首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brain capillary endothelial cells (BCECs) are targets of CD4-independent infection by HIV-1 and simian immunodeficiency virus (SIV) strains in vitro and in vivo. Infection of BCECs may provide a portal of entry for the virus into the central nervous system and could disrupt blood–brain barrier function, contributing to the development of AIDS dementia. We found that rhesus macaque BCECs express chemokine receptors involved in HIV and SIV entry including CCR5, CCR3, CXCR4, and STRL33, but not CCR2b, GPR1, or GPR15. Infection of BCECs by the neurovirulent strain SIV/17E-Fr was completely inhibited by aminooxypentane regulation upon activation, normal T cell expression and secretion in the presence or absence of ligands, but not by eotaxin or antibodies to CD4. We found that the envelope (env) proteins from SIV/17E-Fr and several additional SIV strains mediated cell–cell fusion and virus infection with CD4-negative, CCR5-positive cells. In contrast, fusion with cells expressing the coreceptors STRL33, GPR1, and GPR15 was CD4-dependent. These results show that CCR5 can serve as a primary receptor for SIV in BCECs and suggest a possible CD4-independent mechanism for blood–brain barrier disruption and viral entry into the central nervous system.  相似文献   

2.
The chemokine receptor CXCR4 functions as a fusion coreceptor for T cell tropic and dual-tropic HIV-1 strains. To identify regions of CXCR4 that are important for coreceptor function, CXCR4–CXCR2 receptor chimeras were tested for the ability to support HIV-1 envelope (env) protein-mediated membrane fusion. Receptor chimeras containing the first and second extracellular loops of CXCR4 supported fusion by T tropic and dual-tropic HIV-1 and HIV-2 strains and binding of a monoclonal antibody to CXCR4, 12G5, that blocks CXCR4-dependent infection by some virus strains. The second extracellular loop of CXCR4 was sufficient to confer coreceptor function to CXCR2 for most virus strains tested but did not support binding of 12G5. Truncation of the CXCR4 cytoplasmic tail or mutation of a conserved DRY motif in the second intracellular loop did not affect coreceptor function, indicating that phosphorylation of the cytoplasmic tail and the DRY motif are not required for coreceptor function. The results implicate the involvement of multiple CXCR4 domains in HIV-1 coreceptor function, especially the second extracellular loop, though the structural requirements for coreceptor function were somewhat variable for different env proteins. Finally, a hybrid receptor in which the amino terminus of CXCR4 was replaced by that of CCR5 was active as a coreceptor for M tropic, T tropic, and dual-tropic env proteins. We propose that dual tropism may evolve in CCR5-restricted HIV-1 strains through acquisition of the ability to utilize the first and second extracellular loops of CXCR4 while retaining the ability to interact with the CCR5 amino-terminal domain.  相似文献   

3.
Eosinophils are granulocytic leukocytes that function in both protective and pathological immune responses. They can be infected by HIV-1, but characterization of the infection has been hindered by lack of a productive cell culture model. In the present study, the unique eosinophilic cell line AML14.3D10 was used as a model to test the hypothesis that HIV-1 productively infects eosinophilic cells in a strain-dependent fashion. The AML14.3D10 cell line was cultured with one T cell-tropic (T-tropic) strain and two macrophage-tropic (M-tropic) strains of HIV-1 (HTLV-IIIB, HIV-1AdaM, and HIV-1Ba-L strains, respectively). Cytopathic effects were evident in living cultures and in stained slide preparations of AML14.3D10 cells infected with the T-tropic strain of HIV-1. Culture supernatants from infected AML14.3D10 cells contained high levels of HIV-1 p24 protein that peaked at approximately 7-10 days postinfection. A line of AML14.3D10 cells chronically infected with HTLV-IIIB and continuously producing high levels of virus was established. In contrast to the T-tropic strain, the M-tropic strains of HIV-1 did not productively infect the eosinophilic cell line. Thus, the AML14.3D10 eosinophilic cell line was permissive for a T-tropic strain but not for M-tropic strains of HIV-1. Flow cytometry revealed that uninfected AML14.3D10 cells were positive for the HIV-1 receptor CD4 and coreceptors CXCR4 and CCR5; the cell line was negative for CCR3. The lack of productive infection by M-tropic strains despite CCR5 expression indicates that strain-dependent infection may not be determined at the coreceptor level in AML14.3D10 cells.  相似文献   

