首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In rats with unilateral 6-hydroxydopamine lesions of the substantia nigra, a specific D1 dopamine receptor agonist, SKF 38393A, at a dose that does not itself produce turning, significantly increased the contralateral rotation observed following a low dose of the specific D2 agonist LY 171555. Doses of SKF 38393A or the D2 agonist bromocriptine, which would themselves not induce turning, in combination produced a high rate of turning. These results suggest a synergistic interaction between D1 and D2 dopamine receptors in this system.  相似文献   

2.
The unilateral intrastriatal injection of the irreversible dopamine (DA) receptor blockerN-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) induces a marked decrease in the density of D1 (-48%) and D2 (-51%) DA receptors available for binding to [3H]SCH 23390 and [3H]raclopride, respectively. A challenge dose of the D2 agonist LY 171555 (1 mg/kg, i.p., 24 h after EEDQ) causes intensive ipsiversive circling behavior, whereas the selective D1 agonist SKF 38393 (20 mg/kg, i.p., 24 h after EEDQ) is unable to induce rotations. The density of D1 and D2 DA receptors returns to basal levels by 7 days after the intrastriatal infusion of EEDQ. This biochemical recovery is associated with a progressive decrease in the number of rotations elicited by a challenge dose of LY 171555, suggesting the EEDQ does not cause any relevant neuronal damage. A selective inactivation of striatal D1 or D2 DA receptors can be obtained by injecting EEDQ 30 min after the administration of the D2 antagonist raclopride (20 mg/kg, i.p.) or of the D1 antagonist SCH 23390 (2 mg/kg, s.c.), respectively. The intensity of the circling behavior induced by LY 171555 24 h after EEDQ in animals with a selective inactivation of D2 DA receptors is similar to that found in rats in which both D1 and D2 DA receptors have been inactivated. In contrast, LY 171555 does not cause rotations when the density of D1 DA receptors is selectively decreased by EEDQ in rats pretreated with raclopride. These results indicate that the imbalance in striatal D2 receptors, but not in D1 receptors, is a critical factor for the expression of the motor effects elicited by LY 171555 in EEDQ-treated rats.  相似文献   

3.
We have previously found, in striatal membrane preparations from young (2 months old) rats, that stimulation of adenosine A2 receptors (with the selective adenosine A2 agonist CGS 21680) increases the dissociation constants of high- (Kh) and low-affinity (Kl) dopamine D2 binding sites (labelled with the selective dopamine D2 antagonist [3H]raclopride) without changing the proportion of high affinity binding sites (Rh). In the present study in striatal preparations from adult (6 months old) rats, it was found that in addition to the increase in both Kh and Kl values, stimulation of adenosine A2 receptors is associated with an increase in Rh. These result suggest that, in the adult rat, adenosine A2 stimulation may inhibit the behavioural effects induced by dopamine D2 stimulation both by decreasing the affinity and the transduction of dopamine D2 receptors. We have also studied the intramembrane A2-D2 receptor interaction in an experimental model of Parkinson's disease, namely in rats with a unilateral 6-OH-dopamine-induced lesion of the nigro-striatal dopamine pathway. It was found that a unilateral dopamine denervation is associated with a higher density of striatal dopamine D2 receptors in the order of 20%, without any change in their affinity compared with the unlesioned neostriatum. Furthermore, the density (Bmax values) of dopamine D2 receptors in the contralateral neostriatum was significantly higher (about 20%) than in the striatum from native animals. This finding suggests that an unilateral dopamine denervation also induces compensatory long-lasting changes of dopamine D2 receptors in the contralateral neostriatum. In addition to the hightened sensitivity to dopamine agonists, it is known that the dopamine denervated striatum is more sensitive to adenosine antagonists like methylxanthines. If the adenosine A2-dopamine D2 interaction is the main mechanism of action mediating the central effects of methylxanthines, the dopamine denervation might also potentiate this interaction, i.e., dopamine D2 receptors could be not only more sensitive to dopamine but also to adenosine A2 receptor activation. Our results support this hypothesis, since membrane preparations from the denervated neostriatum are more sensitive to the effect of CGS 21680 on dopamine D2 receptors. Thus a low dose of CGS 21680 (3 nM), which is not effective in membrane preparations from the neostriatum of naive animals, is still effective in membranes from the denervated neostriatum. These results underline the potential antiparkinsonian activity of adenosine A2 antagonists.  相似文献   

