首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chiu JJ  Chen LJ  Lee PL  Lee CI  Lo LW  Usami S  Chien S 《Blood》2003,101(7):2667-2674
Vascular endothelial cells (ECs), which exist in close proximity to vascular smooth muscle cells (SMCs), are constantly subjected to blood flow-induced shear stress. Although the effect of shear stress on endothelial biology has been extensively studied, the influence of SMCs on endothelial response to shear stress remains largely unexplored. We examined the potential role of SMCs in regulating the shear stress-induced gene expression in ECs, using a parallel-plate coculture flow system in which these 2 types of cells were separated by a porous membrane. In this coculture system, SMCs tended to orient perpendicularly to the flow direction, whereas the ECs were elongated and aligned with the flow direction. Under static conditions, coculture with SMCs induced EC gene expression of intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), and E-selectin, while attenuating EC gene expression of endothelial nitric oxide synthase (eNOS). Shear stress significantly inhibited SMC-induced adhesion molecule gene expression. These EC responses under static and shear conditions were not observed in the absence of close communication between ECs and SMCs, and they were also not observed when ECs were cocultured with fibroblasts instead of SMCs. Our findings indicate that under static conditions, coculture with SMCs induces ICAM-1, VCAM-1, and E-selectin gene expression in ECs. These coculture effects are inhibited by shear stress and require specific interaction between ECs and SMCs in close contact.  相似文献   

2.
During the development of an atherosclerotic plaque, mononuclear leukocytes infiltrate the artery wall through vascular endothelial cells (ECs). At the same time, arterial smooth muscle cells (SMCs) change from the physiological contractile phenotype to the secretory phenotype and migrate into the plaque. We investigated whether secretory SMCs released cytokines that stimulated ECs in a manner leading to increased leukocyte recruitment and thus might accelerate atheroma formation. SMCs and ECs were established in coculture on the opposite sides of a porous membrane, and the cocultured cells were incorporated into a flow-based assay for studying leukocyte adhesion. We found that coculture primed ECs so that their response to the inflammatory cytokine tumor necrosis factor-alpha was amplified. ECs cocultured with SMCs supported greatly increased adhesion of flowing leukocytes and were sensitized to respond to tumor necrosis factor-alpha at concentrations 10 000 times lower than ECs cultured alone. In addition, coculture altered the endothelial selectin adhesion molecules used for leukocyte capture. EC priming was attributable to the cytokine transforming growth factor-beta(1), which was proteolytically activated to a biologically active form by the serine protease plasmin. These results suggest a new role for secretory SMCs in the development of atheromatous plaque. We propose that paracrine interaction between ECs and SMCs has the potential to amplify leukocyte recruitment to sites of atheroma and exacerbate the inflammatory processes believed to be at the heart of disease progression.  相似文献   

3.
During the development of atherosclerotic plaque, monocytes and T-lymphocytes are recruited to the arterial intima by endothelial cells (EC) lining the vessel. This process is associated with chronic arterial inflammation and requires the activation-dependent expression of adhesion receptors and chemokines on EC. Here we show that monocytes can activate cocultured EC so that they support the adhesion, activation and transmigration of a secondary bolus of flowing peripheral blood monocytes or lymphocytes. The number of adherent leukocytes and their behaviour was comparable to that seen on EC activated with tumour necrosis factor-alpha (TNF-alpha). Depending upon the duration of endothelial cell/monocyte coculture different patterns of adhesion receptors were utilised by leukocytes. After 4 h coculture, antibodies against E-selectin, P-selectin and vascular cell adhesion molecule-1 (VCAM-1) reduced mononuclear leukocyte adhesion. After 24 h coculture, antibodies against E-selectin and VCAM-1 but not P-selectin were effective. Immunofluorescence analysis confirmed that monocyte coculture induced endothelial expression of E-selectin and VCAM-1, while P-selectin was at the limit of detection. We conclude that EC stimulated by monocytes can support the adhesion of flowing mononuclear leukocytes. We hypothesise that this mode of EC activation and leukocyte recruitment could initiate a self-perpetuating cycle of inflammation that could be relevant to atherogenesis and other chronic inflammatory disease states.  相似文献   

