首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Plasma-membrane-enriched fractions of canine aortic smooth muscle possess an ATP-supported Ca2+ accumulation which has an absolute requirement for Mg2+ and a high affinity for Ca2+ (Km approximately 0.5 microM). The rate of ATP-supported Ca2+ transport is not affected by several calmodulin antagonists, but is stimulated by exogenously added calmodulin. The maximal effect of calmodulin on the rate of ATP-dependent Ca2+ transport (at 5.0 microM Ca2+) occurs at 10 micrograms/ml calmodulin and represents an approximately 3-fold stimulation. This calmodulin stimulation of Ca2+ transport does not require pretreatment of the membranes by EGTA and is an intrinsic property of the plasma membranes. A high-affinity Ca2+-ATPase (Km for Ca2+ approximately 0.5 microM) is also present in the aortic smooth muscle plasma membrane. This high-affinity Ca2+-ATPase does not require Mg2+ for catalytic activity, but is in fact inhibited by increasing Mg2+ concentrations. Calmodulin at concentrations effective for the stimulation of the ATP-dependent Ca2+ transport has no effect on the high-affinity Ca2+-ATPase activity or on the basal ATPase activity stimulated by 5 mM Mg2+ or Ca2+. Our results indicate that isolated plasma membranes of canine aortic smooth muscle contain no endogenous calmodulin. The ability of exogenously added calmodulin to stimulate the rate of ATP-dependent Ca2+ transport by vascular smooth muscle plasma membranes suggests that calmodulin may play a role in lowering the cytoplasmic concentration of ionized calcium during vasodilatation. An Mg2+-independent, but not an Mg2+-dependent high-affinity Ca2+-ATPase, was identified in the plasma membranes. This may be separate from the plasmalemmal Ca2+-pump.  相似文献   

2.
The purpose of this study was to investigate the effects of the intracellular messenger cyclic GMP (cGMP) on sequestration of cytosolic calcium (Ca2+) into the intracellular Ca2+ store (the sarcoplasmic reticulum) of vascular smooth muscle. Using saponin-skinned primary cultures of rat aortic smooth muscle, we investigated the effect of cGMP on 45Ca uptake in monolayers of cells. The intracellular store was loaded with Ca2+ by exposing the skinned cells to a 45Ca-labeled 1-microM free Ca2+-containing solution for varying durations (0-20 minutes). Addition of 10 microM cGMP to six monolayers increased both the initial Ca2+ uptake at 2 minutes (control, 240 +/- 8 pmol Ca2+/10(6) cells; + cGMP 295 +/- 7; mean +/- SEM; n = 6, p less than 0.01) and the final steady-state uptake reached at 20 minutes (control, 0.96 +/- 0.03 nmol Ca2+/10(6) cells; + cGMP 1.12 +/- 0.03, p less than 0.02). This stimulation of uptake was quantitatively similar to that caused by 10 microM cyclic AMP. It occurred at varying ambient cytosolic Ca2+ concentrations (0.1-1.0 microM Ca2+) and was not further enhanced by addition of 10 microM cGMP-dependent protein kinase. The dose-response of stimulation of Ca2+ uptake with cGMP indicated an ED50 of 5 nM cGMP. The release of Ca2+ from the sarcoplasmic reticulum in response to inositol 1,4,5-trisphosphate or caffeine was unaffected by cGMP. We conclude that the relaxation of vascular smooth muscle with cGMP-producing vasodilators is mediated in part by sequestration of cytosolic Ca2+ by the sarcoplasmic reticulum.  相似文献   

3.
Cyclic GMP (cGMP) mediates the relaxing action of a variety of vasodilator drugs and endogenous vasodilator substances. Cyclic AMP (cAMP) mediates relaxation by beta-adrenergic agonists as well as other activators of adenylate cyclase. Both second messengers appear to reduce the concentration of intracellular Ca2+ in vascular smooth muscle cells, thus affecting relaxation. The presence of cGMP-dependent protein kinase in vascular smooth muscle cells is required for the reduction of Ca2+ by cAMP and cGMP, suggesting that this enzyme mediates the relaxing effects of both cyclic nucleotides. Although the specific substrate proteins for cGMP-dependent protein kinase are not well characterized in vascular smooth muscle, new evidence indicates that Ca2(+)-ATPase activation by phosphorylation of phospholamban by the kinase may underlie the mechanism of action of cyclic-nucleotide-dependent relaxation.  相似文献   

