly active, with a 50% inhibitory concentration between 4 and 32 nM; additionally, no correlations between the activities of chlorotonil A and artesunate (rho, 0.208) or chloroquine (rho, −0.046) were observed. Per os treatment of Plasmodium berghei-infected mice with four doses of as little as 36 mg of chlorotonil A per kg of body weight led to the suppression of parasitemia with no obvious signs of toxicity. Chlorotonil A acts against all stages of intraerythrocytic parasite development, including ring-stage parasites and stage IV to V gametocytes, and it requires only a very short exposure to the parasite to exert its antimalarial action. Conclusively, chlorotonil A has an exceptional and unprecedented profile of action and represents an urgently required novel antimalarial chemical scaffold. Therefore, we propose it as a lead structure for further development as an antimalarial chemotherapeutic.  相似文献   

15.
Atorvastatin (AVA) is a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. AVA exposure resulted in the reduced in vitro growth of 22 Plasmodium falciparum strains, with the 50% inhibitory concentrations (IC50s) ranging from 2.5 μM to 10.8 μM. A significant positive correlation was found between the strains’ responses to AVA and mefloquine (r = 0.553; P = 0.008). We found no correlation between the responses to AVA and to chloroquine, quinine, monodesethylamodiaquine, lumefantrine, dihydroartemisinin, atovaquone, or doxycycline. These data could suggest that the mechanism of AVA uptake and/or the mode of action of AVA is different from those for other antimalarial drugs. The IC50s for AVA were unrelated to the occurrence of mutations in the transport protein genes involved in quinoline antimalarial drug resistance, such as the P. falciparum crt, mdr1, mrp, and nhe-1 genes. Therefore, AVA can be ruled out as a substrate for the transport proteins (CRT, Pgh1, and MRP) and is not subject to the pH modification induced by the P. falciparum NHE-1 protein. The absence of in vitro cross-resistance between AVA and chloroquine, quinine, mefloquine, monodesethylamodiaquine, lumefantrine, dihydroartemisinin, atovaquone, and doxycycline argues that these antimalarial drugs could potentially be paired with AVA as a treatment for malaria. In conclusion, the present observations suggest that AVA is a good candidate for further studies on the use of statins in association with drugs known to have activities against the malaria parasite.During the past 20 years, many strains of Plasmodium falciparum have become resistant to chloroquine and other antimalarial drugs (20). This has prompted a search for an effective alternative antimalarial drug with minimal side effects. The emergence and spread of parasites resistant to antimalarial drugs have caused an urgent need for the discovery and development of novel compounds.Statins are 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors. They comprise a family of lipid-lowering drugs that are currently used to control hyperlipidemia and are considered useful for the prevention of cardiovascular events. Apart from the cholesterol-lowering activities of statins, their immunomodulation and pleiotropic effects may significantly affect infection-related survival (13, 28). There is increasing evidence that statins may be useful for the prevention and treatment of infections (11). Lovastatin reduced the intracellular growth of Salmonella enterica serovar Typhimurium in cultured macrophages, as did atorvastatin (AVA) in a mouse model (5). Lovastatin also reduced the level of in vitro infection due to Coxiella burnetii (4) and additionally reduced the growth of Candida albicans by inhibiting the sterol pathway (27).Statins were found to interfere severely with the growth of protozoan parasites of the family Trypanosomatidae, such as Trypanosoma cruzi, and various Leishmania species (32). HMG-CoA reductase has been detected in Trypanosoma and Leishmania (7).Furthermore, statins have been shown to have in vitro antimalarial activities, even though the presence of an HMG-CoA sequence homologous with other protozoal HMG-CoA protein sequences was not revealed by a BLASTX analysis of the P. falciparum sequence. The in vitro exposure of P. falciparum to 120 or 240 μM mevastatin inhibited parasite growth (8, 24). Lovastatin was reported to reduce the in vitro growth of P. falciparum (14). AVA was found to be 10-fold more active against six P. falciparum strains than other statins when it was applied at concentrations that ranged from 5 to 12 μM (26).In patients with cardiovascular risk factors and chronic kidney disease, preventative treatment with statins reduced the incidence of sepsis. In experimental models of sepsis, simvastatin prolonged the survival time of mice. Statins have been demonstrated to have effects against severe sepsis (28). These conditions share common physiopathological features, especially with regard to the pathology of the endothelium. Indeed, severe malaria is a type of severe sepsis. Statins such as lovastatin have been shown to exert their effects on blood platelets (22), which interfere with cerebral malaria (6), and AVA was found to play a pleiotropic role, such as reducing the level of inflammation (28). A number of works have provided data supporting the roles of immune status, the inflammatory response, and the genetic background of the host in the development of malaria.AVA may be a substrate for phosphoglycoprotein (Pgp), an efflux protein in cancer cells (17, 31). Several antimalarial drugs, e.g., the quinolines, were shown to be substrates for the multidrug resistance (MDR)-like proteins involved in P. falciparum: Pgh1 or P. falciparum multidrug resistance protein 1 (PfMDR1) and the P. falciparum MDR protein (PfMRP) (15, 25).The objectives of this study were to (i) assess the in vitro activity of AVA against 22 strains of P. falciparum from a large number of countries and with different susceptibility profiles; (ii) evaluate the in vitro cross-resistance of AVA with chloroquine (CQ), quinine (QN), monodesethylamodiaquine (MDAQ), mefloquine (MQ), lumefantrine (LMF), dihydroartemisinin (DHA), atovaquone (ATV), and doxycycline (DOX); and (iii) determine whether AVA could be a substrate for P. falciparum MDR-like proteins, such as Pgh1 and PfMRP, or transporters involved in drug resistance, such as the P. falciparum CQ resistance transporter (PfCRT) and the P. falciparum sodium-hydrogen exchanger (PfNHE-1), by the identification of genetic polymorphisms.  相似文献   

