首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the brains of Tg2576 transgenic mice carrying human amyloid precursor protein with the Swedish mutation and Alzheimer's disease (AD) by means of immunohistochemistry and electron microscopy to clarify the characteristics of amyloid-associated pathology in the transgenic mice. In 12- to 29-month-old Tg2576 mice, congophilic cored plaques in the neocortex and hippocampus were labeled by all of the Abeta1-, Abeta40- and 42-specific antibodies, as seen in the classical plaques in AD. However, large-sized (>50 micro m in core diameter) plaques were seen more frequently in the older mice (18-29 months) than in those with AD (approximately 20% vs 2% in total cored plaques), and Tg2576 mice contained giant plaques (>75 micro m in core diameter), which were almost never seen in the brain of those with AD. Neither thread-like structures nor peripheral coronas were observed in the cored plaques of the transgenic mice in the silver impregnations. Immunohistochemically, plaque-accompanied microglia showed a slight enlargement of the cytoplasm with consistent labeling of Mac-1 and macrosialin (murine CD68), and with partial labeling of Ia antigen and macrophage-colony stimulating factor receptor. Ultrastructurally, the microglia surrounding the extracellular amyloid fibrils in the large, cored plaques showed some organella with phagocytic activity, such as secondary lysosomal, dense bodies, but intracellular amyloid fibrils were not evident. Dystrophic neurites in the plaques of the transgenic mice contained many dense multilaminar bodies, but no paired helical filaments. Our results suggest that giant cored plaques without coronas or paired helical filament-typed, dystrophic neurites are characteristic in Tg2576 mice, and that plaque-associated microglia in transgenic mice are activated to be in phagocytic function but not sufficient enough to digest extracellularly deposited amyloid fibrils.  相似文献   

2.
Alzheimer's disease (AD) is characterized by the accumulation of extracellular insoluble amyloid, primarily derived from polymerized amyloid-beta (Abeta) peptides. We characterized the chemical composition of the Abeta peptides deposited in the brain parenchyma and cerebrovascular walls of triple transgenic Tg-SwDI mice that produce a rapid and profuse Abeta accumulation. The processing of the N- and C-terminal regions of mutant AbetaPP differs substantially from humans because the brain parenchyma accumulates numerous, diffuse, nonfibrillar plaques, whereas the thalamic microvessels harbor overwhelming amounts of compact, fibrillar, thioflavine-S- and apolipoprotein E-positive amyloid deposits. The abundant accretion of vascular amyloid, despite low AbetaPP transgene expression levels, suggests that inefficient Abeta proteolysis because of conformational changes and dimerization may be key pathogenic factors in this animal model. The disruption of amyloid plaque cores by immunotherapy is accompanied by increased perivascular deposition in both humans and transgenic mice. This analogous susceptibility and response to the disruption of amyloid deposits suggests that Tg-SwDI mice provide an excellent model in which to study the functional aftermath of immunotherapeutic interventions. These mice might also reveal new avenues to promote amyloidogenic AbetaPP processing and fundamental insights into the faulty degradation and clearance of Abeta in AD, pivotal issues in understanding AD pathophysiology and the assessment of new therapeutic agents.  相似文献   