4.
We investigated the possible interference of smooth muscle cells with monocyte response to LDL as well as with their adhesion and transmigration in a coculture of porcine endothelial and smooth muscle cells. Lysophosphatidylcholine (LPC), a component of oxidized LDL (oxLDL), stimulated the adhesion of THP-1 cells to endothelial cells both in mono- and in coculture with smooth muscle cells. When THP-1 cells were incubated with endothelial cells in the presence of copper oxLDL, their adhesion was increased, but only in coculture. The addition of sodium nitroprusside (SNP) together with oxLDL markedly increased the adhesion of THP-1 cells in coculture. Close proximity between endothelial and smooth muscle cells was necessary to observe that effect. Furthermore, this increase in adhesion of THP-1 cells can, at least in part, be attributed to the augmented production of monocyte chemoattractant protein-1 (MCP-1) observed in coculture under the influence of oxLDL and SNP. The passage of THP-1 cells through the coculture was stimulated by MCP-1 and LPC. These results show that physical contacts or close proximity between endothelial and smooth muscle cells play a key role in the adhesion of monocytes and their infiltration into the intima in response to oxLDL.  相似文献   

5.
Vascular endothelium, as a key regulator of hemostasis, mediates vascular dilatation, prevents platelet adhesion, and inhibits thrombin generation. Endothelial dysfunction caused by acute or chronic inflammation, such as in atherosclerosis, creates a proinflammatory environment which supports leukocyte transmigration toward inflammatory sites, and at the same time promotes coagulation, thrombin generation, and fibrin deposition in an attempt to close the wound. Life-long persistent infection with human cytomegalovirus (HCMV) has been associated with atherosclerosis. In vivo studies have revealed that HCMV infection of the vessel wall affects various cells including monocytes/macrophages, smooth muscle cells (SMCs) and endothelial cells (ECs). HCMV-infected SMCs within vascular lesions display enhanced proliferation and impaired apoptosis, which contribute to intima-media thickening, plaque formation and restenosis. Monocytes play a central role in the process of viral dissemination, whereas ECs may represent a viral reservoir, maintaining persistent infection in HCMV-infected atherosclerotic patients following the primary infection. Persistent infection leads to dysfunction of ECs and activates proinflammatory signaling involving nuclear factor κB, specificity protein 1, and phosphatidylinositol 3-kinase, as well as expression of platelet-derived growth factor receptor. Activation of these pathways promotes enhanced proliferation and migration of monocytes and SMCs into the intima of the vascular wall as well as lipid accumulation and expansion of the atherosclerotic lesion. Moreover, HCMV infection induces enhanced expression of endothelial adhesion molecules and modifies the proteolytic balance in monocytes and macrophages. As a consequence, infected endothelium recruits naive monocytes from the blood stream, and the concomitant interaction between infected ECs and monocytes enables virus transfer to migrating monocytes. Endothelial damage promotes thrombin generation linking inflammation and coagulation. HCMV, in turn, enhances the thrombin generation. The virus carries on its surface the molecular machinery necessary to initiate thrombin generation, and in addition, may interact with the prothrombinase protein complex thereby facilitating thrombin generation. Thus, infection of endothelium may significantly increase the production of thrombin. This might not only contribute to thrombosis in patients with atherosclerosis, but might also induce thrombin-dependent proinflammatory cell activation. This review summarizes the existing evidence on the role of HCMV in vascular inflammation.  相似文献   