4.
The effects of dopamine (DA) D1 and D2 receptors on striatal acetylcholine (ACh) releases were investigated by in vivo microdialysis. All drugs were applied via dialysis membrane directly to the striatum. The levels of ACh release were increased by 10−4 M SKF38393, a D1 receptor agonist. Although 10−4 M SCH23390, a D1 receptor antagonist, exhibited an increase in the levels of ACh release, the agonist (10−4 M) induced-increase in the levels of ACh release was suppressed by coperfusion of the antagonist (10−4 M). In contrast, the levels of ACh release were decreased by the D2 receptor agonist, N-434, in a dose-dependent manner (10−5 M to 10−7 M) and increased by the D2 receptor antagonist, sulpiride, in a dose-dependent manner (10−5 M to 10−7 M). The agonist (10−5 M) induced-decrease in the levels of ACh release was suppressed by coperfusion of the antagonist (10−6 M). Coperfusion of D1 (10−4 M) and D2 (10−5 M) agonists blocked both effects of respective drug alone. In order to clarify the effect of endogenous DA, two drugs with different mechanisms for enhancing DA concentration in the synaptic cleft, the DA release-inducer methamphetamine, and the DA uptake inhibitor nomifensine were perfused separately. Both (10−4 M to 10−6 M) produced a dose- and a time-dependent decrease in the levels of ACh release. Significant higher levels of ACh release were observed in the striatum of the 6-hydroxydopamine (8


)-treated rats with significant depletion of striatal DA content. These results suggest that in striatal DA-ACh interaction ACh release, as cholinergic interneuron's activity, is tonically inhibited via the D2 receptor, mainly by dopaminergic input, and the D1 receptor probably modifies the effect of the D2 receptor indirectly.  相似文献   

5.
To examine the impact of lead (Pb) exposure during the ontogeny of dopaminergic (DA) systems on resultant DA function, rats were exposed postnatally (0–21 days of age) via the lactating dam to 0, 100 or 350 ppm Pb acetate in drinking water. At 2 months of age, the postnatally Pb-exposed rats were trained to discriminate the stimulus properties of either the D1 receptor agonist SKF38393 (6.0 mg/kg) or the D2-D3 receptor family subtype agonist quinpirole (0.05 mg/kg) from saline using a standard two-lever operant food-reinforced drug discrimination paradigm. In each training group, dose-effect curves describing drug lever responding to lower doses of the training drug and to preadministration of selective DA antagonists were obtained to examine Pb-induced changes in DA sensitivity. Doses of other DA agonists were substituted for the training drug to determine the generality of any changes in DA sensitivity, and doses of non-DA compounds were substituted to determine the specificity of any changes in DA sensitivity. In the D1/saline training condition, Pb exposure was not associated with any specific or consistent changes in DA sensitivity. In contrast, exposure to Pb was associated with D2-D3 receptor subtype supersensitivity as was indicated by significantly elevated levels of drug lever responding in the presence of quinpirole and haloperidol and to at least one dose of apomorphine. No differences in the dose-effect curves for either (+)-amphetamine or NMDA were observed in the D2-D3-trained control and Pb-exposed groups, but an increase in drug lever responding in the presence of pentobarbital was noted in the Pb-exposed group relative to control. Taken together, these findings are consistent with a Pb-induced functional D2-D3 supersensitivity possibly mediated via autoreceptors. Moreover, this functional D2-D3 supersensitivity necessarily represents a permanent effect of postnatal Pb exposure since both blood and brain Pb levels were negligible at the time drug discrimination training began.  相似文献   