4.
5.
The effect of interferon gamma (IFN-gamma) and interleukin 6 (IL-6) on infection of macrophages with human immunodeficiency virus type 1 (HIV-1) was investigated. By using a polymerase chain reaction-based viral entry assay and viral infectivity assay, it was demonstrated that IL-6 and IFN-gamma augmented susceptibility of monocyte-derived macrophages (MDMs) to infection with T-cell tropic CXCR4-utilizing (X4) HIV-1 strains. Consistent with this finding, IFN-gamma and IL-6 augmented fusion of MDMs with T-tropic envelope-expressing cells. The enhanced fusion of cytokine-treated MDMs with T-tropic envelopes was inhibited by the CXCR4 ligand, SDF-1, and by T22 peptide. IFN-gamma and IL-6 did not affect expression of surface CXCR4 or SDF-1-induced Ca(++) flux in MDMs. In contrast to the effect of IFN-gamma on the infection of MDMs with X4 strains, IFN-gamma inhibited viral entry and productive infection of MDMs with macrophage-tropic (M-tropic) HIV-1. Consistent with this finding, IFN-gamma induced a decrease in fusion with M-tropic envelopes that correlated with a modest reduction in surface CCR5 and CD4 on MDMs. It was further demonstrated that macrophage inflammatory protein (MIP)-1alpha and MIP-beta secreted by cytokine-treated MDMs augmented their fusion with T-tropic-expressing cells and inhibited their fusion with M-tropic envelope-expressing cells. These data indicate that proinflammatory cytokines, which are produced during opportunistic infections or sexually transmitted diseases, may predispose macrophages to infection with X4 strains that, in turn, could accelerate disease progression.  相似文献   

6.
The G protein-coupled 7 transmembrane (STM) chemoattractant receptors can be inactivated by heterologous desensitization. Earlier work showed that formly peptide receptor-like 1 (FPRL1), an STM receptor with low affinity for the bacterial chemotactic peptide formyl-methionyl-leucyl-phenylalamine (fMLF), is activated by peptide domains derived from the human immunodeficiency virus (HIV)-1 envelope glycoprotein gp120 and its activation results in desensitization and down-regulation of the chemokine receptors CCR5 and CXCR4 from monocyte surfaces. This study investigated the possibility of interfering with the function of CCR5 or CXCR4 as HIV-1 coreceptors by activating FPRL1. Cell lines were established expressing FPRL1 in combination with CD4/CXCR4 or CD4/CCR5 and the effect of a synthetic peptide, WKYMVm, a potent activator of formyl peptide receptors with preference for FPRL1 was determined. Both CXCR4 and CCR5 were desensitized by activation of the cells with WKYMVm via a staurosporine-sensitive pathway. This desensitization of CXCR4 and CCR5 also attenuated their capacity as the fusion cofactors for HIV-1 envelope glycoprotein and resulted in a significant inhibition of p24 production by cell lines infected with HIV-1 that use CCR5 or CXCR4 as coreceptors. Furthermore, WKYMVm inhibited the infection of human peripheral monocyte-derived macrophages and CD4(+) T lymphocytes by R5 or X4 strains of HIV-1, respectively. These results indicate that heterologous desensitization of CCR5 and CXCR4 by an FPRL1 agonist attenuates their major biologic functions and suggest an approach to the development of additional anti-HIV-1 agents. (Blood. 2001;97:2941-2947)  相似文献   

7.
Macrophage (M)-tropic HIV-1 isolates use the beta-chemokine receptor CCR5 as a coreceptor for entry, while T cell line-adapted (TCLA) strains use CXCR4 and dual-tropic strains can use either CCR5 or CXCR4. To investigate the viral determinants involved in choice of coreceptor, we used a fusion assay based on the infection of CD4+ HeLa cells that express one or both coreceptors with Semliki Forest virus (SFV) recombinants expressing the native HIV-1 gp160 of a primary M-tropic isolate (HIV-1BX08), a TCLA isolate (HIV-1LAI), or a dual-tropic strain (HIV-1MN). We examined whether the V3 region of these glycoproteins interacts directly with the corresponding coreceptors by assaying coreceptor-dependent cell-to-cell fusion mediated by the different recombinants in the presence of various synthetic linear peptides. Synthetic peptides corresponding to different V3 loop sequences blocked syncytium formation in a coreceptor-specific manner. Synthetic V2 peptides were also inhibitory for syncytium formation, but showed no apparent coreceptor specificity. A BX08 V3 peptide with a D320 --> R substitution retained no inhibitory capacity for BX08 Env-mediated cell-to-cell fusion, but inhibited LAI Env-mediated fusion as efficiently as the homologous LAI V3 peptide. The same mutation engineered in the BX08 env gene rendered it able to form syncytia on CD4+CXCR4+CCR5-HeLa cells and susceptible to inhibition by SDF-1alpha and MIP-1beta. Other substitutions tested (D320 --> Q/D324 --> N or S306 --> R) exhibited intermediate effects on coreceptor usage. These results underscore the importance of the V3 loop in modulating coreceptor choice and show that single amino acid modifications in V3 can dramatically modify coreceptor usage. Moreover, they provide evidence that linear V3 loop peptides can compete with intact cell surface-expressed gp120/gp41 for CCR5 or CXCR4 interaction.  相似文献   

