首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We describe 94 pathogenic NF1 gene alterations in a cohort of 97 Austrian neurofibromatosis type 1 patients meeting the NIH criteria. All mutations were fully characterized at the genomic and mRNA levels. Over half of the patients carried novel mutations, and only a quarter carried recurrent minor-lesion mutations at 16 mutational warm spots. The remaining patients carried NF1 microdeletions (7%) and rare recurring mutations. Thirty-six of the mutations (38%) altered pre-mRNA splicing, and fall into five groups: exon skipping resulting from mutations at authentic splice sites (type I), cryptic exon inclusion caused by deep intronic mutations (type II), creation of de novo splice sites causing loss of exonic sequences (type III), activation of cryptic splice sites upon authentic splice-site disruption (type IV), and exonic sequence alterations causing exon skipping (type V). Extensive in silico analyses of 37 NF1 exons and surrounding intronic sequences suggested that the availability of a cryptic splice site combined with a strong natural upstream 3' splice site (3'ss)is the main determinant of cryptic splice-site activation upon 5' splice-site disruption. Furthermore, the exonic sequences downstream of exonic cryptic 5' splice sites (5'ss) resemble intronic more than exonic sequences with respect to exonic splicing enhancer and silencer density, helping to distinguish between exonic cryptic and pseudo 5'ss. This study provides valuable predictors for the splicing pathway used upon 5'ss mutation, and underscores the importance of using RNA-based techniques, together with methods to identify microdeletions and intragenic copy-number changes, for effective and reliable NF1 mutation detection.  相似文献   

2.
3.
A considerable fraction of mutations associated with hereditary disorders and cancers affect splicing. Some of them cause exon skipping or the inclusion of an additional exon, whereas others lead to the inclusion of intronic sequences or deletion of exonic sequences through the activation of cryptic splice sites. We focused on the latter cases and have designed a series of vectors that express modified U7 small nuclear RNAs (snRNAs) containing a sequence antisense to the cryptic splice site. Three cases of such mutation were investigated in this study. In two of them, which occurred in the PTCH1 and BRCA1 genes, canonical splice donor sites had been partially impaired by mutations that activated nearby intronic cryptic splice donor sites. Another mutation found in exonic region in CYP11A created a novel splice donor site. Transient expression of the engineered U7 snRNAs in HeLa cells restored correct splicing in a sequence-specific and dose-dependent manner in the former two cases. In contrast, the third case, in which the cryptic splice donor site in the exonic sequence was activated, the expression of modified U7 snRNA resulted in exon skipping. The correction of aberrant splicing by suppressing intronic cryptic splice sites with modified U7 is expected be a promising alternative to gene replacement therapy. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
Walker-Warburg syndrome, muscle-eye-brain disease, Fukuyama congenital muscular dystrophy, congenital muscular dystrophy type 1C, and congenital muscular dystrophy type 1D are overlapping clinical entities belonging to a subgroup of the congenital muscular dystrophies (CMD), collectively designated dystroglycanopathies, in which the common underlying defect is hypoglycosylation of alfa-dystroglycan. Currently, six different genes are known to be implicated in these diseases: POMT1, POMT2, POMGNT1, FCMD, FKRP, and LARGE. We report the molecular characterization of a patient presenting clinical features of CMD and reduced immunostaining for alfa-dystroglycan in muscle. Three candidate genes (FCMD, POMT1 and POMGNT1) were analyzed, and a total of 18 sequence variants were detected: 15 polymorphisms in POMT1 [including three unreported single nucleotide polymorphisms (SNPs)], two polymorphisms in FCMD, and the exonic silent mutation c.636C > T in POMGNT1. Expression analysis revealed that this apparently silent mutation compromises correct premessenger RNA (mRNA) splicing, promoting skipping of the entire exon 7, with a consequent frameshift. In silico analysis of this mutation did not predict alterations in the canonical splice sequences, but rather the creation of a new exonic splice silencer. The recognition of such disease-causing elements may contribute to the further understanding of RNA processing and assist mutation screening in routine diagnosis, where such changes may be underestimated. To aid clinical diagnosis, we generated publicly available LOVD-powered Locus Specific Databases for these three genes and recorded all known sequence variants ( http://www.dmd.nl ).  相似文献   