6.
The neurochemical factors involved in the maintenance and breakdown of dopamine D1/D2 receptor synergism were investigated by giving rats various pharmacological treatments that diminish the ability of dopamine to interact with its D1 and/or D2 receptors. Following these treatments, rats were observed for the expression of stereotyped motor behavior in response to independent stimulation of D1 or D2 receptors. Independent D2-mediated responses were observed: (a) 2 h after the last of three daily reserpine (1 mg/kg) injections, (b) 48 h after bilateral 6-hydroxydopamine (6-OHDA) lesions of the mesostriatal pathways, (c) 24 h after a concentrated 48-h regimen (one injection/6 h) of eticlopride (0.5 mg/kg) or eticlopride + SCH 23390 (0.5 mg each), and (d) 2 h after a concentrated 48-h regimen (one injection/6 h) of α-methyl-p-tyrosine (αMPT; 100 mg/kg), but not after control treatments or a concentrated regimen of SCH 23390 alone. By contrast, independent D1-mediated responses were observed only after three daily reserpine injections or 48 h after bilateral 6-OHDA lesions. Independent D1-mediated stereotypy was not observed under control conditions or following a concentrated 48-h regimen of (a) SCH 23390 or eticlopride (0.5 mg/kg each) alone or in combination, (b) a high dose of SCH 23390 (1.0 mg/kg), (c) αMPT (100 mg/kg), or (d) αMPT (100 mg/kg)+SCH 23390 (1.0 mg/kg). Reserpine, bilateral 6-OHDA, and αMPT treatments produced striatal dopamine depletions of 96%, 92%, and 71%, respectively. These data indicate that the breakdown in D1/D2 synergism consists of two components: (a) D1 independence from the controlling influence of D2 receptors, and (b) D2 independence from the controlling influence of D1 receptors. The interaction of synaptic DA with its D2 receptors plays a major role in determining whether these receptors can function independently of D1 receptors, whereas reduced DA-D1 activity alone appears insufficient to elicit D1 independence.  相似文献   

7.
The present study was designed to investigate: (1) the involvement of dopamine D1 and D2 receptors, and (2) the roles of these receptors and endogenous opioid systems (endorphinergic and enkephalinergic systems) in the ethanol-induced place preference in rats exposed to conditioned fear stress using the conditioned place preference paradigm. The administration of ethanol (300 mg/kg, i.p.) induced a significant place preference. The selective D1 receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H3-benzazepine)hydrochloride (SCH23390; 0.01 and 0.03 mg/kg, s.c.) and the selective D2 receptor antagonist S(−)-5-(aminosulfonyl)-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2-methoxybenzamide (sulpiride; 20 and 40 mg/kg, s.c.) significantly attenuated the ethanol-induced place preference. The administration of ethanol (75 mg/kg, i.p.) tended to produce a place preference, but this effect was not significant. SCH23390 (0.03 mg/kg, s.c.) and sulpiride (40 mg/kg, s.c.) significantly attenuated the enhancement of the ethanol (75 mg/kg, i.p.)-induced place preference produced by the μ-opioid receptor agonist morphine (0.1 mg/kg, s.c.). In addition, SCH23390 (0.03 mg/kg, s.c.) also significantly attenuated the enhancement of the ethanol (75 mg/kg, i.p.)-induced place preference produced by the selective δ-opioid receptor agonist 2-methyl-4aα-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12aα-octahydroquinolino[2,3,3,-g]isoquinoline (TAN-67; 20 mg/kg, s.c.). On the other hand, sulpiride (40 mg/kg) had no significant effect on the enhancement of the ethanol (75 mg/kg, i.p.)-induced place preference produced by TAN-67. These results suggest that D1 and D2 receptors may be involved in the rewarding mechanism of ethanol under psychological stress. In addition, D1 receptors may participate in the rewarding effect of ethanol modulated by the activation of μ- and δ-opioid receptors, whereas D2 receptors may participate in the rewarding effect of ethanol modulated by the activation of μ-opioid receptors, but not in that modulated by the activation of δ-opioid receptors.  相似文献   

8.
The specific binding of [3H]YM-09151-2 was used to investigate the possible differences in age-associated changes in striatal D2 dopamine (DA) receptor properties in genetically obese (fa/fa) Zucker rats and their lean3(Fa/?) littermates. The maximal binding sites (Bmax) of D2 DA receptors was found to decline with age in both obese and lean rats: the rate of decline in receptor Bmax was slightly higher in lean than obese rats. However. the Bmax of D2 DA receptor in 6-, 12- and 18-month-old obese rats was significantly lower compared to the age-matched lean rats. These data indicate that obesity decreases the number of striatal D2 DA receptors without affecting the rate at which receptor number decreases with age.  相似文献   

9.
Kainic acid lesions elicit reductions in ligand binding to both D1 and D2 striata dopamine receptors in young and old rats. Relative reductions are greatest for both receptors in young animals than old. In addition, D1 receptor binding is reduced more than D2 at both ages. These findings support the idea that those dopamine receptor neurons lost during aging may reside in a kainic acid sensitive population.  相似文献   

