首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular screening for GJB2 (connexin 26) mutations represents the standard diagnostic approach for the genotype definition of non-syndromic deafness. Nevertheless, a single GJB2 pathogenic mutation is detectable in a relevant number of cases, therefore failing to explain the phenotype. We aimed at assessing the occurrence of the recently described del(GIB6-D13S1830) mutation, occurring in the connexin 30 gene, in a group of Italian hearing-impaired patients carrying a single GJB2 mutated allele. A total of 59 non-syndromic hearing loss (NSHL) patients were screened for GJB2 mutations. Among these, nine NSHL patients were found to be heterozygous for a single GJB2 mutation. These patients, heterozygotes for different GJB2 mutated alleles (35delG, L90P, M34T, V153I), together with 11 additional 35delG/neg cases previously described, were studied for the presence of the del(GIB6-D13S1830) mutation. Two double heterozygotes del(GIB6-D13S1830)/35delG were identified. In both cases the degree of hearing loss was profound. Furthermore, GJB2 molecular screening led to the identification of a novel change (T55G) occurring in compound heterozygosity with the V37I mutation. In conclusion, our data suggest a significant frequency of del(GIB6-D13S1830) mutation in Italian hearing-impaired subjects (10% of unexplained GJB2 heterozygotes) similar to that reported in other European countries.  相似文献   

2.
OBJECTIVE: Mutations in the connexin 26 gene (GJB2), which encodes a gap-junction protein expressed in the inner ear, have been shown to be responsible for a major part of autosomal recessive non-syndromic hearing loss in Caucasians. The aim of our study was to determine the prevalence and spectrum of GJB2 mutations, including the (GJB6-D13S1830) deletion, in Moroccan patients and estimate the carrier frequency of the 35delG mutation in the general population. METHODS: Genomic DNA was isolated from 81 unrelated Moroccan familial cases with moderate to profound autosomal recessive non-syndromic hearing loss and 113 Moroccan control individuals. Molecular studies were performed using PCR-Mediated Site Directed Mutagenesis assay, PCR and direct sequencing to screen for GJB2, 35delG and del(GJB6-D13S1830) mutations. RESULTS: GJB2 mutations were found in 43.20% of the deaf patients. Among these patients 35.80% were 35delG/35delG homozygous, 2.47% were 35delG/wt heterozygous, 3.70% were V37I/wt heterozygous, and 1 patient was E47X/35delG compound heterozygous. None of the patients with one or no GJB2 mutation displayed the common (GJB6-D13S1830) deletion. We found also that the carrier frequency of GJB2-35delG in the normal Moroccan population is 2.65%. CONCLUSIONS: These findings indicate that the GJB2-35delG mutation is the major cause of autosomal recessive non-syndromic hearing loss in Moroccan population. Two other mutations were also detected (V37I and E47X), in agreement with similar studies in other populations showing heterogeneity in the frequencies and types of mutation in connexin 26 gene.  相似文献   

3.
Mutations in the connexin 26 gene (GJB2) cause a significant proportion of prelingual non-syndromic autosomal recessive deafness in all populations studied so far. To determine the percentage of hearing loss attributed to GJB2 in northeast Turkey, 93 unrelated patients with autosomal recessive non-syndromic hearing loss (ARNSHL) were screened. Seven different mutations were found in 29 of the patients with severe to profound hearing loss. The 35delG mutation was the most common mutation, accounting for 76% of all mutant GJB2 alleles. Four already described mutations, W24X, 310del14, delE120 and R184P and two novel mutations, Q80K and P173S, were identified. The allelic Delta(GJB6-D13S1830), which can cause hearing loss in combination with GJB2 mutations, was not present in our patients. Our results are comparable to those reported in other regions in Turkey and indicate that GJB2 mutations account for about 30% of Turkish patients with ARNSHL. Besides 35delG, W24X and delE120 occur more than once in the Turkish ARNSHL population with a frequency of about 5%.  相似文献   