6.
7.
Multiple acyl‐CoA dehydrogenation deficiency is a disorder of fatty acid and amino acid oxidation caused by defects of electron transfer flavoprotein (ETF) or its dehydrogenase (ETFDH). A clear relationship between genotype and phenotype makes genotyping of patients important not only diagnostically but also for prognosis and for assessment of treatment. In the present study, we show that a predicted benign ETFDH missense variation (c.158A>G/p.Lys53Arg) in exon 2 causes exon skipping and degradation of ETFDH protein in patient samples. Using splicing reporter minigenes and RNA pull‐down of nuclear proteins, we show that the c.158A>G variation increases the strength of a preexisting exonic splicing silencer (ESS) motif UAGGGA. This ESS motif binds splice inhibitory hnRNP A1, hnRNP A2/B1, and hnRNP H proteins. Binding of these inhibitory proteins prevents binding of the positive splicing regulatory SRSF1 and SRSF5 proteins to nearby and overlapping exonic splicing enhancer elements and this causes exon skipping. We further suggest that binding of hnRNP proteins to UAGGGA is increased by triggering synergistic hnRNP H binding to GGG triplets located upstream and downsteam of the UAGGGA motif. A number of disease‐causing exonic elements that induce exon skipping in other genes have a similar architecture as the one in ETFDH exon 2.  相似文献   

8.
9.
Numerous unclassified variants (UVs) have been found in the mismatch repair genes MLH1 and MSH2 involved in hereditary nonpolyposis colorectal cancer (HNPCC or Lynch syndrome). Some of these variants may have an effect on pre-mRNA splicing, either by altering degenerate positions of splice site sequences or by affecting intronic or exonic splicing regulatory sequences such as exonic splicing enhancers (ESEs). In order to determine the consequences of UVs on splicing, we used a functional assay of exon inclusion. For each variant, mutant and wild-type exons to be tested were PCR-amplified from patient genomic DNA together with approximately 150 bp of flanking sequences and were inserted into a splicing reporter minigene. After transfection into HeLa cells, the effects on splicing were evaluated by RT-PCR analysis and systematic sequencing. A total of 22 UVs out of 85 different variant alleles examined in 82 families affected splicing, including four exonic variants that affected putative splicing regulatory elements. We analyzed short stretches spanning the latter variants by cloning them into the ESE-dependent central exon of a three-exon splicing minigene and we showed in cell transfection experiments that the wild-type sequences indeed contain functional ESEs. We then used this construct to query for ESE elements in the MLH1 or MSH2 regions affected by 14 previously reported exonic splicing mutations and showed that they also contain functional ESEs. These splicing assays represent a valuable tool for the interpretation of UVs and should contribute to the optimization of the molecular diagnosis of the Lynch syndrome and of other genetic diseases.  相似文献   

10.
The c.891C>T synonymous transition in SPINK5 induces exon 11 (E11) skipping and causes Netherton syndrome (NS). Using a specific RNA–protein interaction assay followed by mass spectrometry analysis along with silencing and overexpression of splicing factors, we showed that this mutation affects an exonic bifunctional splicing regulatory element composed by two partially overlapping silencer and enhancer sequences, recognized by hnRNPA1 and Tra2β splicing factors, respectively. The C‐to‐T substitution concomitantly increases hnRNPA1 and weakens Tra2β‐binding sites, leading to pathological E11 skipping. In hybrid minigenes, exon‐specific U1 small nuclear RNAs (ExSpe U1s) that target by complementarity intronic sequences downstream of the donor splice site rescued the E11 skipping defect caused by the c.891C>T mutation. ExSpe U1 lentiviral‐mediated transduction of primary NS keratinocytes from a patient bearing the mutation recovered the correct full‐length SPINK5 mRNA and the corresponding functional lympho‐epithelial Kazal‐type related inhibitor protein in a dose‐dependent manner. This study documents the reliability of a mutation‐specific, ExSpe U1‐based, splicing therapy for a relatively large subset of European NS patients. Usage of ExSpe U1 may represent a general approach for correction of splicing defects affecting skin disease genes.  相似文献   