6.
Wang Q  Chiang ET  Lim M  Lai J  Rogers R  Janmey PA  Shepro D  Doerschuk CM 《Blood》2001,97(3):660-668
This study examined changes in the biomechanical properties of cultured pulmonary microvascular endothelial cells (ECs) and neutrophils induced by adhesion of neutrophils to these ECs. The biomechanical properties of cells were evaluated using magnetic twisting cytometry, which measures the angular rotation of ferromagnetic beads bound to cells through antibody ligation on application of a specified magnetic torque. Adhesion of neutrophils to 24-hour tumor necrosis factor-alpha (TNF-alpha)-treated ECs, but not to untreated ECs, induced an increase in EC stiffness within 2 minutes, which was accompanied by an increase and a reorganization of F-actin in ECs. A cell-permeant, phosphoinositide-binding peptide attenuated the EC stiffening response, suggesting that intracellular phosphoinositides are required. The stiffening response was not inhibited by ML-7, a myosin light-chain kinase inhibitor, or BAPTA, an intracellular Ca2+ chelator. Moreover, the phosphorylation pattern of the regulatory myosin light chains was unaltered within 15 minutes of neutrophil adherence. These data suggested that the EC stiffening response appeared not to be mediated by myosin light-chain-dependent mechanisms. Concomitantly, neutrophil adhesion to 24-hour TNF-alpha-treated ECs also induced changes in the biomechanical properties of neutrophils compared to neutrophils bound to untreated ECs. Taken together, these results demonstrated that neutrophil adhesion to TNF-alpha-treated ECs induces changes in the biomechanical properties of both cell types through actin cytoskeletal remodeling. These changes may modulate neutrophil transmigration across the endothelium during inflammation.  相似文献   

7.
Chiu JJ  Chen LJ  Lee CI  Lee PL  Lee DY  Tsai MC  Lin CW  Usami S  Chien S 《Blood》2007,110(2):519-528
E-selectin is a major adhesion molecule expressed by endothelial cells (ECs), which are exposed to shear stress and neighboring smooth muscle cells (SMCs). We investigated the mechanisms underlying the modulation of EC E-selectin expression by SMCs and shear stress. SMC coculture induced rapid and sustained increases in expression of E-selectin and phosphorylation of interleukin-1 (IL-1) receptor-associated kinase glycoprotein-130, as well as the downstream mitogen-activated protein kinases (MAPKs) and Akt. By using specific inhibitors, dominant-negative mutants, and small interfering RNA, we demonstrated that activations of c-Jun-NH(2)-terminal kinase (JNK) and p38 of the MAPK pathways are critical for the coculture-induced E-selectin expression. Gel shifting and chromatin immunoprecipitation assays showed that SMC coculture increased the nuclear factor-kappaB (NF-kappaB)-promoter binding activity in ECs; inhibition of NF-kappaB activation by p65-antisense, lactacystin, and N-acetyl-cysteine blocked the coculture-induced E-selectin promoter activity. Protein arrays and blocking assays using neutralizing antibodies demonstrated that IL-1beta and IL-6 produced by EC/SMC cocultures are major contributors to the coculture induction of EC signaling and E-selectin expression. Preshearing of ECs at 12 dynes/cm(2) inhibited the coculture-induced EC signaling and E-selectin expression. Our findings have elucidated the molecular mechanisms underlying the SMC induction of EC E-selectin expression and the shear stress protection against this SMC induction.  相似文献   

8.
目的探讨骨髓基质干细胞(MSCs)种植体外修复内皮的可行性及对血管平滑肌细胞增生的影响。方法培养兔血管内皮、平滑肌和人MSCs,通过细胞共培养模拟血管内皮修复过程,用流式细胞仪分析MSCs分子表型特征,免疫荧光细胞化学法观察与内皮共培养的MSCsFlk1和vWF蛋白表达,根据下室内皮生长状态及是否接种MSCs将其分为对照组、单纯MSCs组、融合内皮组、对数内皮组和MSCs种植组。氚胸腺嘧啶脱氧核苷(3HTdR)掺入检测平滑肌细胞DNA合成,Westernblot检测平滑肌细胞中增殖细胞核抗原蛋白表达。结果分离的MSCs表达基质细胞标志CD105和CD166,不表达造血干祖细胞和内皮细胞标志CD34、Flk1、vWF;与内皮共培养5天时,vWF染色仍为阴性,但约25.71%MSCs开始表达Flk1;MSCs种植组平滑肌细胞3HTdR掺入虽高于融合内皮组,但与对数内皮组比较显著降低;MSCs种植组平滑肌细胞PCNA蛋白吸光度相对值虽高于融合内皮组,但与对数内皮组比较明显减少。结论MSCs种植能抑制平滑肌细胞增生,种植在成熟内皮中的MSCs具有微环境依赖向内皮分化的能力。  相似文献   

