首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huang F  Kitaura Y  Jang I  Naramura M  Kole HH  Liu L  Qin H  Schlissel MS  Gu H 《Immunity》2006,25(4):571-581
Casitas B cell lymphoma (Cbl) proteins are negative regulators for T cell antigen receptor (TCR) signaling. Their role in thymocyte development remains unclear. Here we show that simultaneous inactivation of c-Cbl and Cbl-b in thymocytes enhanced thymic negative selection and altered the ratio of CD4(+) and CD8(+) T cells. Strikingly, the mutant thymocytes developed into CD4(+)- and CD8(+)-lineage T cells independent of the major histocompatibility complex (MHC), indicating that the CD4(+)- and CD8(+)-lineage development programs are constitutively active in the absence of c-Cbl and Cbl-b. The mutant double-positive (DP) thymocytes exhibited spontaneous hyperactivation of nuclear factor-kappa B (NF-kappaB). Additionally, they failed to downregulate the pre-TCR and pre-TCR signaling. Thus, our data indicate that Cbl proteins play a critical role in establishing the MHC-dependent CD4(+) and CD8(+) T cell development programs. They likely do so by suppressing MHC-independent NF-kappaB activation, possibly through downmodulating pre-TCR signaling in DP thymocytes.  相似文献   

2.
CD4(-)CD8(-) thymocytes expressing a transgenic T cell receptor (TCR) alpha chain have decreased capacity to give rise to CD4(+)CD8(+) thymocytes when compared with wild-type thymocytes. This inefficient CD4(-)CD8(-) to CD4(+)CD8(+) maturation is mediated by the transgenic TCR alpha chain pairing with endogenous TCR beta chain but not with endogenous TCR gamma chain. Comparison between TCR alpha chain-transgenic mice with or without a functional pre-TCR alpha (pT alpha ) chain reveals that the formation of transgenic alpha/endogenous beta TCR on CD4(-)CD8(-) thymocytes inhibits the formation of pre-TCR, but at the same time mediates CD4(-)CD8(-) to CD4(+)CD8(+) maturation in the absence of pre-TCR, albeit inefficiently. These results indicate that alpha beta TCR and pre-TCR provide different signals for thymocyte development. They also suggest that the precise regulation of the sequential rearrangements of TCR beta and alpha loci and the cellular expansion induced by the pre-TCR may both be evolved to ensure the efficient generation of mature alpha beta T cells.  相似文献   

3.
Gads, a hematopoietic-lineage-specific Grb2 family member, is involved in the signaling mediated by the TCR through its interactions with SLP-76 and LAT. Here, we generated transgenic mice expressing Grf40-dSH2, an SH2-deleted dominant-negative form of Gads, which is driven by the lck proximal promoter. The total number of thymocytes was profoundly reduced in the transgenic mice, whereas in the double-negative (CD4(-)CD8(-)) thymocyte subset, in particular the CD25(+)CD44(-) pre-T cell population, it was significantly increased. However, CD5 expression, which is mediated by pre-TCR stimulation, was significantly suppressed on the CD4(-)CD8(-) thymocytes of the transgenic mice. Furthermore, the SLP-76-dependent signaling was markedly suppressed as well. These data suggest that Gads plays an important role in the pre-TCR as well as TCR signaling in thymocytes.  相似文献   