4.
Mutations in the GJB2 gene, mainly 35delG, are responsible for most autosomal recessive inherited genetic hearing loss. The audiometric standard of these hearing losses remains inconsistent and other genes, such as GJB6, have been involved in association with GJB2. The objective of the study was to identify the deletions del(GJB6-D13S1830) and del(GJB6-D13S1854) in patients heterozygous for 35delG/GJB2 and analyze the phenotype they present. 101 patients with mild to profound degree of sensorineural hypoacusis were evaluated. The allele-specific PCR technique was used to identify 35delG. The del(GJB6-D13S1830) and del(GJB6-D13S1854) were identified through the PCR multiplex technique. 90 % of the subjects presented a normal genotype for the analyzed mutations; 6.93 % were shown to be heterozygous for 35delG/GJB2 and 1 % presented compound heterozygosis GJB2/GJB6). The data found reinforced the hypothesis of an interaction of more than one gene as the cause of autosomal recessive genetic hearing loss and emphasized the importance of an early diagnosis for appropriate intervention.  相似文献   

5.
In 15 Belgian subjects with prelingual sensorineural hearing impairment, the connexin 26 (GJB2) gene and the connexin 30 (GJB6) gene were analyzed for the presence of the 35delG mutation and the delta(GJB6-D13S1830) deletion first described by del Castillo et al in 2002. Seven patients were found to be homozygous for the 35delG mutation; 7 were combined heterozygotes for the 35delG mutation and the GJB6 deletion. In 11 subjects, phenotype and genotype were correlated. Significant, transient progression, in the range of 1.7 to 2.7 dB/y, was only found in 2 patients in the first part of the second decade of life. Hearing impairment was otherwise stable, with mean thresholds of 75, 90, and 100 dB at 0.125, 0.25, and 0.5 kHz, respectively, and 100 dB or higher at 1 to 4 kHz. There was no significant difference in hearing impairment between the patients with the homozygous 35delG mutation in GJB2 and those who are heterozygous for both the 35delG mutation and the deletion encompassing part of GJB6.  相似文献   

6.

Objective

Hereditary hearing impairment is a genetically heterogeneous disorder. In spite of this, mutations in the GJB2 gene, encoding connexin 26 (Cx26), are a major cause of nonsyndromic recessive hearing loss in many countries and are largely dependent on ethnic groups. The purpose of our study was to characterize the type and prevalence of GJB2 mutations among Azeri population of Iran.

Methods

Fifty families presenting autosomal recessive nonsyndromic hearing loss from Ardabil province of Iran were studied for mutations in GJB2 gene. All DNA samples were screened for c.35delG mutation by ARMS PCR. Samples from patients who were normal for c.35delG were analyzed for the other variations in GJB2 by direct sequencing. In the absence of mutation detection, GJB6 was screened for the del(GJB6-D13S1830) and del(GJB6-D13S1854).

Result

Thirteen families demonstrated alteration in the Cx26 (26%). The 35delG mutation was the most common one, accounting for 69.2% (9 out of 13 families). All the detected families were homozygous for this mutation. Two families were homozygous for delE120 and 299-300delAT mutations. We also identified a novel mutation: c.463-464 delTA in 2 families resulting in a frame shift mutation.

Conclusion

Our results suggest that c.35delG mutation in the GJB2 gene is the most important cause of GJB2 related deafness in Iranian Azeri population.  相似文献   

7.

Objective

Hearing loss is the most frequent sensory defect in human being. Genetic factors account for at least half of all cases of profound congenital deafness. The 13q11-q12 region contains the GJB2 and GJB6 genes, which code connexin 26 (CX26) and connexin 30 (CX30) proteins, respectively. Mutations in the gene GJB2, encoding the gap junction protein connexin 26, are considered to be responsible for up to 50% of familial cases of autosomal recessive non-syndromic hearing loss and for up to 15-30% of the sporadic cases. It has also been reported that mutations in the GJB6 gene contribute to autosomal recessive and autosomal dominant hearing defects in many populations. The 342-kb deletion [del(GJB6-D13S1830)] of the Cx30 gene is the second most common connexin mutation after the CX26 mutations in some NSHL populations. The aim of this study was to screen GJB6 gene mutations in Asian Indian patients with autosomal non-syndromic hearing loss.

Methods

We screened 203 non-syndromic hearing loss patients, who were negative for homozygous mutations in GJB2 gene, for GJB6-D13S1830 deletion and mutations in coding regions of GJB6 using polymerase chain reaction, denaturing high performance liquid chromatography and direct sequencing.