4.
Angiostensin II (Ang II) regulates the migration and proliferation of vascular smooth muscle cells. Recent studies indicate that intermediate-conductance Ca2+ -activated K+ (IKca) channels have an important role in cell migration and proliferation. It is not known, however, whether the action of Ang II is linked to IKca channel regulation. Here, we investigated the modulation of IKca channels by Ang II in artery smooth muscle cells. Functional IKca channel expression in cultured embryonic rat aorta smooth muscle (A10) cells was studied using the patch-clamp technique. These cells predominantly express IKca channels. In contrast, large-conductance Ca2+ -activated K+ (BKca) currents were rarely observed in excised patches. Ang II increased the IKca current in a contration-dependent manner. Losartan (1.0 microM), an AT1 selective antagonist, abolished the activation of IKca channels by Ang II. Pretreatment with 100 microM myristoylated protein kinase C inhibitor peptide 20-28 or 10 microM GF109203X completely abolished the AngII-induced activation of IKca currents, whereas the action of Ang II was not prevented in the presence of 100 microM Rp-cyclic 3', 5'-hydrogen phosphotiate adenosine triethylammonium, a protein kinase A inhibitor, or 1.0 microM KT-5823, a protein kinase G inhibitor. A membrane permeant analogue of diacylglycerol 1, 2-dioctanoyl-sn-glycerol (10 microM) induced the activation of IKca currents. These data suggest that Ang II activates IKca channels through the activation of protein kinase C, and the AT1 receptor is involved in the regulation of these channels.  相似文献   

5.
The effect of carbachol (Cch) on intracellular calcium concentration ([Ca2+]i) in eel enterocytes was examined using the fluorescent Ca2+ indicator fura-2. Cch caused a biphasic increase in [Ca2+]i, with an initial spike followed by a progressively decreasing level (over 6 min) to the initial, pre-stimulated, level. The effect of Cch was dose-dependent with a 7.5-fold increase in [Ca2+]i over basal level induced by the maximal dose of Cch (100 microM). In Ca2+-free/EGTA buffer the effect of Cch was less pronounced and the [Ca2+]i returned rapidly to basal levels. The increment of [Ca2+]i was dose-dependently attenuated in cells pre-treated with U73122, a specific inhibitor of phospholipase C, suggesting that the Cch-stimulated increment of [Ca2+]i required inositol triphosphate formation. In the presence of extracellular Ca2+, thapsigargin (TG), a specific microsomal Ca2+-ATPase inhibitor, caused a sustained rise in [Ca2+]i whereas in Ca2+-free medium the increase in [Ca2+]i was transient; in both cases, subsequent addition of Cch was without effect. When 2 mM CaCl2 were added to the cells stimulated with TG or with Cch in Ca2+-free medium, a rapid increase in [Ca2+]i was detected, corresponding to the capacitative Ca2+ entry. Thus, both TG and Cch depleted intracellular Ca2+ stores and stimulated influx of extracellular Ca2+ consistent with capacitative Ca2+ entry. K+ depolarization obtained with increasing concentrations of KCl in the extracellular medium induced a dose-related increase in [Ca2+]i which was blocked by 2 microM nifedipine, a non-specific L-type Ca2+ channel blocker. Nifedipine also changed significantly the height of the Ca2+ transient, and the rate of decrement to the pre-stimulated [Ca2+]i level, indicating that Ca2+ entry into enterocytes also occurs through an L-type voltage-dependent calcium channel pathway. We also show that isolated enterocytes stimulated with increasing Cch concentrations (0.1-1000 microM) showed a dose-dependent inhibition of the Na+/K+-ATPase activity. The threshold decrease was at 1 microM Cch; it reached a maximum at 100 microM (50.5% inhibition) and did not decrease further with the use of higher dose. The effect of Cch on Na+/K+-ATPase activity was dependent on both protein kinase C (PKC) and protein phosphatase calcineurin activation since the PKC inhibitor calphostin C abolished Cch effects, while the calcineurin inhibitor FK506 augmented Cch effect. Collectively, these data establish a functional pathway by which Cch can modulate the activity of the Na+/K+-ATPase through a PKC-dependent (calphostin C-sensitive) pathway and a calcineurin-dependent (FK506-sensitive) pathway.  相似文献   