9.
Chronic thromboembolic pulmonary hypertension (CTEPH) is characterised by proximal pulmonary vascular obstruction by thrombo-fibrotic material, the origin of which has not been elucidated. Enhanced inflammation could contribute to persistent obstruction by impairing pulmonary vascular cell function in CTEPH. We investigated C-reactive protein (CRP) effects on pulmonary vascular cell function in vitro. Primary cultures of proximal pulmonary endothelial cells (ECs) and smooth muscle cells (SMCs) from CTEPH and nonthromboembolic pulmonary hypertension (PH) patients were established. Recombinant CRP effects on mitogenic activity, adhesion capacity, endothelin-1 and von Willebrand factor (vWF) secretion and intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule-1 expression were investigated in ECs and/or SMCs. Expression of the CRP receptor, lectin-like oxidised low-density lipoprotein receptor (LOX)-1, was evaluated in proximal pulmonary arterial tissue and cells by Western blotting and immunofluorescence. CRP increased CTEPH-SMC proliferation by 250%. CRP increased adhesion capacity, endothelin-1 and vWF secretion by CTEPH-ECs by 37%, 129% and 694%, respectively. CRP-induced adhesion of CTEPH-ECs to monocytes was mediated by ICAM-1. CRP had no effect on cells from nonthromboembolic PH patients, probably because of overexpression of LOX-1 in CTEPH. Local expression of CRP was detected in ECs and SMCs within pulmonary arterial tissue. CRP may contribute to persistent obstruction of proximal pulmonary arteries in CTEPH by promoting vascular remodelling, endothelial dysfunction and in situ thrombosis.  相似文献   

10.
The expression of monocyte-specific adhesion molecules and chemokines by cell types within the vessel wall plays an important role in foam cell accumulation during atherosclerotic plaque development. We previously identified IG9, a novel monocyte adhesion protein that is expressed on endothelial cells (ECs) overlying human and rabbit advanced atherosclerotic plaques. The present study was designed to determine the temporal and spatial expression of IG9 and the chemokine, monocyte chemoattractant protein-1 (MCP-1), after balloon injury with (double injury) or without (single injury) prior air desiccation EC injury in the femoral arteries of rabbits fed a high-cholesterol diet. By immunohistochemical analyses, intense reactivity with monoclonal antibodies to IG9 and MCP-1 was detected 24 hours after single injury in medial smooth muscle cells (SMCs) and in SMCs of adventitial microvessels. However, monocyte infiltration of the tunica media was minimal or not detected in these sections. IG9 and MCP-1 antibody reactivity in vessel sections 28 days after single injury and 24 hours, 7 days, and 28 days after double injury was localized to medial and neointimal SMCs, foam cells, and luminal ECs overlying the plaques. Uninjured rabbit (cholesterol or normal diet) vessel sections exhibited minimal IG9 and MCP-1 immunostaining. In vitro studies using human aortic SMCs demonstrated IG9 protein induction after 24 hours of treatment with platelet-derived growth factor-BB and interferon-gamma or epidermal growth factor. IG9 expression was further increased by pretreatment of SMCs with the proatherogenic lipid, minimally oxidized low density lipoprotein. After balloon injury (24 hours), IG9 is induced in vascular SMCs before the detectable accumulation of monocytes within the vessel wall. Thus, the expression of IG9 by SMCs as well as by ECs may be an important factor in the accumulation of foam cells in atherosclerotic plaque development after arterial injury.  相似文献   

11.
The initiation of atherosclerosis results from complex interactions of circulating factors and various cell types in the vessel wall, including endothelial cells, lymphocytes, monocytes, and smooth muscle cells (SMCs). Recent reviews highlight the role of activated endothelium and inflammatory cell recruitment in the initiation of and progression of early atherosclerosis. Yet, human autopsy studies, in vitro mechanistic studies, and in vivo correlative data suggest an important role for SMCs in the initiation of atherosclerosis. SMCs are the major producers of extracellular matrix within the vessel wall and in response to atherogenic stimuli can modify the type of matrix proteins produced. In turn, the type of matrix present can affect the lipid content of the developing plaque and the proliferative index of the cells that are adherent to it. SMCs are also capable of functions typically attributed to other cell types. Like macrophages, SMCs can express a variety of receptors for lipid uptake and can form foam-like cells, thereby participating in the early accumulation of plaque lipid. Like endothelial cells, SMCs can also express a variety of adhesion molecules such as vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 to which monocytes and lymphocytes can adhere and migrate into the vessel wall. In addition, through these adhesion molecules, SMCs can also stabilize these cells against apoptosis, thus contributing to the early cellularity of the lesion. Like many cells within the developing plaque, SMCs also produce many cytokines such as PDGF, transforming growth factor-beta, IFNgamma, and MCP-1, all of which contribute to the initiation and propagation of the inflammatory response to lipid. Recent advances in SMC-specific gene modulation have enhanced our ability to determine the role of SMCs in early atherogenesis.  相似文献   