Results

No deleterious mutation in GJB6 gene was detected in our study cohort.

Conclusion

The present data demonstrated that mutations in the GJB6 gene are unlikely to be a major cause of non-syndromic deafness in Asian Indians.  相似文献   

8.
Mutations in GJB2 gene are the leading cause of deafness in autosomal recessive inheritance, and the 35delG mutation is the most common in many ethnic groups. Besides the 35delG mutation in homozygosis, the mutation is also found in compound heterozygosis, coupled with other mutations in genes GJB2 and GJB6.AimTo determine the prevalence of 35delG/GJB2 and del (GJB6-D13S1830) mutations in patients with sensorineural hearing impairment in residents from the Espirito Santo state, Brazil.Materials and methods77 unrelated individuals with moderate to profound sensorineural hearing loss were evaluated. The 35delG mutation was studied by PCR / RFLP; and the del (GJB6-D13S1830) mutation was screened by the technique of multiplex PCR.Results88.3% had normal genotype for the studied mutations, 1.3% were compound heterozygotes, 3.9% homozygotic for the 35delG mutation, 6.5% heterozygotic for 35delG/GJB2. The frequency of 35delG/GJB2 and del (D13S1830/GJB6) alleles in the sample was 7.8% and 0.65%, respectively.ConclusionThe data confirmed the existence of the mutations studied in cases of sensorineural hearing loss in a population from Espírito Santo / Brazil. These findings reinforce the importance of genetic diagnosis, which can provide early treatment for children and genetic counseling for the affected families.  相似文献   

9.
Hearing impairment affects about 1 in 1000 newborns. Mutations in the connexin 26 (GJB2) gene rank among the most frequent causes of non-syndromic deafness in different populations, while delGJB6-D13S1830 mutation located in the DFNB30 locus is known to cause sensorineural hearing loss. Despite the many studies on the involvement of GJB2 mutations in hearing impairment in different populations, there is little information on genetic deafness in Brazil, especially in the Amazon region.ObjectiveTo determine the prevalence of GJB2 mutations and delGJB6-D13S1830 in 77 sporadic non-syndromic deaf patients.MethodThe coding region of the GJB2 gene was sequenced and polymerase chain reaction was performed to detect the delGJB6-D13S1830 mutation.ResultsMutant allele 35delG was found in 9% of the patients (7/77). Mutations M34T and V95M were detected in two distinct heterozygous patients. Non-pathogenic mutation V27I was detected in 28.6% of the patients (22/77). None of the deaf patients carried the delGJB6-D13S1830 mutation.ConclusionMutant alleles on gene GJB2 were observed in 40% (31/77) of the subjects in the sample. Pathogenic variants were detected in only 12% (9/77) of the individuals. More studies are required to elucidate the genetic causes of hearing loss in miscegenated populations.  相似文献   

10.
OBJECTIVE: Despite the identification of mutations in the connexin 26 (GJB2) gene as the most common cause of recessive nonsyndromic hearing loss, the pattern of hearing impairment with these mutations remains inconsistent. Recently a deletion encompassing the GJB6 gene was identified and hypothesized to also contribute to hearing loss. We hereby describe the hearing impairment in Dutch patients with biallelic connexin 26 (GJB2) and GJB2+connexin 30 (GJB6) mutations. METHODS: The audiograms of patients who were screened for GJB2 and GJB6 mutations were analysed retrospectively. Standard statistical testing was done for symmetry and shape, while repeated measurement analysis was used to assess the relation between mutation and severity. Progression was also studied via linear regression analysis. RESULTS: Of 222 hearing-impaired individuals, 35 exhibited sequence variations; of these 19 had audiograms for study. Hearing loss in patients with biallelic "radical" (i.e. deletions, nonsense and splice site) mutations was significantly worse than in the wild type and heterozygotes (SAS proc GENMOD, p=0.013). The presence of at least one missense mutation in compound heterozygotes tends to lead to better hearing thresholds compared to biallelic radical mutations (p=0.08). One patient with the [35delG]+[del(GJB6-D13S1830)] genotype was severely impaired. Non-progressive hearing impairment was demonstrated in five 35delG homozygotes in individual longitudinal analyses. However a patient with the [299A>C]+[416G>A] genotype showed significant threshold progression in the lower frequencies. Findings on asymmetry and shape were inconclusive. CONCLUSIONS: Our data support the hypothesis that severity is a function of genotype and its effect on the amino acid sequence. A bigger cohort is required to establish non-progressivity more definitively.  相似文献   