6.
Ca2+-activated K+ channels (PKCa channels) account for the predominant K+ permeability of many types of smooth muscle cells. When activated, they oppose depolarization due to Na+ and Ca2+ channel activity. Several vasodilatory agents that increase intracellular cGMP levels (e.g., nitroprusside, adenosine, and atrial natriuretic factor) enhance the activity of these high-conductance PKCa channels in on-cell patches of bovine aortic smooth muscle cells. In addition, dibutyryl-cGMP (1.0 mM) causes a similar increase in channel activity. To pursue the mechanism of channel modulation by these agents, a series of guanine and adenine nucleotides were evaluated by using inside-out excised patches. Whereas cAMP, AMP, ADP, and ATP were ineffective, all of the corresponding guanine nucleotides potentiated PKCa channel activity when tested at a high concentration (500 microM). However, only GMP consistently enhanced channel activity in the 1-100 microM range by increasing the percent open time and frequency of opening of these channels over a wide range of potentials and Ca2+ levels without affecting single-channel conductance. Thus, GMP is a potent modulator of PKCa channels and it, rather than cGMP, may mediate the action of the vasodilators examined in this study.  相似文献   

7.
Cholinergic synaptic vesicles isolated from the electric organ of Torpedo californica exhibit ATP-dependent uptake of 45Ca2+ that is stimulated by exogenous calmodulin. ATP-independent uptake also occurs, but it is only weakly stimulated by calmodulin. Saturating calmodulin decreased the Michaelis constant for ATP-dependent 45Ca2+ uptake from 52 +/- 0.4 to 12 +/- 0.2 microM and increased the maximal velocity from 3.4 +/- 0.3 to 5.2 +/- 0.5 nmol/mg of protein per min. The dose-response curve for calmodulin-dependent stimulation showed a maximal increase of 3.5-fold in the uptake rate; 0.2 microM calmodulin gave half-maximal stimulation. The activity of the vesicle-associated ATPase was unaffected. Incubation of vesicles with [gamma-32P]ATP and Ca2+ resulted in phosphorylation of four polypeptides of molecular weights about 64,000, 58,000, 54,000, and 41,000 when calmodulin was added. Vesicles that were previously phosphorylated and purified exhibited 2-fold enhanced ATP-independent uptake of 45Ca2+. Cyclic AMP could not substitute for calmodulin. The calcium transport system of the cholinergic synaptic vesicle is regulated by a calcicalmodulin-dependent protein kinase that is vesicle-associated.  相似文献   

8.
Mechanisms of nitric oxide (NO) action on K(Ca) channels were investigated using patch-clamp technique and freshly isolated smooth muscle cells from rat tail artery. In whole-cell experiments, the outward current was increased 6,64-/+0,72-fold (n=10) by 100 microM sodium nitroprusside (SNP), which was significantly different compared with 1,07-/+0,03-fold (n=8) increase of the outward current by addition of experimental bath solution. In the presence of 300 nM iberiotoxin, the specific blocker of K(Ca) channels, the outward current was not altered by 100 microM SNP. In addition, in the presence of 1 microM Rp-8-Br-PET-CGWS, the specific protein kinase G-inhibitor, the outward current was not affected by 100 microM SNP. These results suggest that NO released from NO-donors stimulates K(Ca) current in rat tail artery smooth muscle cells by activating protein kinase G and not by direct effect on the channel 1.  相似文献   

9.
The cGMP-dependent protein kinase type I (cGKI) is a major mediator of NO/cGMP-induced vasorelaxation. Smooth muscle expresses two isoforms of cGKI, cGKIalpha and cGKIbeta, but the specific role of each isoform in vascular smooth muscle cells (VSMCs) is poorly understood. We have used a genetic deletion/rescue strategy to analyze the functional significance of cGKI isoforms in the regulation of the cytosolic Ca(2+) concentration by NO/cGMP in VSMCs. Cultured mouse aortic VSMCs endogenously expressed both cGKIalpha and cGKIbeta. The NO donor diethylamine NONOate (DEA-NO) and the membrane-permeable cGMP analogue 8-bromo-cGMP inhibited noradrenaline-induced Ca(2+) transients in wild-type VSMCs but not in VSMCs genetically deficient for both cGKIalpha and cGKIbeta. The defective Ca(2+) regulation in cGKI-knockout cells could be rescued by transfection of a fusion construct consisting of cGKIalpha and enhanced green fluorescent protein (EGFP) but not by a cGKIbeta-EGFP construct. Fluorescence imaging indicated that the cGKIalpha-EGFP fusion protein was concentrated in the perinuclear/endoplasmic reticulum region of live VSMCs, whereas the cGKIbeta-EGFP protein was more homogeneously distributed in the cytoplasm. These results suggest that one component of NO/cGMP-induced smooth muscle relaxation is the activation of the cGKIalpha isoform, which decreases the noradrenaline-stimulated cytosolic Ca(2+) level.  相似文献   