12.
OBJECTIVE: Rheumatoid arthritis (RA) is classically thought of as a Th1, T lymphocyte-driven disease of the adaptive immune system. However, cells of the innate immune system, including neutrophils, are prevalent within the diseased joint, and accumulate in large numbers. This study was undertaken to determine whether cells of the rheumatoid stromal microenvironment could establish an inflammatory environment in which endothelial cells are conditioned in a disease-specific manner to support neutrophil recruitment. METHODS: Human umbilical vein endothelial cells (ECs) and fibroblasts isolated from the synovium or skin of RA patients were established in coculture on opposite sides of porous transwell filters. After 24 hours of EC conditioning, the membranes were incorporated into a parallel-plate, flow-based adhesion assay and levels of neutrophil adhesion to ECs were measured. RESULTS: ECs cocultured with synovial, but not skin, fibroblasts could recruit neutrophils in a manner that was dependent on the number of fibroblasts. Antibody blockade of P-selectin or E-selectin reduced neutrophil adhesion, and an antibody against CD18 (the beta2 integrin) abolished adhesion. Blockade of CXCR2, but not CXCR1, also greatly inhibited neutrophil recruitment. Interleukin-6 (IL-6) was detectable in coculture supernatants, and both IL-6 and neutrophil adhesion were reduced in a dose-dependent manner by hydrocortisone added to cocultures. Antibody blockade of IL-6 also effectively abolished neutrophil adhesion. CONCLUSION: Synovial fibroblasts from the rheumatoid joint play an important role in regulating the recruitment of inflammatory leukocytes during active disease. This process may depend on a previously unsuspected route of IL-6-mediated crosstalk between fibroblasts and endothelial cells.  相似文献   

13.
Recent in vivo studies suggest that adherent leukocytes bind RBCs and contribute to the microvascular pathology that characterizes sickle cell disease (SCD). A parallel-plate flow assay was used: to investigate the capture of RBCs by adherent neutrophils, monocytes, and T-lymphocytes; to examine whether RBC capture is elevated in patients with SCD; and to determine whether hydroxyurea (HU) therapy affects these interactions. Four measures of cell-cell adhesion were used: adhesion of leukocytes to TNF-alpha-treated human umbilical vein endothelial cells (HUVECs), percent of adherent leukocytes that captured RBCs, number of RBCs captured per interacting leukocyte, and duration of RBC capture. Leukocyte subpopulations from sickle patients were more adherent to activated ECs and captured more RBCs per interacting leukocyte than the corresponding subpopulations from healthy controls. While HU did not affect leukocyte adhesion to activated ECs, it reduced the proportion of adherent leukocytes that captured RBCs, as well as the number of RBCs captured per neutrophil. T-lymphocytes demonstrated elevated adhesion in all measures, and may be the leukocyte subpopulation whose behavior is most altered in SCD. Our findings suggest that neutrophils, monocytes, and T-lymphocytes could all be involved in adhesive interactions with autologous RBCs in patients with SCD.  相似文献   

