首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study evaluated the effect of mechanical loading on microtensile bond strength (MTBS) when luting fiber posts to root canal dentin. Forty maxillary premolars were endodontically treated, and the roots were prepared for post cementation using the FRC Postec system. A light-cured composite (Clearfil Photo Core, Kuraray) was used in combination with four adhesive systems: Single Bond (3M ESPE), Multilink Primer (Vivadent), Clearfil Photo Bond (Kuraray), and Clearfil New Bond (Kuraray). A composite build-up was performed around the root to provide adequate gripping during testing. For each experimental group, half of the specimens were load cycled under 90 N (5000 cycles, 3 cycles/s). Specimens were cut to obtain beams with the post in the center and with the radicular dentin overlaid by the composite build-up on each side. Microtensile testing was performed with a universal testing machine at a cross-head speed of 0.5 mm/min. The failure mode was classified under a stereomicroscope. ANOVA and Student-Newman-Keuls multiple comparison tests were performed. After 24 h, all adhesives performed similarly. When specimens were subjected to mechanical loading, decreases in MTBS were observed for Clearfil New Bond and Multilink Primer.  相似文献   

2.
The study evaluated the influence of different luting materials on the microtensile bond strength of glass fiber posts to root canal dentin. Thirty extracted maxillary premolars were endodontically treated, and the roots were prepared for post cementation using the FRC Postec system (Vivadent). Two luting materials (Multilink, Vivadent and Clearfil Photo Core, Kuraray) were used in combination with three adhesive: Multilink Primer (Vivadent), Clearfil Photo Bond, and Clearfil New Bond (Kuraray). A composite build-up was performed around the root to provide adequate gripping during testing. Specimens were cut to obtain beams with the post in the center and with the radicular dentin overlaid by the composite build-up on each side. Microtensile testing was performed with a universal testing machine at a cross-head speed of 0.5 mm/min. The failure mode was classified under a stereomicroscope and four representative beams of each group were selected for SEM analysis. Bond strength data that were analyzed with two-way ANOVA and Student-Newman-Keuls multiple comparisons tests revealed that adhesive systems, luting materials, and the interaction between these two factors significantly influenced the bond strength results (p < 0.01). Multilink applied with its own adhesive system obtained the best results, while the lowest bond strength was achieved with clearfil photo core in combination with multilink primer.  相似文献   

3.
This study evaluated the microtensile bond strength and the interfacial morphology of newer adhesives. The occlusal surfaces of extracted teeth were ground flat for random allocation to four equal groups. Resin composite was bonded to each surface using either Clearfil SE Bond [SEB], Clearfil Protect Bond [PB], G-Bond [GB], or an experimental adhesive, SSB-200 [SSB]. After storage for 24 h in water at 37 degrees C, they were sectioned into beams (cross-sectional area 1 mm(2)) for microtensile bond strength testing (muTBS) at a crosshead speed of 1 mm/min. The load at failure of each was recorded; the data were analyzed by one-way ANOVA and Games Howell tests. The surfaces of the fractured specimens were observed using SEM. For the ultra-morphology of the interface, the occlusal surfaces of four more teeth were prepared as before and a thin layer of flowable resin composite was bonded to each surface using one of the four adhesives.The mean muTBS ranged from 39.68 MPa (GB) to 64.97 MPa (SEB). There were no statistical differences between SEB and SSB, or between PB and GB (p > 0.05). The muTBS of SEB and SSB were significantly greater than that of PB and GB (p < 0.05). SEMs of the fractured surfaces revealed a mixed (cohesive/interfacial) failure. TEM examination highlighted differences in the hybrid layer; SEB had a thicker layer than the others. In conclusion, the newer all-in-one adhesives produced a thin hybrid layer but varied in their bond strengths. The 2-step self-etching adhesives do not necessarily produce higher bond strengths than that of the all-in-one systems.  相似文献   