11.
Genetically caused congenital deafness is a common trait affecting 1 in 2000 children and it is predominantly inherited in an autosomal recessive fashion. Several mutations in the GJB2 gene and a deletion of 342 kb in GJB6 (delGJB6-D13S1830) have been identified worldwide in patients with hearing impairment. The aim of this study was to determine the prevalence of these mutations in Argentina. Non-syndromic 46 probands (17 familial and 29 sporadic cases) were genetically evaluated. Mutations in GJB2 and/or delGJB6-D13S1830 were found in 19 patients, accounting for 41.3% of the sample. Of the 46 patients investigated in this study, 12 (26.1%) were diagnosed to carry sequence variations in both alleles; all but one, were considered causative for hearing impairment in those patients. In 7 out of 46 patients (15.2%) only one mutant allele was detected. Of their 38 chromosomes, 71% resulted with mutations in the GJB2 gene and 11% in GJB6. The most frequent mutation in GJB2 (24%) was c.35delG (11% homozygous and 13% heterozygous and compound heterozygous). In addition, 11 sequence variations different from c.35delG, were identified in the coding region of the GJB2 gene: T8M, V27I, M34T, E47X, R75W, W77R, I82M, L90P, E129K, V153I, M163V. The delGJB6-D13S1830 mutation was found in 4 patients (9%), 3 of them associated with GJB2 mutations, resulting in compound heterozygous for the DFNB1 locus. The present study demonstrates that mutations in the GJB2 gene and the delGJB6-D13S1830 are prevalent in the Argentinean population.  相似文献   

12.
Mutations in the GJB2 gene are the most common cause of sensorineural non-syndromic deafness in different populations. One specific mutation, 35delG, has accounted for the majority of the mutations detected in the GJB2 gene in many countries. The aim of this study was to determine the prevalence of GJB2 mutations and the del(GJB6-D13S1830) mutation in non-syndromic deaf Brazilians. The 33 unrelated probands were examined by clinical evaluation to exclude syndromic forms of deafness. Mutation analysis in the GJB2 gene and the testing for the del(GJB6-D13S1830) were performed in both the patients and their family members. The 35delG mutation was found in nine of the probands or in 14 of the mutated alleles. The V37I mutation and the del(GJB6-D13S1830) mutation were also found in two patients, both are compound heterozygote with 35delG mutation. These findings strengthen the importance of genetic diagnosis, providing early treatment, and genetic counseling of deaf patients.  相似文献   

13.
OBJECTIVE: DFNB1 locus has been reported as a major cause of autosomal recessive non-syndromic hearing loss (ARNSHL) worldwide. 35delG and del(GJB6-D13S1830) are thought to be two common mutations in this locus among Caucasians. The aim of this study is to determine the significance of these two mutations in aetiology of ARNSHL in Iran. METHODS: One hundred and thirty-three unrelated patients with ARNSHL were tested by using multiplex allele-specific PCR assay after validation by positive control samples. RESULTS: The frequency of 35delG was about 18.5%, however, del(GJB6-D13S1830) was not found in the studied patients. Parental consanguinity was observed in 50% of 35delG-mutated families. CONCLUSIONS: Our results support founder effect regarding these mutations.  相似文献   

14.
Genetically caused congenital deafness is a common trait affecting 1 in 2000 newborn children and is predominantly inherited in an autosomal recessive fashion. Genes such as the gap junction protein beta 2 (GJB2) encoding for Connexin (Cx26) and GJB6 (Cx30) are known to cause sensorineural deafness. Autosomal recessive deafness has been linked both to the monogenetic occurrence of mutated GJB2 or the GJB6 deletion del(GJB6-D13S1830) and digenic GJB2/del(GJB6-D13S1830) inheritance. Monogenetic GJB2 alterations are responsible for 25.5% of deafness in the eastern Austrian population. An additional 9.8% are heterozygous carriers of a single GJB2 mutation which is not responsible for deafness alone. Del(GJB6-D13S1830) and GJB2/del(GJB6-D13S1830) mutations have been shown to be the second most frequent cause of deafness in different populations. To address the question of the relevance of mutations in GJB6 either as a monogenetic or a digenic GJB2/del(GJB6-D13S1830) cause of deafness in this population, 76 unrelated individuals (33 families and 43 sporadic cases) were screened using PCR strategies. Similar to studies in other hard of hearing populations with similar or lower carrier frequencies of single GJB2 mutations, the presence of del(GJB6-D13S1830) was not detected in any individual within the patient group. Data therefore exclude a digenetic association of del(GJB6-D13S1830) with heterozygous GJB2 mutations as a cause of deafness in a representative sample of the population from Eastern Austria.  相似文献   