10.
Effects of cGMP on the slow (L-type) Ca2+ channels of cultured chick embryonic cardiomyocytes were investigated by a cell-attached patch-clamp method. Superfusion of the single cells with 8-bromo-cGMP, a membrane-permeable derivative of cGMP, inhibited the single-channel activity. The cyclic nucleotide decreased, in a concentration-dependent manner, the ensemble averaged currents obtained from multichannel patches. 8-Bromo-cGMP (1 mM) completely abolished the currents (n = 8), whereas 0.1 mM only slightly decreased the currents (n = 4). The influence of cGMP on the characteristics of the single Ca2+ channels was examined using 0.3 mM 8-bromo-cGMP. Unit amplitude and slope conductance of the Ca2+ channel was not changed (25 pS in control versus 24 pS in the presence of cGMP). Analysis of single-channel kinetics showed that cGMP prolonged the slow time constant for the closed-time histogram (from 6.7 to 15.4 msec); the other time constants (for the open-time and closed-time histograms) were not affected. cGMP-induced inhibition of the Ca2+ channels may be mediated by cGMP-dependent protein kinase, because 8-bromo-cGMP is a potent activator of this protein kinase and does not stimulate cAMP hydrolysis. The present results suggest that cGMP opposes the effects of cAMP on the L-type Ca2+ channels in myocardial cells.  相似文献   

11.
This study was designed to investigate the mechanism of endothelin-1 (ET-1) contractions in Staphylococcus alpha-toxin-permeabilized vascular smooth muscle. Rabbit small mesenteric arteries permeabilized with alpha-toxin were mounted for isometric or isotonic force recording or were processed for determination of myosin light chain (MLC) phosphorylation levels. Addition of 100 nM ET-1 plus 10 microM GTP significantly enhanced myofilament Ca2+ sensitivity as compared with the addition of Ca2+ alone (EC50, 0.47 microM Ca2+ for Ca2+ alone and 0.13 microM Ca2+ for ET-1 plus (GTP). This enhanced sensitivity was reversed by GDP beta S. ET-1-induced contractions were relaxed at a constant [Ca2+] by the addition of 30 microM cAMP or cGMP, demonstrating a direct effect of the cyclic nucleotides on contractile regulation. Inhibition of protein kinase C activity by 100 nM staurosporine relaxed ET-1 plus GTP-induced contractions, and pretreatment with 40 microM chelerythrine inhibited the ET-1 plus GTP increase in force. At 0.32 microM Ca2+, steady-state levels of shortening velocity were not increased by ET-1 plus GTP, although steady-state levels of MLC phosphorylation were significantly enhanced. The ET-1-induced increase in MLC phosphorylation was not altered by changes in [Ca2+], whereas the shortening velocity was Ca2+ dependent, suggesting that the increase MLC phosphorylation level may be the result of protein kinase C, rather than MLC kinase, activation. These results are consistent with the hypothesis that ET-1 increases myofilament Ca2+ sensitivity by a G protein-dependent pathway and subsequent activation of protein kinase C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Green AK  Zolle O  Simpson AW 《Gastroenterology》2002,123(4):1291-1303
Background & Aims: Oscillations in cytosolic free Ca2+ concentration are a fundamental mechanism of intracellular signaling in hepatocytes. The aim of this study was to examine the effects of atrial natriuretic peptide (ANP) on cytosolic Ca2+ oscillations in rat hepatocytes. METHODS: Cyclic guanosine monophosphate (cGMP) was measured by enzyme immunoassay. Cytosolic Ca2+ oscillations were recorded from single aequorin-injected hepatocytes. Ca2+ efflux from hepatocyte populations was measured by using extracellular fura-2. Ca2+ influx was estimated by Mn2+ quench of fluorescence of fura-2 dextran injected into single hepatocytes. RESULTS: ANP attenuated cytosolic Ca2+ oscillations through a decrease in their frequency. In addition, ANP dramatically stimulated plasma membrane Ca2+ efflux and modestly inhibited basal Ca2+ influx. All of the observed effects of ANP were mimicked by the cGMP analogue 8-bromo-cGMP (8-Br-cGMP), and were prevented by inhibition of protein kinase G. In contrast, activation of cytosolic guanylyl cyclase by sodium nitroprusside had no effect on Ca2+ efflux, Ca2+ influx, or Ca2+ oscillations. CONCLUSIONS: ANP decreases the frequency of Ca2+ oscillations and modulates plasma membrane Ca2+ fluxes in rat hepatocytes. Attenuation of oscillatory Ca2+ signaling in hepatocytes may represent a key role for ANP in vivo.  相似文献   