4.
OBJECTIVE: To evaluate the effect of an in vitro challenge (NaOCl immersion) on microtensile bond strength (MTBS) of five adhesive systems to dentin. METHODS: Flat dentin surfaces from 40 molars were bonded with three total-etch adhesives (Single Bond, Prime&Bond NT and the experimental Prime&Bond XP), and two self-etching agents (Clearfil SE Bond and Etch&Prime 3.0). Composite build-ups were constructed with Tetric Ceram. Teeth were then sectioned into beams of 1.0 mm2 cross-sectional area. Half of the beams were immersed in 10% NaOCl aqueous solution for 5 h. Each beam was tested in tension in an Instron machine at 0.5 mm/min. Data were analyzed by 2-way ANOVA and multiple comparisons tests (p < 0.05). RESULTS: Clearfil SE Bond and Single Bond attained higher MTBS than the other three adhesives. Prime&Bond NT and Prime&Bond XP performed equally, and Etch&Prime resulted in the lowest MTBS. After NaOCl immersion, MTBS decreased in all groups. The highest MTBS values were obtained for Clearfil SE Bond and Prime&Bond XP. Scaning electron microscopy observation of debonded sticks evidenced dissolution and microstructural alterations of intertubular dentin, except when Clearfil SE Bond was used. CONCLUSIONS: Resin-dentin bonds are prone to chemical degradation. The extent of the resin degradation is adhesive system specific. Chemical degradation of the nonresin infiltrated collagen fibers does also exist in total-etch adhesives. Both processes may reduce long-term resin-dentin bond strength.  相似文献   

5.
Various in vitro studies have shown induction of apoptosis by monomers incorporated to dental restorative materials and adhesive resins, while information regarding the effect of monomer combinations as commercially available products on apoptosis is limited. The aim of this study was to investigate the effects of two multi-step self-etch primer/adhesive systems on apoptosis of cultured primary human gingival fibroblasts. Cells were treated up to 48 h with Clearfil SE Bond (Kuraray, Japan) and FL Bond (Shofu, Japan) at 1:1000 v:v ratio to determine cell proliferation, using 0.02 mM staurosporine as positive control. Apoptosis was assessed using propidium iodide/acridine orange (PI/AO) staining, compared to nontreated controls. When compared to FL Bond, exposure of gingival fibroblasts to Clearfil SE Primer and Clearfil SE Bond resulted in a higher degree of cell proliferation. PI/AO staining revealed typical morphological features of apoptosis in FL Bond and Staurosporine groups, while some cells cultured in the presence of primer and adhesive components of Clearfil SE Bond showed nuclear fragmentation, indicative of early apoptosis. Our results indicate that apoptotic potential of the multi-step self-etch adhesives were material-dependent within the 48 h test period.  相似文献   

6.
Characterisation of resin-dentine interfaces by compressive cyclic loading   总被引:2,自引:0,他引:2  
The aims of this in vitro study were to evaluate the ultra-morphological changes in resin-dentine interfaces after different amounts of thermomechanical load (TML), and to determine the corresponding microtensile bond strengths (microTBS). Enamel/dentine discs with a thickness of 2 mm were cut from 24 human third molars and bonded with four adhesives involving different adhesion approaches: Syntac (Ivoclar Vivadent; used as multi-step etch-and-rinse adhesive), Clearfil SE Bond (Kuraray; two-step self-etch adhesive), Xeno III (Dentsply DeTrey; mixed all-in-one self-etch primer adhesive system), and iBond (Heraeus Kulzer; non-mixed all-in-one self-etch adhesive). The resin-dentine discs were cut into beams (width 2 mm; 2 mm dentine, 2 mm resin composite) and subsequently subjected to cyclic TML using ascending amounts of mechanical/thermal cycles (20 N at 0.5 Hz of mechanical load and 5-55 degrees C of thermal cycles: for 0/0, 100/3, 1,000/25, 10,000/250, 100,000/2,500 cycles). Loaded specimens were either cut perpendicularly in order to measure microTBS (n=20; crosshead speed: 1 mm/min) or were immersed in an aqueous tracer solution consisting of 50 wt% ammoniacal silver nitrate and processed for ultra-morphological nanoleakage examination using transmission electron microscopy (TEM). microTBS were significantly decreased by increasing amounts of TML for all adhesives (p<0.05). Bond strengths after 0 vs. 100,000 thermomechanical cycles were: Syntac: 41.3/30.1 MPa; Clearfil SE Bond 44.8/32.5 MPa; Xeno III 27.5/13.7 MPa; iBond 27.0/6.2 MPa. Relatively early, a certain amount of nanoleakage was observed in all groups by TEM, which was more pronounced for Xeno III and iBond. The incidence of nanoleakage remained stable or was even reduced with increasing load cycles for all adhesives except iBond, where exact failure origins were detected within the adhesive and at the top of the hybrid layer.  相似文献   