14.
Interactions of vascular endothelial cells (ECs) and smooth muscle cells (SMCs) were studied by testing the ability of cultured bovine aortic ECs to secrete factors influencing the migration of cultured aortic SMCs from the same species. Migration of SMCs was examined in blind-well chambers using gelatin-coated polycarbonate filters. Conditioned culture medium obtained by incubating confluent monolayers of ECs in serum-free RPMI-1640 medium for 48 hours caused a 2.4-fold increase in the migration of SMCs as compared with nonconditioned medium (p less than 0.001). The effect was dependent on the length of conditioning with the ECs and was chemotactic in nature as judged on the basis of checkerboard analysis. Preliminary characterization of the migration stimulating activity indicates that it is sensitive to trypsin, nondialyzable, and stable at 56 degrees C for 30 min. The activity was abolished by heating to 100 degrees C for 20 min but was not significantly inhibited by protamine sulphate, which suggests that most of the activity was not due to platelet-derived growth factor (PDGF)-like proteins. Our results thus show that ECs secrete polypeptide(s) chemotactic for vascular SMCs. Such interactions between ECs and SMCs in vivo might contribute to the migration of medial SMCs into the intima during atherogenesis.  相似文献   

15.
Circulating monocytes and T lymphocytes extravasate through the endothelium at sites of developing atheromatous lesions, where they tend to accumulate and mediate the progression of the disease. We have previously demonstrated the presence of an enzymatically degraded, nonoxidized form of LDL (E-LDL) in early human fatty streaks, which possesses major biological properties of an atherogenic lipoprotein. The effects of E-LDL on human endothelial cells have now been studied with respect to adhesion and transmigration of monocytes and T lymphocytes. E-LDL induced a rapid and dose-dependent selective adhesion of monocytes and T lymphocytes to endothelial cell monolayers within 30 minutes of incubation. Maximal increases in the number of adherent monocytes (8-fold) and of adherent T lymphocytes (4-fold) were observed after treatment with 50 microg/mL E-LDL. E-LDL was more active than oxidized LDL (ox-LDL), whereas native LDL produced only minor adhesive effects. Both E-LDL and ox-LDL enhanced transmigration of monocytes and of T lymphocytes through endothelial monolayers. Again, E-LDL was more potent than ox-LDL, inducing transmigration to a similar extent as N-formyl-Met-Leu-Phe. In endothelial cells, E-LDL stimulated upregulation of intercellular adhesion molecule-1 (ICAM-1), platelet-endothelial cells adhesion molecule-1 (PECAM-1), P-selectin, and E-selectin with distinct kinetics. Analyses with blocking antibodies indicated that ICAM-1 and P-selectin together mediated approximately 70% of cell adhesion, whereas blocking of PECAM-1 had no effect on adhesion but reduced transmigration to less than 50% of controls. E-LDL also upregulated expression of ICAM-1 in human aortic smooth muscle cells, and this correlated with increased adhesion of T lymphocytes. E-LDL is thus able to promote the selective adhesion of monocytes and T lymphocytes to the endothelium, stimulate transmigration of these cells, and foster their retention in the vessel wall by increasing their adherence to smooth muscle cells. These findings underline the potential significance of E-LDL in the pathogenesis of atherosclerosis.  相似文献   

16.
We examined the hypothesis that disturbance of laminar flow promotes the attachment of leukocytes to the vessel wall in regions where the wall shear stress is otherwise too high. Isolated neutrophils, lymphocytes, or monocytes were perfused through chambers with backward-facing steps so that vortices occurred with well-defined reattachment of flow. Wall shear stresses downstream in reestablished flow equaled 0.07 Pa (low shear) or 0.3 Pa (high shear). In chambers coated with P-selectin, adherent leukocytes rolled. By use of a P-selectin-Fc fragment chimera, adhesion was predominantly stationary, enabling definition of initial attachment sites. Neutrophils adhered in all regions of the low-shear chamber, with a local maximum around the reattachment point. However, in the high-shear chamber, adhesion was restricted to the recirculation zone and immediately downstream from the reattachment point. Rolling at high shear stress allowed a population of regions where initial attachment could not occur. At high shear, lymphocytes and monocytes also formed attachments restricted to the region of the reattachment point. The results imply that all types of leukocytes might bind to a capture receptor in high-shear vessels with discontinuities in the wall and might then spread to other regions.  相似文献   