3.
Changes in the amyloid-peptide (Abeta), neuronal and inducible nitric oxide (NO)synthase (nNOS, iNOS), nitrotyrosine, glial fibrillary acidic protein, and lectin from Lycopersicon esculentum (tomato) were investigated in the cerebral cortex of transgenic mice (Tg2576) to amyloid precursor protein (APP), by immunohistochemistry (bright light, confocal, and electron microscopy). The expression of nitrergic proteins and synthesis of nitric oxide were analyzed by immunoblotting and NOS activity assays, respectively. The cerebral cortex of these transgenic mice showed an age-dependent progressive increase in intraneuronal aggregates of Abeta-peptide and extracellular formation of senile plaques surrounded by numerous microglial and reactive astrocytes. Basically, no changes to nNOS reactivity or expression were found in the cortical mantle of either wild or transgenic mice. This reactivity in wild mice corresponded to numerous large type I and small type II neurons. The transgenic mice showed swollen, twisted, and hypertrophic preterminal and terminal processes of type I neurons, and an increase of the type II neurons. The calcium-dependent NOS enzymatic activity was higher in wild than in the transgenic mice. The iNOS reactivity, expression and calcium-independent enzymatic activity increased in transgenic mice with respect to wild mice, and were related to cortical neurons and microglial cells. The progressive elevation of NO production resulted in a specific pattern of protein nitration in reactive astrocytes. The ultrastructural study carried out in the cortical mantle showed that the neurons contained intracellular aggregates of Abeta-peptide associated with the endoplasmic reticulum, mitochondria, and Golgi apparatus. The endothelial vascular cells also contained Abeta-peptide deposits. This transgenic model might contribute to understand the role of the nitrergic system in the biological changes related to neuropathological progression of Alzheimer's disease.  相似文献   

4.
Loss of Locus coeruleus (LC) noradrenergic (NA) neurons occurs in several neurodegenerative conditions including Alzheimer's disease (AD). In vitro and in vivo studies have shown that NA influences several features of AD disease including inflammation, neurodegeneration, and cognitive function. In the current study we tested if LC loss influenced beta amyloid (Abeta) plaque deposition. LC neuronal degeneration was induced in transgenic mice expressing mutant V717F human amyloid precursor protein (APP) by treatment with the selective neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine DSP4 (5mg/kg every 2 weeks beginning at age 3 months). At 9 months of age, when control mice show low amyloid load, DSP4-treated mice showed an approximately 5-fold increase in the average number of Abeta plaques. This was accompanied by an increase in the levels of APP C-terminal cleavage fragments. DSP4-treatment increased both microglial and astroglial activation. In vivo, DSP4-treatment decreased expression and activity of the Abeta degrading enzyme neprilysin, while in vitro NA increased phagocytosis of Abeta1-42 by microglia. These findings suggest that noradrenergic innervation from LC are needed to maintain adequate Abeta clearance, and therefore that LC degeneration could contribute to AD pathogenesis.  相似文献   

5.
Deposition of amyloid beta-peptide (Abeta) in cerebral vessel walls (cerebral amyloid angiopathy, CAA) is very frequent in Alzheimer's disease and occurs also as a sporadic disorder. Here, we describe significant CAA in addition to amyloid plaques, in aging APP/Ld transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP) exclusively in neurons. The number of amyloid-bearing vessels increased with age, from approximately 10 to >50 per coronal brain section in APP/Ld transgenic mice, aged 13 to 24 months. Vascular amyloid was preferentially deposited in arterioles and ranged from small focal to large circumferential depositions. Ultrastructural analysis allowed us to identify specific features contributing to weakening of the vessel wall and aneurysm formation, ie, disruption of the external elastic lamina, thinning of the internal elastic lamina, interruption of the smooth muscle layer, and loss of smooth muscle cells. Biochemically, the much lower Abeta42:Abeta40 ratio evident in vascular relative to plaque amyloid, demonstrated that in blood vessel walls Abeta40 was the more abundant amyloid peptide. The exclusive neuronal origin of transgenic APP, the high levels of Abeta in cerebrospinal fluid compared to plasma, and the specific neuroanatomical localization of vascular amyloid strongly suggest specific drainage pathways, rather than local production or blood uptake of Abeta as the primary mechanism underlying CAA. The demonstration in APP/Ld mice of rare vascular amyloid deposits that immunostained only for Abeta42, suggests that, similar to senile plaque formation, Abeta42 may be the first amyloid to be deposited in the vessel walls and that it entraps the more soluble Abeta40. Its ability to diffuse for larger distances along perivascular drainage pathways would also explain the abundance of Abeta40 in vascular amyloid. Consistent with this hypothesis, incorporation of mutant presenilin-1 in APP/Ld mice, which resulted in selectively higher levels of Abeta42, caused an increase in CAA and senile plaques. This mouse model will be useful in further elucidating the pathogenesis of CAA and Alzheimer's disease, and will allow testing of diagnostic and therapeutic strategies.  相似文献   