10.
The selective dopaminergic antagonist ligands [3H]SCH 23390 and [3H]sulpiride were used to reveal autoradiographically dopamine D1 and D2 receptors, respectively, in brain sections from rats which had received unilateral 6-hydroxydopamine (6-OHDA) injections destroying ascending nigrostriatal neurones. The binding of both ligands to striatal sections was first shown to be saturable, reversible and of high affinity and specificity [( 3H]SCH 23390: Bmax 2.16 pmol/mg protein, Kd 1.4 nM; [3H]sulpiride; Bmax 0.67 pmol/mg protein, Kd 10.7 nM). After unilateral stereotaxic 6-OHDA injections, rats rotated contralaterally when challenged with apomorphine (0.5 mg/kg), or specific D1 or D2 agonists, SKF 38393 (1.0-5.0 mg/kg) and LY 171555 (0.05-0.5 mg/kg), respectively. Loss of forebrain dopaminergic terminals was assessed autoradiographically using [3H]mazindol to label dopamine uptake sites. A loss of approximately 90-95% of uptake sites was reproducibly accompanied by an enhanced density of binding ipsilaterally for the D2 ligand, [3H]sulpiride, in all areas of the striatum, but most markedly in the lateral areas. An increase in the D2 binding site density was also seen in the ipsilateral nucleus accumbens and the olfactory tubercle. In contrast, in the same animals, the striatal D1 receptors were far less affected by dopaminergic denervation, with no consistent changes seen in the binding of [3H]SCH 23390. These results suggest that dopamine D2 receptors are more susceptible than D1 receptors to changes after dopaminergic denervation, which is expressed as an increase in the density of binding sites revealed here with [3H]sulpiride.  相似文献   

11.
The antipsychotic effects of neuroleptic drugs are believed to be achieved by chronic blockade of dopaminergic transmission in the limbic system. Nevertheless, the effects of chronic (3-12 months) haloperidol administration on the dopaminergic transmission in the nucleus accumbens of rodents remains poorly understood. Studies of spontaneous locomotor activity (SLA), a behavioral measure related to limbic dopamine transmission, and of dopamine D2 receptor density in the nucleus accumbens after chronic oral haloperidol treatment have yielded conflicting results. We evaluated these indices after 8 months of parenteral administration of haloperidol decanoate. We report here that, after 8 months of parenteral treatment, SLA stays significantly decreased and D2 receptors in the nucleus accumbens exhibit the same up-regulation as in the striatum (about 50%). These results fail to support the notion of a different pattern of D2 receptor adaptation to neuroleptic treatment between the nucleus accumbens and the striatum. In contrast, dopamine D1 receptors were found to be unaffected in the nucleus accumbens but decreased in the striatum by 22% after 8 months of treatment. This observation could be relevant to the pathogenesis of tardive dyskinesia.  相似文献   

12.
We have determined the kinetic, equilibrium saturation, and pharmacological characteristics of [3H]spiperone ([3H]SPIP) binding to rat brain regional particulate fractions following i.v. injections of [3H]SPIP and compared these parameters to those determined in vitro with traditional ligand-homogenate binding assays. [3H]SPIP binding to rat striatum in vivo and in vitro occurs to a single class of non-interacting binding sites which possess the pharmacological properties of a D2 dopamine (DA) receptor. The potencies of neuroleptic drugs in inhibiting DA receptor-mediated behaviors correlate with their potencies at displacing striatal [3H]SPIP binding in vivo. While striatum possesses a similar density of [3H]SPIP binding sites in vivo (34 pmol/g) and in vitro (31 pmol/g), binding affinity in vivo is about 200 times lower than in vitro. This difference in binding affinities appears to arise from alterations of [3H]SPIP association and dissociation rate constants brought about by tissue homogenization. The implications of our findings for external imaging of DA receptors and studies of DA receptor function in human brain homogenates are discussed.  相似文献   