16.
Plasmodium falciparum gametocytes are not associated with clinical symptoms, but they are responsible for transmitting the pathogen to mosquitoes. Therefore, gametocytocidal interventions are important for malaria control and resistance containment. Currently available drugs and vaccines are not well suited for that purpose. Several dyes have potent antimicrobial activity, but their use against gametocytes has not been investigated systematically. The gametocytocidal activity of nine synthetic dyes and four control compounds was tested against stage V gametocytes of the laboratory strain 3D7 and three clinical isolates of P. falciparum with a bioluminescence assay. Five of the fluorescent dyes had submicromolar 50% inhibitory concentration (IC50) values against mature gametocytes. Three mitochondrial dyes, MitoRed, dihexyloxacarbocyanine iodide (DiOC6), and rhodamine B, were highly active (IC50s < 200 nM). MitoRed showed the highest activity against gametocytes, with IC50s of 70 nM against 3D7 and 120 to 210 nM against clinical isolates. All compounds were more active against the laboratory strain 3D7 than against clinical isolates. In particular, the endoperoxides artesunate and dihydroartemisinin showed a 10-fold higher activity against 3D7 than against clinical isolates. In contrast to all clinically used antimalarials, several fluorescent dyes had surprisingly high in vitro activity against late-stage gametocytes. Since they also act against asexual blood stages, they shall be considered starting points for the development of new antimalarial lead compounds.  相似文献   

17.
With increasing resistance to existing antimalarials, there is an urgent need to discover new drugs at affordable prices for countries in which malaria is endemic. One approach to the development of new antimalarial drugs is to improve upon existing antimalarial agents, such as the tetracyclines. Tetracyclines exhibit potent, albeit relatively slow, action against malaria parasites, and doxycycline is used for both treatment (with other agents) and prevention of malaria. We synthesized 18 novel 7-position modified tetracycline derivatives and screened them for activity against cultured malaria parasites. Compounds with potent in vitro activity and other favorable drug properties were further tested in a rodent malaria model. Ten compounds inhibited the development of cultured Plasmodium falciparum with a 50% inhibitory concentration (IC50) after 96 h of incubation of <30 nM, demonstrating activity markedly superior to that of doxycycline (IC50 at 96 h of 320 nM). Most compounds showed little mammalian cell cytotoxicity and no evidence of in vitro phototoxicity. In a murine Plasmodium berghei model, 13 compounds demonstrated improved activity relative to that of doxycycline. In summary, 7-position modified tetracyclines offer improved activity against malaria parasites compared to doxycycline. Optimized compounds may allow lower doses for treatment and chemoprophylaxis. If safety margins are adequate, dosing in children, the group at greatest risk for malaria in countries in which it is endemic, may be feasible.  相似文献   