7.
The clinical performance of directly bonded resin composites is fundamentally dependent on durable adhesion to prevent gap formation over time. The goal of this investigation was to evaluate the effectiveness of various dentin adhesives by means of quasistatic and dynamic dentin bond strengths, and also to determine marginal and internal gap formation after loading in an artificial oral environment. Three hundred thirty human third molars were used within four weeks of extraction. Adhesives used were A.R.T. Bond, OptiBond FL, Scotchbond Multi-Purpose Plus, Single Bond, Prime & Bond NT, and One Up Bond F for bonding of one resin composite (Z 250). Buccal and lingual aspects of 90 teeth were ground flat to expose dentin, then resin composite cylinders were bonded. Initial bond strengths (n = 10) and adhesive fatigue limits (n = 20) were determined with the use of a shear test apparatus. One hundred eighty conical cavities were prepared into dentin discs and filled with the same materials. After 21 days of storage, initial push-out bond strengths (n = 10) and adhesive fatigue limits (n = 20) were measured. Sixty molars with MO cavities (n = 10) with margins below the cement-enamel junction were filled. Before and after thermomechanical loading (100000 x 50 N and 2500 x thermocycling between + 5 and + 55 degrees C), marginal gap formation and internal adaptation (only after loading) were analyzed under a SEM (x 200). The one-bottle systems showed higher shear bond strengths when evaluated statically and dynamically. However, cyclic fatigue push-out bond strengths resulted in higher values for older multistep systems. Marginal and internal gap analysis confirmed the results, in favor of older adhesive systems (p <.05; Mann-Whitney U test).  相似文献   

8.
This study provided morphological evidence that discrepancies between the depth of demineralisation and the depth of resin infiltration can occur in some mild self-etch adhesives. Sound dentine specimens derived from extracted human third molars were bonded with 5 one-step and 5 two-step self-etch adhesives. One millimeter thick slabs containing the resin-dentine interfaces were immersed in 50 wt% aqueous ammoniacal silver nitrate and processed for TEM examination. A zone of partially etched but uninfiltrated dentine was identified beneath the hybrid layers in the milder versions of both one-step and two-step self-etch adhesives. This zone was characterised by the occurrence of silver deposits along the interfibrillar spaces of mineralised collagen fibrils. The silver infiltrated interfibrillar spaces were clearly identified from the one-step self-etch adhesives Xeno III, iBond, Brush&Bond and the experimental adhesive, and were thinner and only occasionally observed in the two-step self-etch adhesives Clearfil SE Bond and Clearfil Protect Bond. The more aggressive one-step and two-step adhesives that exhibit more abrupt transitions from completely demineralised to mineralised dentin were devoid of these silver-infiltrated interfibrillar spaces beneath the hybrid layers. Incomplete resin infiltration observed in some self-etch adhesives may be caused by the reduced etching potential of the acidic monomers toward the base of hybrid layers, or the presence of acidic but non-polymerisable hydrolytic adhesive components, creating potential sites for the degradation of the bonded created by these self-etch adhesives.  相似文献   