13.
The effect of chronic treatment with antidepressants (ADs) on the behavioral responses to LY 171555, a selective D2 receptor agonist, SKF 38393, a selective D1 receptor agonist, and B-HT 920, a selective DA autoreceptor agonist, was studied in rats. In normal rats small, intermediate and high doses of LY 171555 produced hypomotility, hyperactivity and stereotypies, respectively. Chronic but not acute pretreatment with imipramine (IMI) greatly potentiated the motor stimulant effect of LY 171555, but failed to modify its stereotypic and sedative effect. The potentiation of the motor stimulant effect of LY 171555 was observed also after chronic, but not acute, treatment with desmethylimipramine (DMI), mianserin (MIA) or repeated electroconvulsive shock (ECS). Chronic treatment with IMI failed to modify the effect of SKF 38393 (motor stimulation, grooming and penile erection), but reversed the sedative effect of B-HT 920 into a motor stimulant response. The motor stimulant response to LY 171555 in IMI-pretreated animals was suppressed byl-sulpiride, a D2 antagonist, and by a combination of reserpine with α-methyltyrosine (α-MT), but it was only partially antagonized by high doses of SCH 23390, a selective D1 antagonist. The results indicate that chronic treatment with ADs potentiates the behavioural responses mediated by the stimulation of postsynaptic D2 receptors in the mesolimbic system and suggest that this behavioural supersensitivity is due to enhanced neurotransmission at the D1 receptor level.  相似文献   

14.
Systemic administration of the selective, full, D1 dopamine agonist A-77636 [(1R,3S)3-(1′-adamantyl)-1-aminomethyl-3,4-dihydro-5,6-dihydroxy-1H-2-benzopyranhydrochloride] (0.36–2.9 mg/kg) led to a dose-dependent induction of Fos-like immunoreactivity (FLI) in the striatum. Quantitative analysis of the sections indicated that immunoreactive cells were more numerous in the medial than the lateral striatum and, within these regions, appeared to be randomly distributed. The staining produced by A-77636 could be abolished by pretreatment with the selective D1 antagonist SCH-23390. The selective D2 dopamine agonist quinpirole (3 mg/kg) had no effect on striatal FLI when given by itself, but markedly potentiated the weak striatal staining produced by low doses of A-77636. When combined with the highest dose of A-77636, which produced substantial staining by itself, quinpirole produced an increase in the number of immunoreactive cells seen in the lateral striatum but actually decreased the number present in the medial striatum. Statistical analysis of the distribution of immunoreactive cells demonstrated that, in both regions, quinpirole converted the relatively homogeneous staining seen after A-77636 alone into a markedly patchy pattern. These findings indicate that stimulation of D2 receptors produces both stimulatory and inhibitory effects on the D1-mediated expression of Fos in the striatum and that the interaction between D1 and D2 receptor stimulation must, therefore, be more complex than the simple synergism suggested by previous studies.  相似文献   

15.
Dopamine (DA) and N-methyl-d-aspartate (NMDA) receptors seem to be critically involved in working memory processing in the medial prefrontal cortex (mPFC). Effects of NMDA receptors blockade on dopamine D1 receptors activation in the mPFC on spatial working memory was investigated. Adult male Wistar rats, well trained in an eight-arm radial maze and bilaterally cannulated in the mPFC, received intracortical administrations of saline (SAL) or SKF-38393 (DA D1 receptor agonist) followed, 10 min later, by MK-801 (non-competitive NMDA receptor antagonist). They were tested in 1 h delayed tasks after 5 min of the second administration. SKF-38393 (0.56 and 1.8 μg) was disruptive to working memory, increasing significantly the number of errors in the 1 h post-delay performance when administered into the mPFC. MK-801, at doses with no significant effects alone (0.32 or 1.0 μg), reduced significantly the disruptive effect of 0.56 μg SKF-38393. These results showed that the disruptive effect of DA D1 receptors activation in the mPFC on working memory was significantly reduced by an open-channel NMDA receptor blockade, suggesting that the processing of working memory in the mPFC involving DA D1 receptors depend, at least in part, of NMDA receptors activity in this cortical area.  相似文献   

16.
Repeated administration of the D1-dopamine agonist SKF-38393 to adult rats having had dopaminergic neurons destroyed early in development results in an increasing enhancement of the behavioral response to SKF-38393 with each dose until a maximum is reached. This increased sensitivity lasts for at least 6 months. In the present study, this long-lasting change in behavioral responsiveness to repeated treatment with SKF-38393, referred to as D1-dopamine receptor priming, was shown to be dose dependent with smaller doses requiring an increased number of administrations to produce a maximal response when compared to higher doses. In addition, priming occurred equally well when treatment intervals ranged from 1 day to 14 days. These latter data reinforced the view that activation of D1-dopamine receptors results in a prolonged change in neural function. In subsequent experiments D1-dopamine receptor priming was blocked by pretreatment with the NMDA-receptor antagonist MK-801. This antagonism of priming could not be attributed to a blockade of D1-dopamine receptors by MK-801 or to the induction of interfering behaviors. Because an NMDA antagonist interfered with D1-dopamine priming as it does with other long-term neural messages, a common requirement for these diverse forms of neuronal plasticity appears to involve activation of the NMDA receptor. This functional link between NMDA receptors and dopaminergic function and its relationship to neuronal palsticity could have relevance to the biochemical mechanism involved in learning and to symptons in central disorders during development that worsen over time, particularly those proposed to involved malfunctioning dopaminergic mechanisms.  相似文献   