8.
The monocytic THP-1 cell line has been used to study HIV-monocyte/macrophage interactions and the relationship between differentiation, virus production, and virus latency. Undifferentiated THP-1 cells are susceptible to infection by T-tropic human immunodeficiency virus type 1 (HIV-1) isolates that use the coreceptor CXCR4 (X4 strains). Treatment with phorbol 12-myristate 13-acetate (PMA) induces differentiation of THP-1 cells into adherent macrophage-like cells, which are susceptible to M-tropic, CCR5-dependent isolates (R5 strains). The aim of this study was to determine whether variabilities observed in the susceptibility of THP-1 cells to HIV-1 infection may be related to the differential expression of CD4, CCR5, and CXCR4. Both propagation and PMA treatment of THP-1 cells resulted in a marked decrease in CD4-positive cells, whereas the expression of CCR5 and CXCR4 was not reduced during propagation. Both coreceptors were also relatively "resistant" to PMA-induced downregulation when compared with the low percentage of CD4-positive cells in differentiated cultures. In undifferentiated THP-1 cells, low CD4 expression significantly reduced the susceptibility of the cells to infection with the R5 HIV-1(BaL) isolate, whereas a PMA-induced decrease in CD4 expression reduced permissiveness of the cells to the X4 HIV-1(IIIB) isolate. Thus, cell surface CD4 plays a primary role in determining how efficiently THP-1 cells can be infected with the X4 and the R5 isolates.  相似文献   

9.
10.
The recently cloned human chemoattractant receptor-like (CMKRL)1, which is expressed in vivo in CD4-positive immune cells, has structural homology with the two chemokine receptors C-C chemokine receptor (CCR)5 and C-X-C chemokine receptor (CXCR)4, which serve as the major coreceptors necessary for fusion of the HIV-1 envelope with target cells. In view of the structural similarity, CMKRL1 was tested for its possible function as another HIV-1 coreceptor after stable expression in murine fibroblasts bearing the human CD4 receptor. The cells were infected with 10 primary clinical isolates of HIV-1, and entry was monitored by semiquantitative PCR of viral DNA. The efficiency of the entry was compared with the entry taking place in CD4-positive cells expressing either CCR5 or CXCR4. Seven of the isolates used CMKRL1 for viral entry; they were mainly of the syncytium-inducing phenotype and also used CXCR4. Entry efficiency was higher with CMKRL1 than with CXCR4 for more than half of these isolates. Three of the ten isolates did not use CMKRL1; instead, entry was mediated by both CCR5 and CXCR4. The experiments thus indicate that CMKRL1 functions as a coreceptor for the entry of HIV-1 into CD4-positive cells. In the course of this study, leukotriene B4 was shown to be the natural ligand for this receptor (now designated BLTR), which therefore represents a novel type of HIV-1 coreceptor along with the previously identified chemokine receptors. BLTR belongs to the same general chemoattractant receptor family as the chemokine receptors but is structurally more distant from them than are any of the previously described HIV-1 coreceptors.  相似文献   