9.
This study evaluated the effects of water exposure on the in vitro microtensile bond strength (muTBS) of etch-and-rinse and self-etching adhesives to human dentin over a 1-year storage period. Five adhesive systems used were as follows: a one-step self-etching adhesive (One-up Bond F-OB), two two-step self-etching primers (Clearfil SE Bond-SE and Clearfil Protect Bond-CP), and two etch-and-rinse adhesives (Single Bond-SB and Prime&Bond NT-PB). Dentin surfaces were bonded, restored, and assigned to four subgroups, according to the degree of water exposure: 24 h of peripheral water exposure (24 h-PE) (having circumferential enamel); and 1 year of peripheral exposure (1 yr-PE), direct exposure (1 yr-DE) (dentin directly water-exposed), or directly exposed to oil only (no water exposure) (1 yr-DOE). A composite-enamel bond adjacent to the restoration is determined if the water exposure was peripheral or direct. After storage periods, specimens were serially sectioned, trimmed to an hourglass shape with a cross-sectional area of 1 mm(2) at the interface, and tested in tension. Results were analyzed by two-way ANOVA and Tukey test (alpha = 0.05). No difference was found between 24 h-PE and 1 yr-PE for OB, CP, SB, and PB. However, muTBS values significantly dropped after 1 yr-DE for SE, CP, SB, and PB. A decreased muTBS was seen in SE after 1 yr-PE, but no differences existed between 1 yr-PE and 1 yr-DE. Similar or increased muTBS values were noted in 1 yr-DOE for all adhesives. Water-storage for 1 year significantly decreased muTBS for all adhesives. However, except for SE, the presence of a peripheral composite-enamel bond seemed to reduce the degradation rate in resin-dentin interfaces for all materials.  相似文献   

10.
The purpose of this study was to evaluate whether violet-laser diode (VLD) can be used as light-curing source. The ultimate (micro-)tensile strength (μTS) of three adhesives was determined when cured by VLD in comparison with curing by two different types of commercial LED light-curing units. One VLD (VLM 500) and two LED units (Curenos and G-Light Prima) were used to cure the adhesive resin of the two-step self-etch adhesives Clearfil SE Bond, Tokuso Mac Bond II, and FL-Bond II. A 0.6-mm thick acrylic mould was filled with adhesive resin and cured for 60 s. After 24-h water storage, specimens were trimmed into an hourglass shape with a width of 1.2 mm at the narrowest part, after which the μTS was determined (n=10). In addition, the light transmittance of each adhesive was characterized using a UV-vis-NIR spectrometer. No significant difference in curing efficiency between VLD and LED were observed for both Tokuso Mac Bond II and FL-Bond II (p>0.05). For Clearfil SE Bond, the μTS of VLD-cured specimens was higher than that of the specimens cured by the LED Curenos unit (p<0.05). Spectrometry revealed that this marked difference must be attributed to a different light transmittance of Clearfil SE Bond for visible blue light versus for the lower area of UV and visible violet light. In conclusion, A GaN-based violet laser diode can be used as light-curing source to initiate polymerization of dental resins.  相似文献   

11.
The aim of this study was to investigate the effect of one step adhesives on the shear bond strength of a compomer restorative material to both enamel and dentine. Human extracted teeth were used for the study. Ten samples were prepared for both enamel and dentine specimens for each of the five groups: Tooth, no etch, Prime and Bond NT (P+B NT); tooth, Non-Rinse Conditioner (NRC), P+B NT; tooth, NRC, Prime and Bond 2.1 (P+B 2.1); tooth, etch, P+B NT; tooth, etch, P+B 2.1. The specimens were subjected to bond testing. The shear bond strength was measured using an Inston 1193 testing machine using a cross head speed of 1 mm/minute. The specimens were tested to destruction. The results show that for the enamel specimens the highest bond strength was recorded for those specimens subjected to Etch, P+B 2.1 (22.1 MPa) and Etch P+B NT (20.0 MPa). The groups of specimens which did not undergo etching had very low bond strengths ranging from 11.4 MPa for NRC, P+B 2.1, 8.5 MPa for NRC P+B NT to 6.9 MPa for P+B NT. For the dentine specimens, for all of the groups, the shear bond strengths were low. Those groups subjected to etching produced the highest values of 7.9 MPa for NRC P+B 2.1 with the lowest value of 6.1 MPa for NRC P+B NT. These bond strengths were significantly lower than those achieved for bonding to enamel. Prime and Bond NT and Prime and Bond 2.1, used in conjunction with acid etching, produce satisfactory bond strengths of compomer restorative material to enamel. Bond strengths to dentine were low.  相似文献   