4.
Pre-TCR/CD3 signals are essential for survival and maturation of (CD44(-)25(+)) DN3 thymocytes via the (CD44(-)25(-)) DN4 stage to CD4(+)CD8(+) (DP) cells, a process termed beta-selection. The exact developmental stages of apoptosis resulting from lack of pre-TCR/CD3 signals have so far not been determined. Here we analyzed apoptotic cell death in relation to expression of clonotypic TCR polypeptides and to cell cycle status in immature thymocyte subpopulations of wild type (wt) mice and of several strains of mice with compromised pre-TCR/CD3 signaling complexes. In wt mice or pre-TCR/CD3-deficient mice, apoptotic cells could not be detected among DN3 cells but accumulated in a subset of DN4 expressing CD69. Apoptotic CD69(+)DN4 cells were rare in wt mice and were found among DN4 cells that were negative or low for intracellular TCRbeta and negative for TCRgamma delta polypeptide chains. Apoptotic CD69(+)DN4 cells were abundant in pre-TCR/CD3 signaling-deficient mice in which most DN4 cells failed to express clonotypic TCR polypeptides. Survival of DN4 cells, but not maturation of DN3 cells to DN4, was found to depend on the expression of clonotypic TCR polypeptides in the same cell. The results suggest that thymocytes unsuccessful in alpha beta or in gamma delta lineage development die by apoptosis in the DN4 subset.  相似文献   

5.
The pre-TCR complex regulates the transition from CD4(-)CD8(-) double-negative (DN) to CD4(+)CD8(+) double-positive (DP) thymocytes during T cell development. In CD45(-/-) mice there is an accumulation of DN cells, suggesting a possible role for CD45 in pre-TCR signaling. We therefore crossed CD45(-/-) with Rag-1(-/-) mice to investigate the signaling functions of the CD3 complex in DN thymocytes. Remarkably, treatment of Rag-1(-/-)/CD45(-/-) mice with a CD3 mAb caused maturation to the DP stage at only 3% of the level measured in Rag-1(-/-) mice. Furthermore, ligation of the CD3 complex on Rag-1(-/-) /CD45(-/-) thymocytes in vitro induced less tyrosine phosphorylation in specific proteins when compared to Rag-1(-/-) thymocytes. CD45(-/-) mice were also crossed with pLGFA mice expressing a constitutively active form of the lck tyrosine kinase which restored the DN to DP transition to near normal levels. Our results are consistent with a model in which CD45-activated p56(lck) is critical for pre-TCR signal transduction.  相似文献   

6.
7.
Changes occur in gene expression during aging in vivo and in replicative senescence in vitro, suggesting that aging can affect gene regulation. We have recently observed age-related changes in ubiquitously expressed, oxidative stress-responsive nuclear factor-kappa B (NF-kappa B) pathway during aging. Here we report a significant age-related increase in nuclear NF-kappa B binding activity together with increased protein levels of p52 and p65 components in rat liver. An additional, higher molecular weight protein band seen in their western blots suggests that their post-translational modification (but not phosphorylation) occurs in liver, which might affect their nuclear localization and binding activity during aging. However, aging did not affect the protein levels of the main I kappa B inhibitors (I kappa B alpha and I kappa B beta) or I kappa B kinase (IKK)-complex subunits (IKK alpha, -beta, and -gamma) involved in NF-kappa B activation. In addition, the level of Ser32-phosphorylated I kappa B alpha was unaffected by age, suggesting that neither the IKK complex nor altered level of the main inhibitors is involved in the observed up-regulation of NF-kappa B binding activity. Furthermore, the expression of NF-kappa B mRNAs (p50, p52, p65, and c-rel) and the mRNAs of their inhibitors (I kappa B alpha and I kappa B beta) did not show any statistically significant age-related changes. These results indicate that the expression level of NF-kappa B genes is not significantly affected by aging. The up-regulation of constitutive nuclear NF-kappa B binding activity and increased levels of nuclear p52 and p65 proteins might affect the expression of some NF-kappa B target genes in the aging liver.  相似文献   