13.
Na(+)-Ca2+ exchange is proposed to be an important regulator of myoplasmic intracellular Ca2+ concentration ([Ca2+]i) and contraction in vascular smooth muscle. We investigated the role of Na(+)-Ca2+ exchange in regulating [Ca2+]i in swine carotid arterial tissues that were loaded with aequorin to allow simultaneous measurement of [Ca2+]i and force. Reversal of Na(+)-Ca2+ exchange, by reduction of extracellular Na+ concentration ([Na+]o) to 1.2 mM, induced a large increase in aequorin-estimated [Ca2+]i and a low [Ca2+]i sensitivity. The contraction induced by 1.2 mM [Na+]o was partially caused by depolarization and opening of L-type Ca2+ channels because 10 microM diltiazem partially attenuated the 1.2 mM [Na+]o-induced increases in [Ca2+]i. High dose ouabain (10 microM), a putative endogenous Na+,K(+)-ATPase inhibitor, increased both [Ca2+]i and force. However, the increases in [Ca2+]i and force were mostly blocked by 10 microM phentolamine, suggesting the predominant effect of ouabain was to increase norepinephrine release from nerve terminals. In the presence of 10 microM phentolamine, 10 microM ouabain slightly accentuated 1 microM histamine-induced increases in [Ca2+]i and force. The ouabain dose necessary to induce contraction in the absence of phentolamine was significantly less than the ouabain dose necessary to accentuate histamine-induced contractions in the presence of phentolamine. These results suggest that Na(+)-Ca2+ exchange exists in swine arterial smooth muscle. These data also suggest that ouabain (which should increase [Na+]i and inhibit Na(+)-Ca2+ exchange) primarily enhances contractile function in the swine carotid artery by releasing catecholamines from nerve terminals; direct action of Na+,K(+)-ATPase inhibitors on smooth muscle appears to occur only with very high doses.  相似文献   

14.
The Ca2+/calmodulin (CaM)-dependent protein phosphatase calcineurin is rapidly phosphorylated (0.8 mol of 32PO4 per mol of 60-kDa subunit of calcineurin) by brain Ca2+/CaM-dependent protein kinase II (CaM-kinase II). This reaction requires the autophosphorylated, Ca2+-independent form of CaM-kinase II since Ca2+/CaM binding to calcineurin inhibits phosphorylation. However, the phosphorylation reaction does require Ca2+, presumably acting through the 19-kDa subunit of calcineurin. Calcineurin is a good substrate for CaM-kinase II, with a Km of 19 microM and Vmax of 2.4 mumol/min per mg. Phosphorylation of calcineurin changed its phosphatase activity with either a 2-fold increase in Km (32P-labeled myosin light chain as substrate) or a 50% decrease in Vmax (p-nitrophenyl phosphate as substrate). The phosphorylated calcineurin exhibited very slow autodephosphorylation (0.09 nmol/min per mg) but was effectively dephosphorylated by brain protein phosphatase IIA. Dephosphorylation, like phosphorylation, was blocked by high concentrations of Ca2+/CaM and stimulated by Ca2+ alone. Thus calcineurin has a regulatory phosphorylation site that is phosphorylated by the Ca2+-independent form of CaM-kinase II and blocked by high concentrations of Ca2+/CaM.  相似文献   