12.
The aim of this study was to determine the effect of 10% NaOCl gel and 10% NaOCl solution on dentin bond strengths of four adhesive systems. One hundred eighty bovine incisors were ground to achieve a flat polished surface, then divided into 12 groups: Gluma One Bond [G1-control; G2-NaOCl solution; G3-NaOCl gel]; Prime & Bond 2.1 [G4-control; G5-NaOCl solution; G6-NaOCl gel]; Single Bond [G7-control; G8-NaOCl solution; G9-NaOCl gel]; Prime & Bond NT [G10-control; G11-NaOCl solution; G12-NaOCl gel]. Dentin was etched, rinsed, and blot dried. For the experimental groups, after acid etching, 10% NaOCl solution or 10% NaOCl gel was applied for 60 s, rinsed, and blot dried. Composite resin was inserted and light cured. Shear bond strengths were tested with a crosshead speed of 0.5 mm/min. The mean values MPa (SD) were analyzed with two-way ANOVA and Tukey's tests (alpha < 0.01). Ten percent NaOCl solution significantly increased Gluma One Bond strength. No effect was observed for the other adhesives. The 10% NaOCl gel did not affect bond strengths. Ten percent NaOCl gel was less effective on collagen removal as compared to 10% NaOCl solution. The influence of collagen removal on bond strength is dependent on adhesive system, where both the solvent and the monomer can influence the results.  相似文献   

13.
Various types of resin adhesives and procedures are available in the clinical field, so comprehensive understanding of degradation is required for each material and bonding procedure. The objective of this study was to investigate the bond durability for different adhesives and bonding procedures. Resin-dentin bonded beams were prepared with the use of two adhesives (One-Up Bond F/self-etching primer system and One Bond/total-etch adhesive) and two experimental groups for the bonding procedure (wet and dry bonding of the total-etch adhesive). Those samples were soaked in water for 24 h(control), 6 and 12 months. After the water immersion, the bond strengths were measured by the microtensile bond test, and subsequently fractography was performed with the use of SEM. Statistically significant reduction of the bond strength (p < 0.05) was apparent after 12 months of water exposure in the range 22-48% of the control. The bonding resin was eluted from the hybrid layer of the self-etching and the total-etch adhesives for the wet bonding. Micromorphological alterations were found due to the hydrolysis of collagen fibrils with the total-etch adhesive for the dry bonding mode. These pathologic alterations were in accord with the bond strength.  相似文献   

14.
A quaternary ammonium methacrylate polymer (QAMP) with antimicrobial potential was synthesized. The resulting product (QAMP) was characterized by FTIR spectroscopy, NMR spectroscopy, visible spectrophotometry, XRPD and TGA. The in vitro susceptibility tests against Streptococcus mutans of QAMP were investigated prior and after incorporation into a commercial adhesive system (Clearfil? SE Bond). The release of quaternary ammonium compounds from the experimental adhesive system (Clearfil? SE Bond?+?5% QAMP) was performed during 1, 7, 14, 21 and 30 days. Spectroscopic data confirmed that QAMP was successfully obtained. Thermogravimetric analysis indicated that QAMP was heat stable. Prior incorporation into the adhesive system, QAMP revealed an inhibition halo of 18.33?±?0.6?mm. By agar disk diffusion test, Clearfil? SE Bond containing 5% QAMP presented an inhibition halo (16.67?±?1.5?mm) similar to Clearfil? Protect Bond (positive control, 17.00?±?1.7, p?=?0.815) and significantly higher than Clearfil? SE Bond (negative control, 11.00?±?1.0, p?=?0.006). The minimum inhibitory/bactericidal concentrations for Clearfil? SE Bond containing 5% QAMP were 20?μL?mL?1. The release of quaternary ammonium compounds from the experimental adhesive containing QAMP was very low (5.1%) when compared to Clearfil? Protect Bond that released 47.2% of its quaternary ammonium monomer (MDPB) after 30 days. The QAMP can offer enhanced antimicrobial properties for self-etching adhesive systems.  相似文献   