17.
Dopamine D1 and D2 receptors were measured (by saturation binding of [3H]SCH23390 and [3H]raclopride) in caudate, putamen and nucleus accumbens, obtained at post-mortem from suicide victims with a firm retrospective diagnosis of depression and matched controls. There were no differences in the number or affinity of D1 or D2 receptors between suicides who had been free of antidepressants for at least three months prior to death, and controls. Increased numbers and decreased affinity of D2 receptors were however found in each brain region of antidepressant-treated suicides. We argue that these increases are related to concurrent treatment with neuroleptics rather than a direct effect of antidepressants. Increased numbers of D1 receptors in antidepressant-treated suicides were seen only in nucleus accumbens. This increase could not be clearly attributed to neuroleptics and may be related to antidepressant treatment.  相似文献   

18.
Long-Evans derived rats were tested for nocturnal, amphetamine-induced and apomorphine-induced rotation (circling behavior); the rats' left and right striata were subsequently dissected and D1 and D2 receptor densities (Bmax) were assayed in the same striatal homogenates using [3H]SCH-23390 and [3H]N-methylspiperone, respectively. D1 and D2 Bmax values were correlated (r = 0.68). Moreover, left-right asymmetries in D1 and D2 Bmax values were more highly correlated (r = 0.84). Although asymmetries in D1 and D2 binding were not by themselves related to rotational behavior, an asymmetry in the ratio or balance of D1 and D2 binding was associated with the direction of apomorphine-induced rotation: the D1/D2 ratio of Bmax values was significantly higher in the striatum ipsilateral to the preferred direction of apomorphine-induced rotation. These results suggest that normal variations in numbers of D1 and D2 receptors are determined by a common mechanism, that D1 and D2 receptors are functionally coupled, and that, with respect to activation of striatal receptors, D1 is inhibitory and D2 is excitatory. The effects of apomorphine, a mixed D1 and D2 agonist, appear to reflect the balance between D1 and D2 receptors.  相似文献   

19.
The effects of D2 dopamine receptor agonist, bromocriptine (BROMO), and antagonist, haloperidol (HPD), on brain activity were investigated in rats by functional magnetic resonance imaging. T2*-weighted signal intensity was increased in the hypothalamus at 120 min after acute administration of BROMO, and in the ventral posterior and dorsomedial nuclei of the thalamus from 30 to 120 min. In contrast, the signal intensity was decreased in the caudate–putamen at 30 min after acute administration of HPD, in the hypothalamus from 30 to 60 min, and in the perirhinal cortex at 30 min. After chronic (2 weeks) HPD treatment, acute administration of HPD decreased signal intensity in the caudate–putamen at 60 min, in the hypothalamus at 30 min, the perirhinal cortex from 2 to 120 min, the dorsomedial and ventral posterior nuclei of the thalamus from 2 to 120 min, and the medial nucleus of the amygdala from 60 to 120 min. These results suggest that (1) the D2 receptor agonist increased the activity of the thalamic nuclei and the hypothalamus, while the D2 receptor antagonist suppressed brain activity in the regions where D2 receptors were present, (2) the suppression of brain activity in the thalamic nuclei and the perirhinal cortex by acute HPD administration was enhanced by chronic HPD treatment, and (3) the effects of antipsychotic drugs on the thalamus, amygdala, and perirhinal cortex may be related to their therapeutic efficacy, since clinical improvement in schizophrenic patients appears several days after the start of HPD treatment.  相似文献   

20.
Ibotenic acid lesions of the caudate-putamen in rat brain resulted in dramatic reductions in [3H]SCH 23390 binding in both the ipsilateral caudate-putamen and substantia nigra reticulata as assessed by quantitative autoradiography. Nigral ibotenic acid and 6-hydroxydopamine lesions did not significantly alter the binding in either structure. This indicates that D1 receptors in the caudate-putamen are postsynaptic on striatal neurons, while those in the substantia nigra reticulata are presynaptic on nerve terminals originating in the caudate-putamen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号