6.
Microglia accumulation at the site of amyloid plaques is a strong indication that microglia play a major role in Alzheimer's disease pathogenesis. However, how microglia affect amyloid-beta peptide (Abeta) deposition remains poorly understood. To address this question, we developed a novel bigenic mouse that overexpresses both amyloid precursor protein (APP) and monocyte chemotactic protein-1 (MCP-1; CCL2 in systematic nomenclature). CCL2 expression, driven by the glial fibrillary acidic protein promoter, induced mononuclear phagocyte (MP; monocyte-derived macrophage and microglial) accumulation in the brain. When APP/CCL2 transgenic mice were compared to APP mice, a fivefold increase in Abeta deposition was present despite increased MP accumulation around hippocampal and cortical amyloid plaques. Levels of full-length APP, its C-terminal fragment, and Abeta-degrading enzymes (insulin-degrading enzyme and neprilysin) in APP/CCL2 and APP mice were indistinguishable. Sodium dodecyl sulfate-insoluble Abeta (an indicator of fibrillar Abeta) was increased in APP/CCL2 mice at 5 months of age. Apolipoprotein E, which enhances Abeta deposition, was also increased (2.2-fold) in aged APP/CCL2 as compared to APP mice. We propose that although CCL2 stimulates MP accumulation, it increases Abeta deposition by reducing Abeta clearance through increased apolipoprotein E expression. Understanding the mechanisms underlying these events could be used to modulate microglial function in Alzheimer's disease and positively affect disease outcomes.  相似文献   

7.
Reactive astrocytes and alpha1-antichymotrypsin in Alzheimer's disease.   总被引:3,自引:0,他引:3  
There is ample genetic, biochemical, cellular and molecular evidence to show that the amyloid beta peptide (Abeta), a proteolytic fragment of the amyloid precursor protein (APP), plays an important, if not causative role in Alzheimer's disease (AD). An additional hallmark of AD is the neuroinflammatory response that is associated with the amyloid deposition. We discovered that the acute phase protein alpha1-antichymotrypsin (ACT) is overexpressed by reactive astrocytes, and is tightly associated with virtually all amyloid plaques in the AD brain. It has also been shown that Abeta and ACT bind in vitro. Recently, we have reported that astrocytic expression of ACT in APP transgenic mice leads to an increased plaque deposition in ACT/APP doubly transgenic mice compared to the APP mice alone, suggesting that ACT interferes with Abeta clearance. The main objective of this review is to summarize the role of astrocytosis and ACT in the pathogenesis of AD.  相似文献   

8.
Reactive astrocytes and microglia in Alzheimer's disease surround amyloid plaques and secrete proinflammatory cytokines that affect neuronal function. Relationship between cytokine signaling and amyloid-beta peptide (Abeta) accumulation is poorly understood. Thus, we generated a novel Swedish beta-amyloid precursor protein mutant (APP) transgenic mouse in which the interferon (IFN)-gamma receptor type I was knocked out (APP/GRKO). IFN-gamma signaling loss in the APP/GRKO mice reduced gliosis and amyloid plaques at 14 months of age. Aggregated Abeta induced IFN-gamma production from co-culture of astrocytes and microglia, and IFN-gamma elicited tumor necrosis factor (TNF)-alpha secretion in wild type (WT) but not GRKO microglia co-cultured with astrocytes. Both IFN-gamma and TNF-alpha enhanced Abeta production from APP-expressing astrocytes and cortical neurons. TNF-alpha directly stimulated beta-site APP-cleaving enzyme (BACE1) expression and enhanced beta-processing of APP in astrocytes. The numbers of reactive astrocytes expressing BACE1 were increased in APP compared with APP/GRKO mice in both cortex and hippocampus. IFN-gamma and TNF-alpha activation of WT microglia suppressed Abeta degradation, whereas GRKO microglia had no changes. These results support the idea that glial IFN-gamma and TNF-alpha enhance Abeta deposition through BACE1 expression and suppression of Abeta clearance. Taken together, these observations suggest that proinflammatory cytokines are directly linked to Alzheimer's disease pathogenesis.  相似文献   