17.
A model of blood flow in a skeletal muscle microvascular network, typical of a rat spinotrapezius muscle, was used to analyze the effects of white blood cells (WBCs) on network resistance and on the pathways followed by WBCs as they transit the network. This model incorporated plugging of vessel entrances by WBCs and the effects of vessel hematocrit, shear rate, and WBCs on blood apparent viscosity. Blood flow and HCT in each vessel and WBC positions were computed at discrete time steps. WBC introduction increased the network resistance 2.98% under normal conditions, and 14.4% above that of plasma alone when WBCs were considered to be suspended in plasma. This resistance increase was predominantly due to WBC plugging at vessel entrances. Comparison of resistance increases to the number of WBC plugs showed an exponential relationship once a threshold value of plugging was reached. Increased WBC plugging resulted from increases in either the feeding concentration of WBCs or the duration of individual plugs. Increased plug duration was the direct result of using alternate WBC deformation models and increasing WBC viscosity. A WBC viscosity range of 45 to 2400 P was used in the model, corresponding to the viscosities reported by various in vivo and in vitro studies. WBC plugging also significantly affected the pathways taken by WBCs. Under normal conditions, WBCs tended to flow through preferred pathways in the distal portions of the network. With increased plugging, WBC flow became more homogeneous. For significant increases in the network resistance to occur, it is essential that the WBC pathways be distributed throughout the network.  相似文献   

18.
OBJECTIVE: The role of chemokines and their transporters in rheumatoid arthritis (RA) is poorly described. Evidence suggests that CXCL5 plays an important role, because it is abundant in RA tissue, and its neutralization moderates joint damage in animal models of arthritis. Expression of the chemokine transporter Duffy antigen receptor for chemokines (DARC) is also up-regulated in early RA. The aim of this study was to investigate the role of CXCL5 and DARC in regulating neutrophil recruitment, using an in vitro model of RA synovium. METHODS: To model RA synovium, RA synovial fibroblasts (RASFs) were cocultured with endothelial cells (ECs) for 24 hours. Gene expression in cocultured cells was investigated using TaqMan gene arrays. The roles of CXCL5 and DARC were determined by incorporating cocultures into a flow-based adhesion assay, in which their function was demonstrated by blocking neutrophil recruitment with neutralizing reagents. RESULTS: EC-RASF coculture induced chemokine expression in both cell types. Although the expression of CXC chemokines was modestly up-regulated in ECs, the expression of CXCL1, CXCL5, and CXCL8 was greatly increased in RASFs. RASFs also promoted the recruitment of flowing neutrophils to ECs. Anti-CXCL5 antibody abolished neutrophil recruitment by neutralizing CXCL5 expressed on ECs or when used to immunodeplete coculture-conditioned medium. DARC was also induced on ECs by coculture, and anti-Fy6 antibody or small interfering RNA targeting of DARC expression effectively abolished neutrophil recruitment. CONCLUSION: This study is the first to demonstrate, in a model of human disease, that the function of DARC is essential for editing the chemokine signals presented by ECs and for promoting unwanted leukocyte recruitment.  相似文献   

19.
To analyze in vitro the migration of monocytes to the subendothelial space, their differentiation into macrophages, and the subsequent formation of foam cells in vitro, we have developed a 2-coculture system with rabbit aortic endothelial cells (AECs), aortic smooth muscle cells (SMCs), and a mixture of matrix proteins on polyethylene filters in chemotaxis chambers. AECs were seeded on a mixture of type I and IV collagen with or without various types of serum lipoproteins (method 1) or on matrix proteins secreted by SMCs (method 2). In these coculture systems, rabbit AECs can maintain a well-preserved monolayer for up to 2 weeks. When human CD14-positive monocytes were added to the upper medium of the system, with monocyte chemotactic protein-1 treatment approximately 60% of the monocytes transmigrated within 24 hours and were retained for up to 7 days, whereas without MCP-1 treatment, <30% of monocytes transmigrated. On day 1, transmigrant monocytes were negative for immunostaining of type I and II macrophage scavenger receptors but by day 3, became positive for scavenger receptors as well as other macrophage markers. When oxidized low density lipoprotein was added to the matrix layer of the method I coculture, on day 4 transmigrant cells exhibited lipid deposit droplets, and by day 7, they had the appearance of typical foam cells. Some of the transmigrant cells recovered in the lower medium on day 7 also appeared to be foam cells, indicating foam cell motility and escape from the coculture layer through the filter. In summary, this coculture system is a useful in vitro tool to dissect the cellular and molecular events that make up the process of foam cell formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号