11.
12.
The evolutionary and biomedical importance of differential mRNA splicing is well established. Numerous studies have assessed patterns of differential splicing in different genes and correlated these patterns to the genotypes for adjacent single‐nucleotide polymorphisms (SNPs). Here, we have chosen a reverse approach and screened dbSNP for common SNPs at either canonical splice sites or exonic splice enhancers (ESEs) that would be classified as putatively splicing‐relevant by bioinformatic tools. The 223 candidate SNPs retrieved from dbSNP were experimentally tested using a previously established panel of 92 matching DNAs and cDNAs. For each SNP, 16 cDNAs providing a balanced representation of the genotypes at the respective SNP were investigated by nested RT‐PCR and subsequent sequencing. Putative allele‐dependent splicing was verified by the cloning of PCR products. The positive predictive value of the bioinformatics tools turned out to be low, ranging from 0% for ESEfinder to 9% (in the case of acceptor‐site SNPs) for a recently reported neural network. The results highlight the need for a better understanding of the sequence characteristics of functional splice‐sites to improve our ability to predict in silico the splicing relevance of empirically observed DNA sequence variants. Hum Mutat 0, 1–9, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
14.
Loss of exon identity is a common mechanism of human inherited disease   总被引:1,自引:0,他引:1  
It is widely accepted that at least 10% of all mutations causing human inherited disease disrupt splice-site consensus sequences. In contrast to splice-site mutations, the role of auxiliary cis-acting elements such as exonic splicing enhancers (ESE) and exonic splicing silencers (ESS) in human inherited disease is still poorly understood. Here we use a top-down approach to determine rates of loss or gain of known human exonic splicing regulatory (ESR) sequences associated with either disease-causing mutations or putatively neutral single nucleotide polymorphisms (SNPs). We observe significant enrichment toward loss of ESEs and gain of ESSs among inherited disease-causing variants relative to neutral polymorphisms, indicating that exon skipping may play a prominent role in aberrant gene regulation. Both computational and biochemical approaches underscore the relevance of exonic splicing enhancer loss and silencer gain in inherited disease. Additionally, we provide direct evidence that both SRp20 (SRSF3) and possibly PTB (PTBP1) are involved in the function of a splicing silencer that is created de novo by a total of 83 different inherited disease mutations in 67 different disease genes. Taken together, we find that ~25% (7154/27,681) of known mis-sense and nonsense disease-causing mutations alter functional splicing signals within exons, suggesting a much more widespread role for aberrant mRNA processing in causing human inherited disease than has hitherto been appreciated.  相似文献   

15.
Missense, iso‐semantic, and intronic mutations are challenging for interpretation, in particular for their impact in mRNA. Various tools such as the Human Splicing Finder (HSF) system could be used to predict the impact on splicing; however, no diagnosis result could rely on predictions alone, but requires functional testing. Here, we report an in vitro approach to study the impact of DYSF mutations on splicing. It was evaluated on a series of 45 DYSF mutations, both intronic and exonic. We confirmed splicing alterations for all intronic mutations localized in 5′ or 3′ splice sites. Then, we showed that DYSF missense mutations could also result in splicing defects: mutations c.463G>A and c.2641A>C abolished ESEs and led to exon skipping; mutations c.565C>G and c.1555G>A disrupted Exonic Splicing Enhancer (ESE), while concomitantly creating new 5′ or 3′ splice site leading to exonic out of frame deletions. We demonstrated that 20% of DYSF missense mutations have a strong impact on splicing. This minigene strategy is an efficient tool for the detection of splicing defects in dysferlinopathies, which could allow for a better comprehension of splicing defects due to mutations and could improve prediction tools evaluating splicing defects.  相似文献   