9.
Cortical amyloid-beta (Abeta) deposition is considered essential in Alzheimer's disease (AD) and is also detectable in nondemented individuals with pathologic aging (PA). The present work presents a detailed analysis of the Abeta composition in various plaque types from human AD and PA cases, compared with plaque Abeta isolated from PS2APP mice. To determine minute amounts of Abeta from 30 to 50 laser-dissected amyloid deposits, we used a highly sensitive mass spectrometry procedure after restriction protease lysyl endopeptidase (Lys-C) digestion. This approach allowed the analysis of the amino-terminus and, including a novel ionization modifier, for the first time the carboxy-terminus of Abeta at a detection limit of approximately 200 fmol. In addition, full length Abeta 40/42 and pyroglutamate 3-42 were analyzed using a highly sensitive urea-based Western blot procedure. Generally, Abeta fragments were less accessible in human deposits, indicative of more posttranslational modifications. Thioflavine S positive cored plaques in AD were found to contain predominantly Abeta 42, whereas thioflavine S positive compact plaques and vascular amyloid consist mostly of Abeta 40. Diffuse plaques from AD and PA, as well as from PS2APP mice are composed predominantly of Abeta 1-42. Despite biochemical similarities in human and PS2APP mice, immuno-electron microscopy revealed an extensive extracellular matrix associated with Abeta fibrils in AD, specifically in diffuse plaques. Amino-terminal truncations of Abeta, especially pyroglutamate 3-40/42, are more frequently found in human plaques. In cored plaques we measured an increase of N-terminal truncations of approximately 20% between Braak stages IV to VI. In contrast, diffuse plaques of AD and PA cases, show consistently only low levels of amino-terminal truncations. Our data support the concept that diffuse plaques represent initial Abeta deposits but indicate a structural difference for Abeta depositions in human AD compared with PS2APP mice already at the stage of diffuse plaque formation.  相似文献   

10.
The class A scavenger receptor (SR) is expressed on reactive microglia surrounding cerebral amyloid plaques in Alzheimer's disease (AD). Interactions between the SR and amyloid beta peptides (Abeta) in microglial cultures elicit phagocytosis of Abeta aggregates and release of neurotoxins. To assess the role of the SR in amyloid clearance and Abeta-associated neurodegeneration in vivo, we used the platelet-derived growth factor promoter to express human amyloid protein precursors (hAPPs) in neurons of transgenic mice. With increasing age, hAPP mice develop AD-like amyloid plaques. We bred heterozygous hAPP (hAPP(+/-)) mice that were wild type for SR (SR(+/+)) with SR knockout (SR(-/-)) mice. Crosses among the resulting hAPP(+/-)SR(+/-) offspring yielded hAPP(+/-) and hAPP(-/-) littermates that were SR(+/+) or SR(-/-). These second-generation mice were analyzed at 6 and 12 months of age for extent of cerebral amyloid deposition and loss of synaptophysin-immunoreactive presynaptic terminals. hAPP(-/-)SR(-/-) mice showed no lack of SR expression, plaque formation, or synaptic degeneration, indicating that lack of SR expression does not result in significant accumulation of endogenous amyloidogenic or neurotoxic factors. In hAPP(+/-) mice, ablation of SR expression did not alter number, extent, distribution, or age-dependent accumulation of plaques; nor did it affect synaptic degeneration. Our results do not support a critical pathogenic role for microglial SR expression in neurodegenerative alterations associated with cerebral beta amyloidosis.  相似文献   