11.
It is well known that HIV-1 does not establish infection in nonhuman primates, nor in cell lines derived from them, due to the existence of saturable resistance factors. In this study, we show that an in vitro established Macaca fascicularis-derived CD4(-) B cell line (F6) can be productively infected by the laboratory-adapted T-tropic HXBc2/HIV-1 strain at low multiplicity of infection, apparently because it does not express the restriction factor that has been detected in other simian cell lines. Moreover, efficient entry into F6 cells was obtained with pseudotyped recombinant HIV-1 viruses containing the laboratory-adapted T-tropic (HXBc2) or the dual-tropic (89.6) envelope glycoproteins, whereas entry of virus containing the envelope glycoproteins of the M-tropic Ba-L strain was less efficient. Virus containing primary T-tropic (Eli) envelope glycoproteins did not infect F6 cells. Furthermore, although CCR5 was not present on the cell surface and gpr15 and strl33 mRNAs were not expressed in the cells, a high level of infection of F6 cells by the M-tropic simian immunodeficiency virus SIVmac316 was observed. In contrast, F6 cells were poorly infected by T-tropic SIVmac239. Given the unique properties of the F6 cell line, i.e., that it is of simian origin yet is able to be infected by HIV-1 in a CD4-independent manner, F6 cells represent a useful model for studying cellular factors mediating resistance or permissivity to HIV-1 infection and may help to evaluate HIV-1 and SIV cell tropism.  相似文献   

12.
Roles of chemokines and chemokine receptors in HIV-1 infection   总被引:6,自引:0,他引:6  
Human immunodeficiency virus type 1 (HIV-1) uses a coreceptor together with CD4 to enter CD4+ target cells. The chemokine receptors CXCR4 and CCR5 have been found to be the major coreceptors for T-cell line-tropic and macrophage-tropic HIV-1 strains, respectively, although many other chemokine and orphan receptors have also been identified as potential coreceptors for HIV-1. Genetic analyses has revealed the importance of chemokine and chemokine receptor genes in disease progression. The discovery of coreceptors provides a more defined scheme for virus entry in which the HIV-1 envelope glycoprotein sequentially binds CD4 and coreceptor, leading to a membrane fusion reaction between the viral envelope and the plasma membrane of the target cell. It also provides the basis for HIV-1 cell tropism. The identification of HIV coreceptors provides new opportunities for the development of anti-HIV therapy. Many coreceptor-based therapeutic approaches have been developed, some of which are currently in clinical trials.  相似文献   

13.
14.
CCR5 and CXCR4, the respective cell surface coreceptors of R5 and X4 HIV-1 strains, both form heterodimers with CD4, the principal HIV-1 receptor. Using several resonance energy transfer techniques, we determined that CD4, CXCR4, and CCR5 formed heterotrimers, and that CCR5 coexpression altered the conformation of both CXCR4/CXCR4 homodimers and CD4/CXCR4 heterodimers. As a result, binding of the HIV-1 envelope protein gp120IIIB to the CD4/CXCR4/CCR5 heterooligomer was negligible, and the gp120-induced cytoskeletal rearrangements necessary for HIV-1 entry were prevented. CCR5 reduced HIV-1 envelope-induced CD4/CXCR4-mediated cell-cell fusion. In nucleofected Jurkat CD4 cells and primary human CD4+ T cells, CCR5 expression led to a reduction in X4 HIV-1 infectivity. These findings can help to understand why X4 HIV-1 strains infection affect T-cell types differently during AIDS development and indicate that receptor oligomerization might be a target for previously unidentified therapeutic approaches for AIDS intervention.For HIV-1 to enter a target cell, the viral envelope glycoprotein gp120 must interact with a set of cell surface molecules that include the primary receptor, CD4 (1), and a chemokine receptor (CCR5 or CXCR4) that acts as a coreceptor (2, 3). These molecules form CD4/chemokine receptor complexes, as deduced from coprecipitation data for CXCR4 or CCR5 with CD4 (48).Most HIV-1 variants isolated from newly infected individuals use CCR5 and CD4 to enter host cells; these M-tropic R5 strains are predominant in acute and asymptomatic phases of HIV infection. CD4+ T helper type 1 (Th1) cells, which express high CCR5 levels (9, 10), are implicated in maintaining asymptomatic status (11, 12). The “viral shift” from R5 to T-tropic X4 HIV-1 strains correlates with AIDS progression (13, 14). X4 strains infect mainly CD4+ Th2 cells, which express little CCR5 and whose CXCR4 levels resemble those of Th1 cells (15, 16), which suggests that cell susceptibility to HIV-1 infection depends on the CD4/coreceptor ratio and on receptor levels during cell activation and/or differentiation (17). CXCR4 and CCR5 are present as homodimers and heterodimers at the plasma membrane (1820). In addition, gp120-mediated CD4/CXCR4 and CD4/CCR5 association and clustering is reported (2123). Nonetheless, little is known of how CCR5 expression influences the CD4/CXCR4 interaction, or of the molecular basis that underlies the differences in X4 strains infection relative to CCR5 levels at the cell surface.Here, we identify CD4/CXCR4/CCR5 oligomers at the cell membrane, even in the absence of ligands. CCR5 expression in these complexes modifies the heterodimeric CD4/CXCR4 conformation and blocks gp120IIIB binding, without altering binding of the CXCR4 ligand CXCL12 and its subsequent signaling. gp120IIIB-triggered LIMK1 activation, cofilin dephosphorylation, and the actin cytoskeleton rearrangement necessary for cell-cell fusion were impeded in CD4/CXCR4/CCR5-expressing cells. The data obtained using recombinant gp120IIIB glycoprotein were confirmed by experiments showing that X4 HIV-1 infection of Jurkat and primary T cells is regulated by CCR5 expression.  相似文献   