15.
Dental adhesives can alter the contractility of vascular tissue via different mechanisms. The aim of this study was to investigate and compare the vascular action of two self-etch adhesive systems, Clearfil SE Bond (CSEB) and Clearfil S3 Bond (CS3B). Responses of isolated rat thoracic aorta rings were recorded isometrically by force displacement transducers. Following pre-contraction of aorta rings, relaxations to the independent and mixed components of CSEB and CS3B were recorded in the absence and presence of nitric oxide synthase (NOS) inhibitor (N ω -nitro-L-arginine methyl ester (N-LAME)), cyclooxygenase (COX) inhibitor (indomethacin) and K+ channel inhibitors (tetraethylammonium, glibenclamide and 4-aminopyridine). We also tested the effects of CSEB and CS3B in endothelium-intact and -denuded rat thoracic aorta rings. To investigate the Ca2+-channel antagonistic effect of adhesive components, concentration–response curves to CaCl2 were obtained in the absence and presence of the components. The primer, the bond, and the mixture of CSEB and CS3B elicited concentration-dependent relaxations. Mechanical rubbing of the endothelium did not significantly modify the extent of vasorelaxation induced by the test materials. The vasorelaxant effect was mediated neither by NOS and COX inhibition nor by the tested K+ channel antagonists. Mechanical removal of the endothelium did not alter the vasodilatory effect induced by the self-etch adhesives. Both CSEB and CS3B significantly inhibited the contractions induced by CaCl2. These results demonstrate the vasodilatory effect induced by the self-etch adhesive systems through a Ca2+-antagonistic effect.  相似文献   

16.
Experiments have recently been completed to explore the development of isocyanatoacrylate copolymers as new dental adhesives. A main goal of this work was to test the utility of solubility parameter differences between the candidate adhesives and etched dentin as a predictor of relative bond strength. All candidate adhesive mixtures contained 2-isocyanatoethyl methacrylate (IEM), a selected amount of tri-n-butylborane oxide (TBBO) initiator, and one of 13 methacrylate comonomers. Reactivity ratios were computed for comonomer pairs as indicators of relative reactivity. The concentration of TBBO was optimized for each comonomer mixture to obtain working times of 2-6 min and setting times of 6-10 min. The solubility parameter difference Deltadelta (J/cm(3))(1/2) was calculated for each test mixture with respect to an etched dentin substrate, as an approximation of wetting ability. Using standard techniques for shear bond strength evaluation, mean shear bond strength values ranging between 7-15.5 MPa were obtained for comonomer adhesives in bonding Z-100 composite to treated dentin. Shear bond strength values showed a good correlation (r = -0.612, P 相似文献   

17.
Dentin bonding relies on complete resin impregnation throughout the demineralised hydrophilic collagen mesh. Chondroitin sulphate-glycosaminoglycans are claimed to regulate the three-dimensional arrangement of the dentin organic matrix and its hydrophilicity. The aim of this study was to investigate bond strength of two etch-and-rinse adhesives to chondroitinase ABC treated dentin. Human extracted molars were treated with chondroitinase ABC and a double labeling immunohistochemical technique was applied to reveal type I collagen and chondroitin 4/6 sulphate distribution under field emission in-lens scanning electron microscope. The immunohistochemical technique confirmed the effective removal of chondroitin 4/6 sulphate after the enzymatic treatment. Dentin surfaces exposed to chondroitinase ABC and untreated specimens prepared on untreated acid-etched dentin were bonded with Adper Scotchbond Multi-Purpose or Prime and Bond NT. Bonded specimens were submitted to microtensile testing and nanoleakage interfacial analysis under transmission electron microscope. Increased mean values of microtensile bond strength and reduced nanoleakage expression were found for both adhesives after chondroitinase ABC treatment of the dentin surface. Adper Scotchbond Multi-Purpose increased its bond strength about 28%, while bonding made with Prime and Bond NT almost doubled (92% increase) compared to untreated specimens. This study supports the hypothesis that adhesion can be enhanced by removal of chondroitin 4/6 sulphate and dermatan sulphate, probably due to a reduced amount of water content and enlarged interfibrillar spaces. Further studies should validate this hypothesis investigating the stability of chondroitin 4/6 and dermatan sulphate-depleted dentin bonded interface over time.  相似文献   