15.

Objective

Hearing loss is one of the major public health problems, with a genetic etiology in more than 60% of cases. Connexin 26 and connexin 30 mutations are the most prevalent causes of deafness. The aim of this study is to characterize and to establish the prevalence of the GJB2 and GJB6 gene mutations in a population of cochlear implanted recipients from Eastern Romania, this being the first report of this type in our country.

Methods

We present a retrospective study that enrolled 45 Caucasian cochlear implanted patients with non-syndromic sensorineural severe to profound, congenital or progressive with early-onset idiopathic hearing loss. We performed sequential analysis of exon 1 and the coding exon 2 of the GJB2 gene including also the splice sites and analysis of the deletions del(GJB6-D13S1830), del(GJB6-D13S1854) and del(chr13:19,837,343-19,968,698).

Results

The genetic analysis of the GJB2 gene identified connexin 26 mutations in 22 patients out of 45 (12 homozygous for c.35delG, 6 compound heterozygous and 4 with mutations only on one allele). We found 6 different mutations, the most prevalent being c.35delG - found on 32 alleles, followed by p.W24* - found on 2 alleles. We did not identify the deletions del(GJB6-D13S1830), del(GJB6-D13S1854) and del(chr13:19,837,343-19,968,698).

Conclusions

Although the most prevalent mutation was c.35delG (80% from all types of mutations), unexpectedly we identified 5 more different mutations. The presence of 6 different mutations on the GJB2 gene has implications in hearing screening programs development in our region and in genetic counseling.  相似文献   

16.
Sudden hearing loss in a family with GJB2 related progressive deafness   总被引:2,自引:0,他引:2  
Mutations of GJB2, the gene encoding connexin 26, have been associated with prelingual, sensorineural hearing loss of mild to profound severity. One specific mutation, the 35delG, has accounted for the majority of mutations detected in the GJB2 gene in Caucasian populations. Recent studies have described progression of hearing loss in a proportion of cases with GJB2 deafness. We report an unusual family with four 35delG homozygous members, in which the parents were deaf-mute whilst both children had a postlingual progressive hearing loss. Furthermore, the son suffered from sudden hearing loss.  相似文献   

17.
OBJECTIVES/HYPOTHESIS: Mutations in the connexin 26 (Cx26) or gap junction beta 2 gene are the leading cause of hereditary nonsyndromic sensorineural hearing loss in Caucasians. The Cx26 coding region of 68 children with nonsyndromic sensorineural hearing loss was sequenced to determine the frequency and type of Cx26 mutations in this population. Screening was also performed for a common connexin 30 (Cx30) or gap junction beta 6 mutation (del [GJB6-D13S1830]). Children also underwent audiological testing to determine whether any correlation exists between Cx26 mutations and severity of hearing loss. STUDY DESIGN: In all, 68 children with nonsyndromic sensorineural hearing loss were screened for Cx26 and Cx30 mutations by polymerase chain reaction and direct sequencing. METHODS: Genomic DNA was amplified by polymerase chain reaction using primers that flank the entire Cx26 coding region. Screening for the 342-kb Cx30 deletion was performed using primers that amplified the breakpoint junction of the deletion. The amplicons were then sequenced in both directions and analyzed for mutations. Audiometric testing, including pure-tone audiometry and auditory evoked brainstem response, was also performed to determine the degree of hearing loss. RESULTS: Twenty-seven of 68 children tested had mutations in Cx26 with 35delG being the most prevalent. Ten additional Cx26 mutations were detected including a novel compound heterozygote. Two children were heterozygous for the Cx30 del (GJB6-D13S1830) mutation. CONCLUSION: Cx26 and Cx30 mutations were present in 41.2% of children tested in the study population. Audiometric data supported previous studies demonstrating a greater degree of hearing loss in subjects who are homozygous for the 35delG mutation.  相似文献   