15.
Gorry PR  Zhang C  Wu S  Kunstman K  Trachtenberg E  Phair J  Wolinsky S  Gabuzda D 《Lancet》2002,359(9320):1832-1834
Entry of HIV-1 into a cell happens only after viral envelope glycoproteins have bound to CD4 and a chemokine receptor. Generally, macrophage-tropic strains use CCR5, and T cell-line-tropic strains use CXCR4 as coreceptors for virus entry. Dual-tropic viruses can use both CCR5 and CXCR4. About 1% of white people are homozygous for a non-functional CCR5 allele, containing a 32 base pair deletion (CCR5 Delta 32). We studied the persistence of dual-tropic HIV-1 in an individual homozygous for this deletion. Our results suggest that structural features of the HIV-1 envelope linked to CCR5 tropism could confer a selective advantage in vivo.  相似文献   

16.
The human immunodeficiency virus type 1 (HIV-1), the etiological agent of the acquired immunodeficiency syndrome (AIDS), shows a variety of biological properties, which may constitute an obstacle to development of effective vaccines or antiretroviral therapy. To characterize Brazilian strains of HIV-1, we studied 24 viruses isolated from blood samples of HIV-1-positive patients from different regions of the country. To examine the cell tropism and the virus ability to form syncytia, primary macrophages and the CD4+ T cell line MT-2 were infected with these viruses. We found that 22 isolates replicated well in macrophages (macrophage-tropic isolates), 2 infected only MT-2 cells (T cell line tropic variants), while 6 of them grew in both cells. We found 8 syncytium-inducing (SI) and 16 non-SI (NSI) isolates. Continuous cultures of 18 isolates were established in the CCR5+/CXCR4+ cell line PM-1, and SI/NSI features of these viruses were confirmed by cell fusion assay with uninfected CD4+ T cell lines (PM-1, MT-2, H9, and SUP-T1). The coreceptor usage of 18 isolates was investigated by infecting U87 cells transfected with CD4 and chemokine receptors, and we found that 11 isolates infected only CCR5+ cells, 3 only CXCR4+ cells, whereas 4 used both coreceptors. We also observed that X4 isolates were more sensitive to neutralization by dextran sulfate than R5 or R5X4 viruses. Our findings show that the Brazilian isolates are phenotypically similar to those prevalent in other regions, which could mean that therapeutic strategies based on HIV-1 phenotypic properties would be efficient in Brazil, as in other countries.  相似文献   

17.
CCR5 and CXCR4 are the major HIV-1 coreceptors for R5 and X4 HIV-1 strains, respectively, and a threshold number of CD4 and chemokine receptor molecules is required to support virus infection. Therefore, we used a quantitative fluorescence-activated cell sorting assay to determine the number of CD4, CCR5, and CXCR4 antibody-binding sites (ABS) on various T cell lines, T cell subsets, peripheral blood dendritic cells (PBDC), and monocyte-derived macrophages by using four-color fluorescence-activated cell sorting analysis on fresh whole blood. Receptor levels varied dramatically among the various subsets examined and typically varied from 2- to 5-fold between individuals. CCR5 was expressed at much higher levels in CD4+/CD45RO+/CD62L-true memory cells compared with CD4+/CD45RO+/CD62L+ cells. Fresh PBDC had the highest number of CCR5 ABS among the leukocyte subsets examined but had few CXCR4 ABS, affording a strategy for sort-purifying PBDC. In vitro maturation of PBDC resulted in median 3- and 41-fold increases in CCR5 and CXCR4 ABS, respectively. We found that macrophage colony-stimulating factor caused the greatest up-regulation of both CCR5 and CXCR4 on macrophage maturation (from approximately 5,000 to approximately 50, 000 ABS) whereas granulocyte-macrophage colony-stimulating factor caused a marked decrease of CXCR4 (from approximately 5,000 ABS to <500) while up-regulating CCR5 expression (from approximately 5,000 to approximately 20,000 ABS). Absolute ABS for CD4 and the major HIV-1 coreceptors serve as a more quantitative measure of cell surface expression, and we propose that this be used for future studies looking at the modulation of CD4 or chemokine receptor expression by cytokines, HIV-1 infection, or receptor polymorphisms.  相似文献   