11.
To clarify how Aβ deposits start in the brain, we examined the early to late stages of senile plaques and amyloid angiopathy in APPsw mice. All types of human senile plaques were observed in the mouse brains. The premature forms of cored plaques appeared first in the cerebral cortex of mice at 7–8 months old. Then, amyloid angiopathy emerged, followed by diffuse plaques consisting of Aβ1–42. Modifications of the N-terminus of Aβ were late phase phenomena. The premature forms of cored plaques were composed of central Aβ1–40 amyloid cores, surrounding amorphous Aβ1–42 deposits, and accumulation of Aβ1–42 in some peripheral cells. These cells were incorporated in amyloid cores, and these plaques developed to large cored plaques composed of Aβ1–40 and Aβ1–42. The size and number of cored plaques were increased with age. These findings indicate different evolution paths for cored plaques and diffuse plaques, and suggest the presence of a pathway that initiates with the intracellular accumulation of Aβ1–42 and leads to the development of classic plaques in human brain tissues.  相似文献   

12.
APPsw transgenic mice (Tg2576) overproducing mutant amyloid beta protein precursor (betaAPP) show substantial brain Abeta amyloidosis and behavioural abnormalities. To clarify the subsequent abnormalities, the disappearance of neurons and synapses and dystrophic neurite formation with accumulated proteins including hyperphosphorylated tau were examined. Tg2576 demonstrated substantial giant core plaques and diffuse plaques. The number of neurons was significantly decreased in the areas containing the amyloid cores compared with all other areas and corresponding areas in non-transgenic littermates in sections visualized by Nissl plus Congo red double staining (p<0.001). The presynaptic protein alpha-synuclein and postsynaptic protein drebrin were also absent in the amyloid cores. betaAPP and presenilin-1 were accumulated in dystrophic neurites in and around the core plaques. Tau phosphorylated at five independent sites was detected in the dystrophic neurites in the amyloid cores. Thus, the giant core plaques replaced normal brain tissues and were associated with subsequent pathological features such as dystrophic neurites and the appearance of hyperphosphorylated tau. These findings suggest a potential role for brain Abeta amyloidosis in the induction of secondary pathological steps leading to mental disturbance in Alzheimer's disease.  相似文献   

13.
Alzheimer's disease is characterized in part by extracellular aggregation of the amyloid-β peptide in the form of diffuse and fibrillar plaques in the brain. Electron microscopy (EM) has made an important contribution in understanding of the structure of amyloid plaques in humans. Classical EM studies have revealed the architecture of the fibrillar core, characterized the progression of neuritic changes, and have identified the neurofibrillary tangles formed by paired helical filaments (PHF) in degenerating neurons. Clinical data has strongly correlated cognitive impairment in AD with the substantial synapse loss observed in these early ultrastructural studies. Animal models of AD-type brain amyloidosis have provided excellent opportunities to study amyloid and neuritic pathology in detail and establish the role of neurons and glia in plaque formation. Transgenic mice overexpressing mutant amyloid precursor protein (APP) alone with or without mutant presenilin 1 (PS1), have shown that brain amyloid plaque development and structure grossly recapitulate classical findings in humans. Transgenic APP/PS1 mice expressing human apolioprotein E isoforms also develop amyloid plaque deposition. However no ultrastructural data has been reported for these animals. Here we show results from detailed EM analysis of amyloid plaques in APP/PS1 mice expressing human isoforms of ApoE and compare these findings with EM data in other transgenic models and in human AD. Our results show that similar to other transgenic animals, APP/PS1 mice expressing human ApoE isoforms share all major cellular and subcellular degenerative features and highlight the identity of the cellular elements involved in Aβ deposition and neuronal degeneration.  相似文献   