8.
Notch1 signalling is essential for the commitment of multipotent lymphocyte precursors towards the alphabeta T-cell lineage and plays an important role in regulating beta-selection in CD4(-)CD8(-) double-negative (DN) thymocytes. However, the role played by Notch in promoting the development of CD4(+)CD8(+) double-positive (DP) thymocytes is poorly characterized. Here, we demonstrate that the introduction of a constitutively active Notch1 (ICN1) construct into RAG(-/-) lymphocyte precursors resulted in the generation of DP thymocytes in in vitro T-cell culture systems. Notably, developmental rescue was dependent not only on the presence of an intact Notch1 RAM domain but also on Delta-like signals, as ICN1-induced DP development in RAG(-/-) thymocytes occurred within an intact thymus or in OP9-DL1 co-cultures, but not in OP9-control co-cultures. Interestingly, ICN1 expression in SLP-76(-/-) precursors resulted in only a minimal developmental rescue to the immature CD8(+) single-positive stage, suggesting that Notch is utilizing the same signalling pathway as the pre-TCR complex. In support of this, ICN1 introduction resulted in the activation of the ERK-MAPK-signalling cascade in RAG(-/-) thymocytes. Taken together, these studies demonstrate that constitutive Notch signalling can bypass beta-selection during early T-cell development by inducing pre-TCR-like signals within a T-cell-promoting environment.  相似文献   

9.
10.
The regulation of neutrophil half-life by members of the coagulation cascade is critical for the resolution of the inflammatory response. We have demonstrated that soluble fibrinogen (sFbg) delays human neutrophil (PMN) apoptosis through a mechanism that involves CD11b interactions, and phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase 1/2 (ERK1/2).Since NF-kappa B is a key element in the regulation of apoptotic mechanisms in several immune cells, we investigated whether NF-kappa B is involved in the control of PMN survival by sFbg. We show that sFbg triggers inhibitor protein kappa B (I kappa B-alpha) degradation and NF-kappa B activation. Furthermore, pharmacological inhibition of NF-kappa B abrogates sFbg effects on apoptosis. In addition, specific inhibition of MAPK ERK1/2 significantly reduces NF-kappa B translocation by sFbg, suggesting a relationship between ERK1/2 and NF-kappa B activation. Similar results are obtained when granulocytic-differentiated HL-60 cells are treated with sFbg, making this model highly attractive for integrin-induced gene expression studies. It can be concluded that NF-kappa B participates in the prevention of apoptosis induced by sFbg with the participation of MAPK ERK1/2. These results shed light on the molecular mechanisms that control human granulocyte apoptosis, and suggest that NF-kappa B regulation may be of benefit for the resolution of the inflammatory response.  相似文献   

11.
12.
We demonstrate that overexpression of Pim-1, a cytoplasmic serine/threonine kinase of poorly defined function, results in the development of substantial numbers of CD4(+)CD8(+) double-positive thymocytes in two independent knock-out mouse models (i.e. the RAG-1-deficient and TCRbeta gene enhancer-deleted mice) in which production of a functionally rearranged TCRbeta gene (hence the pre-TCR) is impaired. This activity of Pim-1, however, does not affect signaling through the Ras/Raf/MAP kinase cascade nor signaling which mediates suppression of TCRbeta gene recombination (i.e. allelic exclusion). While overexpression of Pim-1 positively affects cell cycle progression in selected CD4(-)CD8(-) double-negative precursors, it did not affect expression of components of the cell cycle machinery, with the exception of the G(1)-specific phosphatase Cdc25A upon antigen receptor stimulation. We propose that Pim-1 acts downstream, or in parallel, to pre-TCR-mediated selection as one factor involved in the proliferative expansion of beta-selected pre-T cells.  相似文献   