18.
The human chemokine receptors CCR5 and CXCR4 have emerged as the predominant cofactors, along with CD4, for cellular entry of HIV-1 in vivo whereas the contribution of other chemokine receptors to HIV disease has not been yet determined. CCR5-specific (R5) viruses predominate during primary HIV-1 infection whereas viruses with specificity for CXCR4 (R5/X4 or X4 viruses) often emerge in late stages of HIV disease. The evolution of X4 viruses is associated with a rapid decline in CD4+ T cells, although a causative relationship between viral tropism and CD4+ T cell depletion has not yet been proven. To rigorously test this relationship, we assessed CD4+ T cell depletion in suspensions of human peripheral blood mononuclear cells and in explants of human lymphoid tissue on exposure to paired viruses that are genetically identical (isogenic) except for select envelope determinants specifying reciprocal tropism for CXCR4 or CCR5. In both systems, X4 HIV-1 massively depleted CD4+ lymphocytes whereas matched R5 viruses depleted such cells only mildly despite comparable viral replication kinetics. These findings demonstrate that the coreceptor specificities of HIV-1 are a causal factor in CD4+ T cell depletion ex vivo and strongly support the hypothesis that the evolution of viral envelope leading to usage of CXCR4 in vivo accelerates loss of CD4+ T cells, causing immunodeficiency.  相似文献   

19.
In addition to the CD4 molecule that binds to the human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein gp120, productive HIV-1 infection requires interaction with cellular receptors for alpha- or beta- chemokines (CXCR4 and CCR5 respectively). Isolates of HIV-1 exhibit different tropism depending on the chemokine receptor type that they use to infect their cellular targets. HIV-1 strains that use preferentially CCR5 are known as R5 strains. They are more frequently found in asymptomatic individuals during the initial stages of the disease and are involved in the transmision of infection from mother to child. HIV-1 species using CXCR4 (X4 strains) are observed mainly in patients with advanced disease. While X4 isolates are associated with syncitium formation, in general R5 strains are not. Interaction of X4 and R5 with their specific receptors is necessary to establish productive HIV-1 infection and trigger a series of intracellular signals. Modulation of CXCR4 and CCR5 expression after HIV-1 infection is one of the results of such interaction and may have important consequences on the course of the infection. Down regulation of CCR5 and CXCR4 after HIV-1 infection could be the result of indirect events linked to HIV-1 infection, such as the induction of alpha- or beta-chemokines competing with the virions for receptor binding. They could also reflect direct effects of HIV-1 on chemokine-receptor turnover. In this review, the mechanisms of modulation of CXCR4 and CCR5 expression after HIV-1 infection will be discussed.  相似文献   

20.
OBJECTIVES: With the use of highly active antiretroviral therapy, the identification of HIV reservoirs within the body has become an important issue. However, the testis has been largely ignored despite representing a pharmacologic sanctuary which could act as a viral reservoir. DESIGN: Because alterations in testosterone production have frequently been reported in HIV-infected individuals, we investigated whether the testosterone-producing Leydig cells could become directly infected by HIV-1, HIV-2 or SIV. METHODS: Purified Leydig cells were infected with a panel of HIV-1, HIV-2 and SIV strains and examined for expression of HIV/SIV receptors. Additionally, the impact of CD4 transduction on Leydig cell infection was determined. RESULTS: Leydig cells were unable to support productive infection of the seven HIV-1 isolates tested. No CD4, CXCR4 or CCR5 expression was evident on the surface of Leydig cells and transduction with a CD4 expressing adenovirus did not induce HIV-1 infection. In contrast, some primary and laboratory adapted CD4-independent HIV-2 and SIV strains were able to enter and replicate productively in Leydig cells. CONCLUSIONS: Our results suggest that Leydig cells do not represent a target for HIV-1 infection within the testis. In contrast, Leydig cells support HIV-2 and SIV infection and thus represent a potential target for infection. Receptor use and significance of HIV-2/SIV infection of Leydig cells remain to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号