15.
BackgroundEicosapentaenoic acid is a fish oil fatty acid that has been shown to decrease blood pressure (BP) in humans. The mechanism by which this fatty acid produces this effect is unknown. Angiotensin II increases BP by inducing vasoconstriction of vascular smooth muscle cells, an event that is mediated by an increase of intracellular calcium and an increase of protein kinase C activity.MethodsWe determined the effects of eicosapentaenoic acid on angiotensin II-induced calcium signaling, and protein kinase C activity in cultured rat aortic smooth muscle cells. Incorporation of eicosapentaenoic acid into cell phospholipids was determined by gas chromatography/mass spectrometry. Intracellular calcium concentration was determined using fura-2, and protein kinase C activity was assessed by an ELISA assay using a phospho-specific antiserum for protein kinase C substrates.ResultsWe found that eicosapentaenoic acid was incorporated into cell phospholipids within 20 min. Eicosapentaenoic acid (10 or 25 μmol/L) did not alter basal intracellular calcium concentration, but decreased the peak response to 100 nmol/L angiotensin II. Eicosapentaenoic acid also decreased the amount of calcium released by thapsigargin, a drug that releases calcium from the sarcoplasmic reticulum, and decreased cation influx after angiotensin II stimulation. Angiotensin II stimulated phosphorylation of protein kinase C substrates. Preincubation of cells with 10 or 25 μmol/L eicosapentaenoic acid significantly inhibited this phosphorylation.ConclusionsOur results demonstrate that acute incorporation of eicosapentaenoic acid into vascular smooth muscle cell phospholipids inhibits intracellular calcium mobilization and protein kinase C activation. These are potential mechanisms by which eicosapentaenoic acid reduces vasoconstriction.  相似文献   

16.
Hypertension is a perplexing multiorgan disease involving renal primary pathology and enhanced angiotensin II vascular reactivity. Here, we report that a novel form of a local Ca2+ signaling in arterial smooth muscle is linked to the development of angiotensin II-induced hypertension. Long openings and reopenings of L-type Ca2+ channels in arterial myocytes produce stuttering persistent Ca2+ sparklets that increase Ca2+ influx and vascular tone. These stuttering persistent Ca2+ sparklets arise from the molecular interactions between the L-type Ca2+ channel and protein kinase Calpha at only a few subsarcolemmal regions in resistance arteries. We have identified AKAP150 as the key protein, which targets protein kinase Calpha to the L-type Ca2+ channels and thereby enables its regulatory function. Accordingly, AKAP150 knockout mice (AKAP150-/-) were found to lack persistent Ca2+ sparklets and have lower arterial wall intracellular calcium ([Ca2+]i) and decreased myogenic tone. Furthermore, AKAP150-/- mice were hypotensive and did not develop angiotensin II-induced hypertension. We conclude that local control of L-type Ca2+ channel function is regulated by AKAP150-targeted protein kinase C signaling, which controls stuttering persistent Ca2+ influx, vascular tone, and blood pressure under physiological conditions and underlies angiotensin II-dependent hypertension.  相似文献   

17.
Both cGMP-dependent and -independent mechanisms have been implicated in the regulation of vascular tone by NO. We analyzed acetylcholine (ACh)- and NO-induced relaxation in pressurized small arteries and aortic rings from wild-type (wt) and cGMP kinase I-deficient (cGKI(-/-)) mice. Low concentrations of NO and ACh decreased the spontaneous myogenic tone in wt but not in cGKI(-/-) arteries. However, contractions of cGKI(-/-) arteries and aortic rings were reduced by high concentrations (10 micromol/L) of 2-(N:, N-diethylamino)-diazenolate-2-oxide (DEA-NO). Iberiotoxin, a specific blocker of Ca(2+)-activated K(+) (BK(Ca)) channels, only partially prevented the relaxation induced by DEA-NO or ACh in pressurized vessels and aortic rings. DEA-NO increased the activity of BK(Ca) channels only in vascular smooth muscle cells isolated from wt cGKI(+/+) mice. These results suggest that low physiological concentrations of NO decrease vascular tone through activation of cGKI, whereas high concentrations of DEA-NO relax vascular smooth muscle independent of cGKI and BK(Ca). NO-stimulated, cGKI-independent relaxation was antagonized by the inhibition of soluble guanylyl cyclase or cAMP kinase (cAK). DEA-NO increased cGMP to levels that are sufficient to activate cAK. cAMP-dependent relaxation was unperturbed in cGKI(-/-) vessels. In conclusion, low concentrations of NO relax vessels by activation of cGKI, whereas in the absence of cGKI, NO can relax small and large vessels by cGMP-dependent activation of cAK.  相似文献   