13.
Expression of the receptor-type tyrosine phosphatase LAR was studied in cells of the murine hemopoietic system. The gene is expressed in all cells of the T cell lineage but not in cells of any other hemopoietic lineage and the level of expression in T cells is developmentally regulated. The CD4(-)8(-)44(+) early thymic immigrants and mature (CD4(+)8(-)/CD4(-)8(+)) thymocytes and T cells express low levels, whereas immature (CD4(-)8(-)44(-) and CD4(+)8(+)) thymocytes express high levels of LAR. Among bone marrow cells only uncommitted c-kit(+)B220(+)CD19(-) precursors, but not B cell lineage committed c-kit(+)B220(+)CD19(+) precursors, express low levels of LAR. In contrast to the c-kit(+)B220(+)CD19(+) pre-BI cells from normal mice, counterparts of pre-BI cells from PAX-5-deficient mice express LAR, indicating that PAX-5-mediated commitment to the B cell lineage results in suppression of LAR. During differentiation of PAX-5-deficient pre-BI cell line into non-T cell lineages, expression of LAR is switched off, but it is up-regulated during differentiation into thymocytes. Thus, within the hemopoietic system, LAR appears to be a T cell lineage-specific receptor-type phosphatase. However, surprisingly, truncation of its phosphatase domains has no obvious effect on T cell development, repertoire selection or function.  相似文献   

14.
15.
Previously we described a monoclonal antibody (mAb) that reacted with a cell-surface antigen, immature thymocyte antigen-1 (IMT-1), which is expressed on thymocytes of late CD4- CD8- (double negative) to early CD4+ CD8+ (double positive) differentiation stages. In this study, we investigated the expression of IMT-1 on various cell lineages in thymus as well as in peripheral lymphoid organs. We found that IMT-1 is expressed on T-cell receptor (TCR)-betalo and TCR-deltalo thymocytes, but not on TCR-betahi, TCR-deltahi or natural killer (NK)1.1+ thymocytes, or on peripheral alpha beta or gamma delta T cells. We also investigated the kinetics of expression of IMT-1 during fetal thymocyte development and compared it with the expression of the pre-TCR complex, comprising CD3, pre-TCR-alpha (pTalpha) and TCR-beta. We found that expression of both was similar, starting at day 14.5 of gestation, peaking on day 16.5 and gradually decreasing thereafter. Furthermore, the expression of both IMT-1 and pTalpha was drastically reduced when DN thymocytes in recombination activating gene (RAG)-2-/- mice were challenged in vivo with anti-CD3 mAb. These results indicate that IMT-1 is expressed on not only immature thymocytes of alpha beta T-cell lineage but also on those of gamma delta T-cell lineage, and that the expression of IMT-1 and the pre-TCR complex is co-ordinately regulated during the alpha beta lineage thymocyte development.  相似文献   

16.
17.
CTX is a surface antigen whose expression in larval and adult Xenopus is primarily restricted to MHC class I-negative immature cortical thymocytes. In adult Xenopus, surface expression of CTX marks a population of MHC class I(-) CD8(+) immature thymocytes that appears to be the equivalent of the mammalian CD4CD8 double positive subset. The present study reveals that transient in vitro exposure of immature CTX(+) thymocytes from MHC class I-negative tadpoles to suboptimal mitogenic concentrations of phorbol ester (PMA) plus ionomycin, induces larval cells to differentiate into more mature T-lymphoblasts that express high level of surface CD5 and CD45. These T-lymphoblasts have downregulated CTX, Rag 1 and TdT genes, whereas TCR-beta genes remain actively transcribed. Signaling induced by PMA/ionomycin modulates both class I and class II expression of MHC class I/II-negative larval thymocytes.This study also reveals that larval T-lymphoblasts are composed of two distinct subsets: CD5(high)CD8(-) and CD5 (high)CD8 (high).  相似文献   

18.
The pre-T cell receptor (pre-TCR) and IL-7 receptor (IL-7R) are critical mediators of survival, proliferation and differentiation in immature thymocytes. Here we show that pre-TCR signaling directly maintains IL-7Ralpha expression as developing thymocytes undergo beta-selection. Inhibition of IL-7/IL-7R signaling in (CD44-CD25-) DN4 cells results in decreased generation of double-positive thymocytes due to increased death of rapidly proliferating beta-selected cells. Thus, we identify a mechanism by which pre-TCR signaling controls the selective survival of TCRbeta+ thymocytes, and define a further stage of T cell differentiation in which signaling from a TCR regulates the ability of that cell to respond to cytokine.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号