18.
The aim of this in vitro study was to evaluate dentin bond strength and marginal adaptation of direct resin composite fillings after different storage times. Three hundred sixty cavities were prepared in discs of freshly extracted human third molars and filled with resin composites. Multistep self-etching adhesives (Syntac Classic, A.R.T. Bond, both with and without total etching), three-step etch-and-rinse adhesives (Scotchbond Multi-Purpose Plus, EBS), and two-step etch-and-rinse adhesives (Prime and Bond 2.0, Syntac Single-Component) were used for bonding. After 1, 90, and 2190 days of water storage and 24 h thermocycling (1150 cycles), push-out testing was performed. From the 6-year group, replicas were made after 1 day, 90 days, and 1, 2, 3, 4, 5, and 6 years, and examined regarding marginal adaptation under an SEM (x 200 magnification). In all groups under investigation, push-out bond strengths remained stable after 90 days; however, the strengths significantly decreased after 6 years of water storage. The two-step systems exhibited lower bond strengths than three-step systems after 6 years. Marginal analysis revealed a significant loss regarding the percentage of perfect margins having been stable after 2 years for the three-step etch-and-rinse systems. Overall, the older three-step systems proved to be more effective than the simplified adhesives Syntac Single-Component and Prime and Bond 2.0 with regard to bond strength and marginal adaptation.  相似文献   

19.
This study evaluated the influence of surfactant dimethacrylates (SD) on the resin-to-dentin microtensile bond strength (μTBS) and characterized the interfacial micromorphology of the hybrid layer of the experimental HEMA-free self-etching systems. Five experimental HEMA-free two-step self-etching systems containing different SD (Bis-EMA 10, Bis-EMA 30, PEG 400, PEG 1000, and PEG 400 UDMA) and a HEMA-containing system (control) were compared. Each experimental adhesive system was applied and resin composite restorations were incrementally built up in bovine incisors. After 24 h, restored teeth were sectioned to obtain 24 sticks per group. Thereafter, the specimens were subjected to the μTBS test. Data (MPa) were analyzed by One-way ANOVA and Tukey's test. Adhesive-dentin interfaces were analyzed through Scanning Electron Microscopy (SEM). The adhesive system formulated with PEG 400 UDMA produced μTBS similar to the HEMA-containing group and statistically higher than the HEMA-free groups. Similar failure percentages were observed in the PEG 400 UDMA and the control group. In the SEM analysis, all the adhesive systems presented similar partially demineralized hybrid layer (1.5-3.0 μm thickness) with well-formed resin tags. All SD presented reasonable initial μTBS, with the PEG 400 UDMA being a promising monomer to be considered as a HEMA substitute in adhesive systems compositions.  相似文献   

20.
Under in vivo conditions, there is little control over the amount of water left on the tooth and, thus, there is the danger of leaving the dentin surface so wet that the bonding resin undergoes physical separation into hydrophobic and hydrophilic-rich phases. The purpose of this study was to investigate phase separation in 2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane (BisGMA)-based adhesive using molecular microanalysis and to examine the effect of phase separation on the structural characteristics of the hybrid layer. Model BisGMA/HEMA (hydroxyethl methacrylate) mixtures with/without ethanol and commercial BisGMA-based adhesive (Single Bond) were combined with water at concentrations from 0 to 50 vol%. Macrophase separation in the BisGMA/HEMA/water mixtures was detected using cloud point measurements. In parallel with these measurements, the BisGMA/HEMA and adhesive/water mixtures were cast as films and polymerized. Molecular structure was recorded from the distinct features in the phase-separated adhesive using confocal Raman microspectroscopy (CRM). Human dentin specimens treated with Single Bond were analyzed with scanning electron microscopy (SEM) and CRM mapping across the dentin/adhesive interface. The model BisGMA/HEMA mixtures with ethanol and the commercial BisGMA-based adhesive experienced phase separation at approximately 25 vol% water. Raman spectra collected from the phase-separated adhesive indicated that the composition of the particles and surrounding matrix material was primarily BisGMA and HEMA, respectively. Based on SEM analysis, there was substantial porosity at the adhesive interface with dentin. Micro-Raman spectral analysis of the dentin/adhesive interface indicates that the contribution from the BisGMA component decreases by nearly 50% within the first micrometer. The morphologic results in corroboration with the spectroscopic data suggest that as a result of adhesive phase separation the hybrid layer is not an impervious 3-dimensional collagen/polymer network but a porous web characterized by hydrophobic BisGMA-rich particles distributed in a hydrophilic HEMA-rich matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号