14.
CONTEXT: Down syndrome patients who live to middle age invariably develop the neuropathologic features of Alzheimer disease, providing a unique situation in which to study the early and sequential development of these changes. OBJECTIVE: To study the development of amyloid deposits, senile plaques, astrocytic and microglial reactions, and neurofibrillary tangles in the brains of young individuals (<30 years of age) with Down syndrome. METHODS: Histologic and immunocytochemical study of a series of autopsy brains (n = 14, from subjects aged 11 months to 56 years, with 9 subjects <30 years) examined at the Office of the Chief Medical Examiner of the State of Maryland and The Johns Hopkins Hospital. RESULTS: The principal observations included the presence of intraneuronal Abeta immunostaining in the hippocampus and cerebral cortex of very young Down syndrome patients (preceding the extracellular deposition of Abeta) and the formation of senile plaques and neurofibrillary tangles. CONCLUSIONS: We propose the following sequence of events in the development of neuropathologic changes of Alzheimer disease in Down syndrome: (1) intracellular accumulation of Abeta in neurons and astrocytes, (2) deposition of extracellular Abeta and formation of diffuse plaques, and (3) development of neuritic plaques and neurofibrillary tangles with activation of microglial cells.  相似文献   

15.
Cerebral vascular amyloid beta-protein (Abeta) deposition, also known as cerebral amyloid angiopathy, is a common pathological feature of Alzheimer's disease. Additionally, several familial forms of cerebral amyloid angiopathy exist including the Dutch (E22Q) and Iowa (D23N) mutations of Abeta. Increasing evidence has associated cerebral microvascular amyloid deposition with neuroinflammation and dementia in these disorders. We recently established a transgenic mouse model (Tg-SwDI) that expresses human vasculotropic Dutch/Iowa mutant amyloid beta-protein precursor in brain. Tg-SwDI mice were shown to develop early-onset deposition of Abeta exhibiting high association with cerebral microvessels. Here we present quantitative temporal analysis showing robust and progressive accumulation of cerebral microvascular fibrillar Abeta accompanied by decreased cerebral vascular densities, the presence of apoptotic cerebral vascular cells, and cerebral vascular cell loss in Tg-SwDI mice. Abundant neuroinflammatory reactive astrocytes and activated microglia strongly associated with the cerebral microvascular fibrillar Abeta deposits. In addition, Tg-SwDI mouse brain exhibited elevated levels of the inflammatory cytokines interleukin-1beta and -6. Together, these studies identify the Tg-SwDI mouse as a unique model to investigate selective accumulation of cerebral microvascular amyloid and the associated neuroinflammation.  相似文献   

16.
Amyloid plaques appear early during Alzheimer's disease (AD), and their development is intimately linked to activated astrocytes and microglia. Astrocytes are capable of accumulating substantial amounts of neuron-derived, amyloid beta(1-42) (Abeta42)-positive material and other neuron-specific proteins as a consequence of their debris-clearing role in response to local neurodegeneration. Immunohistochemical analyses have suggested that astrocytes overburdened with these internalized materials can eventually undergo lysis, and radial dispersal of their cytoplasmic contents, including Abeta42, can lead to the deposition of a persistent residue in the form of small, GFAP-rich, astrocytic amyloid plaques, first appearing in the molecular layer of the cerebral cortex. Microglia, most of which appear to be derived from blood monocytes and recruited from local blood vessels, rapidly migrate into and congregate within neuritic and dense-core plaques, but not diffuse plaques. Instead of internalizing and removing Abeta from plaques, microglia appear to contribute to their morphological and chemical evolution by facilitating the conversion of existing soluble and oligomeric Abeta within plaques to the fibrillar form. Abeta fibrillogenesis may occur largely within tiny, tube-like invaginations in the surface plasma membrane of microglia. These results highlight the therapeutic potential of blocking the initial intracellular accumulation of Abeta42 in neurons and astrocytes and inhibiting microglia-mediated assembly of fibrillar Abeta, which is particularly resistant to degradation in Alzheimer brain.  相似文献   