18.
Malaria-associated morbidity and mortality are increasing because of widespread resistance to one of the safest and least expensive antimalarials, chloroquine. The availability of an inexpensive agent that is capable of reversing chloroquine resistance would have a major impact on malaria treatment worldwide. The interaction of nonylphenolethoxylates (NPEs, commercially available synthetic surfactants) with drug-resistant Plasmodium falciparum was examined to determine if NPEs inhibited the growth of the parasites and if NPEs could sensitize resistant parasites to chloroquine. NPEs inhibited the development of the parasite when present in the low- to mid-micromolar range (5 to 90 microM), indicating that they possess antimalarial activity. Further, the presence of <10 microM concentrations of NPEs caused the 50% inhibitory concentrations for chloroquine-resistant lines to drop to levels (< or =12 nM) observed for sensitive lines and generally considered to be achievable with treatment courses of chloroquine. Long-chain (>30 ethoxylate units) NPEs were found to be most active in P. falciparum, which contrasts with previously observed maximal activity of short-chain ( approximately 9 ethoxylate units) NPEs in multidrug-resistant mammalian cell lines. NPEs may be attractive chloroquine resistance reversal agents since they are inexpensive and may be selectively directed against P. falciparum without inhibiting mammalian tissue P glycoproteins. Antimalarial preparations that include these agents may prolong the effective life span of chloroquine and other antimalarials.  相似文献   

19.
Most current antimalarials for treatment of clinical Plasmodium falciparum malaria fall into two broad drug families and target the food vacuole of the trophozoite stage. No antimalarials have been shown to target the brief extracellular merozoite form of blood-stage malaria. We studied a panel of 12 drugs, 10 of which have been used extensively clinically, for their invasion, schizont rupture, and growth-inhibitory activity using high-throughput flow cytometry and new approaches for the study of merozoite invasion and early intraerythrocytic development. Not surprisingly, given reported mechanisms of action, none of the drugs inhibited merozoite invasion in vitro. Pretreatment of erythrocytes with drugs suggested that halofantrine, lumefantrine, piperaquine, amodiaquine, and mefloquine diffuse into and remain within the erythrocyte and inhibit downstream growth of parasites. Studying the inhibitory activity of the drugs on intraerythrocytic development, schizont rupture, and reinvasion enabled several different inhibitory phenotypes to be defined. All drugs inhibited parasite replication when added at ring stages, but only artesunate, artemisinin, cycloheximide, and trichostatin A appeared to have substantial activity against ring stages, whereas the other drugs acted later during intraerythrocytic development. When drugs were added to late schizonts, only artemisinin, cycloheximide, and trichostatin A were able to inhibit rupture and subsequent replication. Flow cytometry proved valuable for in vitro assays of antimalarial activity, with the free merozoite population acting as a clear marker for parasite growth inhibition. These studies have important implications for further understanding the mechanisms of action of antimalarials, studying and evaluating drug resistance, and developing new antimalarials.  相似文献   

20.
Forty percent of the world''s population is threatened by malaria, which is caused by Plasmodium parasites and results in an estimated 200 million clinical cases and 650,000 deaths each year. Drug resistance has been reported for all commonly used antimalarials and has prompted screens to identify new drug candidates. However, many of these new candidates have not been evaluated against the parasite stage responsible for transmission, gametocytes. If Plasmodium falciparum gametocytes are not eliminated, patients continue to spread malaria for weeks after asexual parasite clearance. Asymptomatic individuals can also harbor gametocyte burdens sufficient for transmission, and a safe, effective gametocytocidal agent could also be used in community-wide malaria control programs. Here, we identify 15 small molecules with nanomolar activity against late-stage gametocytes. Fourteen are diaminonaphthoquinones (DANQs), and one is a 2-imino-benzo[d]imidazole (IBI). One of the DANQs identified, SJ000030570, is a lead antimalarial candidate. In contrast, 94% of the 650 compounds tested are inactive against late-stage gametocytes. Consistent with the ineffectiveness of most approved antimalarials against gametocytes, of the 19 novel compounds with activity against known anti-asexual-stage targets, only 3 had any strong effect on gametocyte viability. These data demonstrate the distinct biology of the transmission stages and emphasize the importance of screening for gametocytocidal activity. The potent gametocytocidal activity of DANQ and IBI coupled with their efficacy against asexual parasites provides leads for the development of antimalarials with the potential to prevent both the symptoms and the spread of malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号