18.
Ca2+-transport ATPases of vascular smooth muscle   总被引:7,自引:0,他引:7  
To characterize the Ca2+-transport properties of the plasma membrane and of the endoplasmic reticulum of bovine pulmonary artery, membrane vesicles are subfractionated by a procedure of density-gradient centrifugation that takes advantage of the selective effect of digitonin on the density of plasma-membrane vesicles. The obtained endoplasmic-reticulum fraction contains hardly any plasma-membrane vesicles, whereas the plasma-membrane fraction is still contaminated by a substantial amount of endoplasmic-reticulum vesicles. An adenosine 5'-triphosphate (ATP) energized Ca2+-transport system and a Ca2+-stimulated ATPase activity are present in both subcellular fractions. The Ca2+ transport by the plasma membrane is catalyzed by a (Ca2+,Mg2+)-ATPase of Mr 130,000. It binds calmodulin and it has a low steady-state phosphoprotein intermediate level. The endoplasmic-reticulum vesicles contain a Ca2+-transport ATPase of Mr 100,000 that is characterized by a high steady-state phosphointermediate level. It is antigenically related to the Ca2+-pump protein of cardiac sarcoplasmic reticulum. Phospholamban, the regulatory protein of the Ca2+-transport enzyme of cardiac sarcoplasmic reticulum, is also present in the endoplasmic reticulum of the pulmonary artery. A comparison of these fractions with the previously characterized fractions from porcine gastric smooth muscle reveals important differences in the basal Mg2-ATPase activity, in the ratio of the (Ca2+,Mg2+)-ATPase of the plasmalemma to that of the endoplasmic reticulum, and in the ratio of the (Na+,K+)-ATPase activity to the plasmalemmal (Ca2+,Mg2+)-ATPase activity. These differences can be ascribed in part to the species and in part to the tissue. These data suggest that in the bovine pulmonary artery the Ca2+ extrusion via the ATP-dependent Ca2+ pump may have a less predominant role, and that the Ca2+ uptake by the endoplasmic reticulum, and possibly also the Ca2+ extrusion via the Na+-Ca2+ exchanger could be more important in this tissue than in the porcine stomach.  相似文献   

19.
Cyclic nucleotides can relax smooth muscle without a change in [Ca2+]i, a phenomenon termed Ca2+ desensitization, contributing to vasodilation, gastrointestinal motility, and airway resistance. The physiological importance of telokin, a 17-kDa smooth muscle-specific protein and target for cyclic nucleotide-induced Ca2+ desensitization, was determined in telokin null mice bred to a congenic background. Telokin null ileal smooth muscle homogenates compared to wild type exhibited an approximately 30% decrease in myosin light-chain phosphatase (MLCP) activity, which was reflected in a significant leftward shift (up to 2-fold at pCa 6.3) of the Ca2+ force relationship accompanied by an increase in myosin light-chain phosphorylation. No difference in the Ca2+ force relationship occurred in telokin WT and knockout (KO) aortas, presumably reflecting the normally approximately 5-fold lower telokin content in aorta vs. ileum smooth muscle. Ca2+ desensitization of contractile force by 8-Br-cGMP was attenuated by 50% in telokin KO intestinal smooth muscle. The rate of force relaxation reflecting MLCP activity, in the presence of 50 microM 8-Br-cGMP, was also significantly slowed in telokin KO vs. WT ileum and was rescued by recombinant telokin. Normal thick filaments in telokin KO smooth muscles indicate that telokin is not required for filament formation or stability. Results indicate that a primary role of telokin is to modulate force through increasing MLCP activity and that this effect is further potentiated through phosphorylation by cGMP in telokin-rich smooth tissues.  相似文献   

20.
Ca2+ plays a major role in the functional use of tubulin in brain and other tissues. It activates an endogenous tubulin kinase system in brain cytosol, tubulin, and presynaptic nerve terminal fractions prepared from rat brain. Activation of the Ca2+ tubulin kinase system was modulated by the Ca2+ receptor protein calmodulin. The concentrations of Ca2+ and calmodulin required to produce a half-maximal stimulation of the tubulin kinase were 0.8 microM and 0.4 micrograms, respectively. Ca2+ -calmodulin tubulin kinase activity was very unstable after death, and procedures were developed to stabilize the activity of this enzyme system. Evidence is presented demonstrating that the Ca2+ -calmodulin tubulin kinase system is distinct from the previously described cyclic AMP-Mg2+ tubulin kinase. The results suggest that Ca2+- and calmodulin-stimulated phosphorylation of tubulin may be a major biochemical mechanism modulating some of calcium's effects on tubulin and may play a significant role in mediating some of calcium's actions on cell functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号