17.
We have shown that interaction of CD40 with CD40L enables microglial activation in response to amyloid-beta peptide (Abeta), which is associated with Alzheimer's disease (AD)-like neuronal tau hyperphosphorylation in vivo. Here we report that transgenic mice overproducing Abeta, but deficient in CD40L, showed decreased astrocytosis and microgliosis associated with diminished Abeta levels and beta-amyloid plaque load. Furthermore, in the PSAPP transgenic mouse model of AD, a depleting antibody against CD40L caused marked attenuation of Abeta/beta-amyloid pathology, which was associated with decreased amyloidogenic processing of amyloid precursor protein (APP) and increased circulating levels of Abeta. Conversely, in neuroblastoma cells overexpressing wild-type human APP, the CD40-CD40L interaction resulted in amyloidogenic APP processing. These findings suggest several possible mechanisms underlying mitigation of AD pathology in response to CD40L depletion, and validate the CD40-CD40L interaction as a target for therapeutic intervention in AD.  相似文献   

18.
According to the "amyloid hypothesis of Alzheimer's disease," beta-amyloid is the primary driving force in Alzheimer's disease pathogenesis. Despite the development of many transgenic mouse lines developing abundant beta-amyloid-containing plaques in the brain, the actual link between amyloid plaques and neuron loss has not been clearly established, as reports on neuron loss in these models have remained controversial. We investigated transgenic mice expressing human mutant amyloid precursor protein APP751 (KM670/671NL and V717I) and human mutant presenilin-1 (PS-1 M146L). Stereologic and image analyses revealed substantial age-related neuron loss in the hippocampal pyramidal cell layer of APP/PS-1 double-transgenic mice. The loss of neurons was observed at sites of Abeta aggregation and surrounding astrocytes but, most importantly, was also clearly observed in areas of the parenchyma distant from plaques. These findings point to the potential involvement of more than one mechanism in hippocampal neuron loss in this APP/PS-1 double-transgenic mouse model of Alzheimer's disease.  相似文献   

19.
Is there a future for vaccination as a treatment for Alzheimer's disease?   总被引:6,自引:0,他引:6  
Vaccination of APP transgenic mice with Abeta has been shown to prevent amyloid deposits. A clinical trial of Abeta vaccination in Alzheimer's disease (AD) was halted due to serious neurological complications developing in some patients. Such complications were not observed in transgenic mice. Since human APP is not a mouse self-protein, vaccination of mice with Abeta should not produce an autoimmune reaction although this would be anticipated in AD. Moreover, mouse C1q poorly recognizes human Abeta so complement activation is much weaker in transgenic mice than in AD. Vaccination will increase complement activation through formation of antigen-antibody complexes. In mice this will enhance phagocytosis. But in AD, where complement is already overactivated, and where the senile plaques are relatively insoluble, this stimulation should increase production of the membrane attack complex, adding to the autodestruction of neurons. The future of vaccination as a therapy for AD will require surmounting the problems of autoimmune reactions generally and autotoxic complement activation specifically.  相似文献   

20.
Mutations in the amyloid precursor protein (APP) and presenilin-1 and -2 genes (PS-1, -2) cause Alzheimer's disease (AD). Mice carrying both mutant genes (PS/APP) develop AD-like deposits composed of beta-amyloid (Abeta) at an early age. In this study, we have examined how Abeta deposition is associated with immune responses. Both fibrillar and nonfibrillar Abeta (diffuse) deposits were visible in the frontal cortex by 3 months, and the amyloid load increased dramatically with age. The number of fibrillar Abeta deposits increased up to the oldest age studied (2.5 years old), whereas there were less marked changes in the number of diffuse deposits in mice over 1 year old. Activated microglia and astrocytes increased synchronously with amyloid burden and were, in general, closely associated with deposits. Cyclooxygenase-2, an inflammatory response molecule involved in the prostaglandin pathway, was up-regulated in astrocytes associated with some fibrillar deposits. Complement component 1q, an immune response component, strongly colocalized with fibrillar Abeta, but was also up-regulated in some plaque-associated microglia. These results show: i) an increasing proportion of amyloid is composed of fibrillar Abeta in the aging PS/APP mouse brain; ii) microglia and astrocytes are activated by both fibrillar and diffuse Abeta; and iii) cyclooxygenase-2 and complement component 1q levels increase in response to the formation of fibrillar Abeta in PS/APP mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号