18.
中国非综合征遗传性聋人群GJB6基因突变分析   总被引:3,自引:0,他引:3  
目的:研究GJB6基因[连接蛋白30(Cx30)-]在中国非综合征遗传性聋人群中的突变情况。方法:用特定引物对372例非综合征遗传性聋患者(其中295例分子病因不明,77例携带GJB2病理性单等位基因突变)和182例正常对照者进行聚合酶链反应,检测GJB6基因的342kb大片段缺失del(GJB6〉D13S1830),并进行GJB6基因编码区扩增,以产物直接测序方法进行突变检测及鉴定。结果:372例耳聋患者中未发现GJB6 del(GJB6〉D13S1830),其中1例发现携带GJB6基因点突变404C〉A,导致了氨基酸的错义改变T135K,多物种Cx30氨基酸序列进化分析证实该点位于Cx30高度保守的第3跨膜区。对照组中未发现同样突变。结论:GJB6基因突变在中国耳聋人群中整体发生频率较低,GJB6基因可暂不列为第一线耳聋基因检测项目。  相似文献   

19.
IntroductionDeafness is the most frequent sensory deficit in humans. Incidence is estimated at 4:1000 births in Brazil. Specific programs for clinical care of patients with hearing loss are still scarce in Brazil and the issue is an important public health problem.ObjectiveTo determine the frequency of 35delG and D13S1830 mutations in GJB2 and GJB6 genes respectively in patients with non-syndromic sensorineural hearing loss from Minas Gerais, Brazil.MethodsThis research involved 53 individuals, who were assessed by a questionnaire for predicting the possibility of non-syndromic deafness and for data collecting. Samples were tested for the presence of the 35delG mutation in GJB2 gene and D13S1830 in GJB6 gene by polymerase chain reaction and restriction enzyme digestion.ResultsEpidemiological research has shown that the majority of the subjects are unaware of the etiology and the pathogenesis of hearing loss. In 9 patients (16.98%), 35delG mutation was found in heterozygosis and the allele frequency was estimate to be around 8.5%. Although 9.61% of the patients reported having some degree of consanguinity between the parents and 12.08% reported other cases of deafness in their families, this mutation was not found in homozygosis. The D13S1830 mutation was not found in this study.ConclusionThis research describes for the first time the frequency of the 35delG and D13S1830 mutation in hearing-impaired individuals from Minas Gerais, Brazil, and the collected data reinforce the need for further studies in this population due to heterogeneity of hearing loss.  相似文献   

20.
Deafness is a heterogeneous disorder showing different pattern of inheritance and involving a multitude of different genes. Mutations in the gene, GJB2 Gap junction type 1), encoding the gap junction protein connexin-26 on chromosome 13q11 may be responsible for up 50% of autosomal recessive nonsyndromic hearing loss cases (ARNSHL), and for 15–30% of sporadic cases. However, a large proportion (10–42%) of patients with GJB2 has only one GJB2 mutant allele. Recent reports have suggested that a 342-kb deletion truncating the GJB6 gene (encoding connexin-30), was associated with ARNSHL through either homozygous deletion of Cx30, or digenic inheritance of a Cx30 deletion and a Cx26 mutation in trans. Because mutations in Connexin-26 (Cx26) play an important role in ARNSHL and that distribution pattern of GJB2 variants differs considerably among ethnic groups, our objective was to find out the significance of Cx26 mutations in Moroccan families who had hereditary and sporadic deafness. One hundred and sixteen families with congenital deafness (including 38 multiplex families, and 78 families with sporadic cases) were included. Results show that the prevalence of the 35delG mutation is 31.58% in the family cases and 20.51% in the sporadic cases. Further screening for other GJB2 variants demonstrated the absence of other mutations; none of these families had mutations in exon 1 of GJB2 or the 342-kb deletion of GJB6. Thus, screening of the 35delG in the GJB2 gene should facilitate routinely used diagnostic for genetic counselling in Morocco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号