16.
17.
Screening for ATM mutations is usually performed using genomic DNA as a template for PCR amplification across exonic regions, with the consequence that deep intronic sequences are not analyzed. Here we report a novel pseudoexon-retaining deep intronic mutation (IVS28-159A>G; g.75117A>G based on GenBank U82828.1) in a patient with ataxia-telangiectasia (A-T), as well as the identification of a previously unrecognized alternative exon in the ATM gene (exon 28a) expressed in lymphoblastoid cell lines (LCL) derived from normal individuals. cDNA analysis using the A-T patient's LCL showed the retention of two aberrant intronic segments of 112 and 190 nt between exons 28 and 29. Minigenes were constructed to determine the functional significance of two genomic changes in the region of aberrant splicing: IVS28-193C>T (g.75083C>T) and IVS28-159A>G, revealing that: 1) the first is a polymorphism; 2) IVS28-159A>G weakens the 5' splice site of the alternative exon 28a and activates a cryptic 5' splice site (ss) 83 nt downstream; and 3) wild-type constructs also retain a 29-nt segment (exon 28a) as part of both the 112- and 190-nt segments. Maximum entropy estimates of ss strengths corroborate the cDNA and minigene findings. Such mutations may prove relevant in planning therapy that targets specific splicing aberrations.  相似文献   

18.
Hereditary angioedema (HAE) is a disease caused by defects in the C1 inhibitor gene (SERPING1/C1NH). We screened the entire C1NH gene for mutations in a large series of 87 Spanish families (77 with type I, and 10 with type II HAE) by SSCP, sequencing, Southern blotting, and quantitative multiplex PCR of short fluorescent fragments (QMPSF), and we characterized several defects at the mRNA level. We found large rearrangements in 13 families, and point mutations or microdeletions/insertions in 74 families. The 13 large rearrangements included nine exon deletions, of which at least eight were distinct, two were distinct exon duplications, and two were rearrangements whose precise nature could not be determined. We confirmed that exon 4 is particularly prone to rearrangements. Thirty-six mutations were unreported, and included 10 microdeletions/insertions, 10 missense, five nonsense, eight splicing, and three splicing or missense mutations. Moreover, we detected six novel uncharacterized sequence variants (USV). RT-PCR studies showed that in addition to several intronic splice site mutations tested, the exonic mutations c.882C>G and c.884T>G, located near the 3' end of exon 5, also produced exon skipping. This is the first evidence of SERPING1/C1NH mutations in coding regions that differ from the canonical splice sites that affect splicing, which suggests the presence of an exonic splicing enhancer (ESE) in exon 5.  相似文献   

19.
20.
With the completion of the Human Genome Project, our vision of human genetic diseases has changed. The cloning of new disease-causing genes can now be performed in silico, and thousands of mutations are being identified in diagnostic and research laboratories yearly. Knowledge about these mutations and their association with clinical and biological data is essential for clinicians, geneticists, and researchers. To collect and analyze these data, we developed a generic software called Universal Mutation Databases (UMD) to create locus-specific databases. Here we report the new release (September 2004) of this freely available tool (www.umd.be), which allows the creation of LSDBs for virtually any gene and includes a large set of new analysis tools. We have implemented new features to integrate noncoding sequences, clinical data, pictures, monoclonal antibodies, and polymorphic markers (SNPs). Today the UMD retains all specifically designed tools to analyze mutations at the molecular level, as well as new sets of routines to search for genotype-phenotype correlations. We also created specific tools for infrequent mutations such as gross deletions and duplications, and deep intronic mutations. A large set of dedicated tools are now available for intronic mutations, including methods to calculate the consensus values (CVs) of potential splice sites and to search for exonic splicing enhancer (ESE) motifs. In addition, we have created specific routines to help researchers design new therapeutic strategies, such as exon skipping, aminoglycoside read-through of stop codons, or monoclonal antibody selection and epitope scanning for gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号