首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impairment in pancreatic production of insulin, a cardinal feature of noninsulin dependent diabetes mellitus (NIDDM), was quantified and the kinetics of insulin secretion characterized in six obese individuals with NIDDM before and after weight loss (18.0 +/- 3.0 kg, mean +/- SEM) using a validated mathematical model that employs C-peptide as a marker of the in vivo rate of insulin secretion. The metabolic clearance of C-peptide, assessed by decay analysis after bolus injection of biosynthetic human C-peptide, was not changed by weight loss (0.143 +/- 0.009 L/min.m2 vs. 0.137 +/- 0.010 L/min.m2). Kinetic parameters from each individual's decay curve before and after weight loss were used to derive accurate rates of secretion during the basal (postabsorptive) state, an oral glucose tolerance test and two hyperglycemic clamps. Basal rates of insulin secretion declined 20 +/- 5 pmol/min.m2 (96 +/- 15 to 76 +/- 15 pmol/min.m2, P less than 0.05) concomitant with decreases of 6.9 +/- 0.9 mmol/L in fasting serum glucose (13.7 +/- 1.0 to 6.8 +/- 0.7 mmol/L, P less than 0.05), 60 +/- 14 pmol/L in serum insulin (134 +/- 30 to 74 +/- 15 pmol/L, P less than 0.05), and 0.15 +/- 0.03 pmol/ml in plasma C-peptide (0.67 +/- 0.11 to 0.52 +/- 0.08 pmol/ml, P less than 0.05) concentrations. As expected, weight loss resulted in improved glucose tolerance as measured by the glycemic profiles during the oral glucose tolerance test (P less than 0.05 analysis of variance). The insulin secretory response before weight loss showed a markedly reduced ability to respond appropriately to an increase in the ambient serum glucose. After weight loss, the pancreatic response was more dynamic (P less than 0.05, analysis of variance) and parralleled the moment-to-moment changes in glycemia. Insulin production above basal doubled (11.2 +/- 3.2 to 24.5 +/- 5.8 nmol/6h.m2, P less than 0.05) and peak rates of insulin secretion above basal tripled (55 +/- 16 to 157 +/- 32 pmol/min/m2, P less than 0.05). To assess the beta-cell response to glucose per se and the changes associated with weight reduction, two hyperglycemic clamps were performed at steady state glucose levels in the range characteristic of individuals with severe NIDDM. At a fixed glycemia of 20 mmol/L, average rates of insulin secretion increased almost 2-fold with treatment (161 +/- 41 to 277 +/- 60 pmol/min.m2, P less than 0.05). At an increment of 6 mmol/L glucose above prevailing fasting glucose levels, the average rate of insulin secretion increased 53% (120 +/- 21 to 183 +/- 39 pmol/min.m2, P less than 0.05).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The changes in peripheral serum insulin and plasma C-peptide levels and in the insulin secretory rate in response to iv glucose (0.5 g/kg BW) administration were studied in seven normal subjects. Insulin secretory rates were calculated according to a two-compartment model of distribution for C-peptide, using individual C-peptide kinetics calculated from iv bolus injections of biosynthetic human C-peptide. The mean plasma glucose level increased from a fasting level of 5.1 +/- 0.1 (+/- SE) to a peak of 24.0 +/- 1.0 mmol/L at 3 min and reached basal levels 101 +/- 6 min after glucose administration. The mean serum insulin value increased from 50 +/- 12 to a peak of 405 +/- 58 pmol/L at 3 min and then declined to fasting levels 139 +/- 14 min after the stimulus. In contrast, the mean plasma C-peptide level increased from 390 +/- 50 to a peak of 1460 +/- 210 pmol/L at 3 min and only began declining 45 min after glucose administration, reaching fasting levels 191 +/- 15 min after the stimulus. The mean insulin secretory rate increased from 69.8 +/- 19.9 to a peak of 1412.7 +/- 159.1 pmol/min at 3 min (15.3 +/- 2.5-fold elevation over baseline) and reached basal levels 135 +/- 12 min after the stimulus. The clearance of endogenous insulin during the basal period (2.505 +/- 0.365 L/min) and that during the 4 h after the stimulus (2.319 +/- 0.230 L/min) were similar. In conclusion, after bolus iv glucose administration: 1) the insulin secretory rate is more closely represented by changes in peripheral serum insulin than in plasma C-peptide levels; and 2) no change in endogenous insulin clearance occurs.  相似文献   

3.
Relative to Caucasians (C), African-American (AA) children and adults have lower indices of insulin sensitivity (S(i)) and a higher acute insulin response to glucose (AIR(g)). Among AA children, AIR(g) is greater than that which would be predicted based on lower S(i). The objectives of the present study were 1) to determine whether insulin secretory parameters differ in AA vs. C children and adolescents using C-peptide modeling, 2) to determine whether hepatic insulin extraction differs with ethnicity/race using the C-peptide to insulin molar ratio, and 3) to determine whether the relatively greater AIR(g) among African-Americans is due to greater insulin secretion or lesser clearance. Subjects (n = 76) were AA and C children (mean age, approximately 11 yr). A 3-h tolbutamide-modified iv glucose tolerance test and minimal modeling were used to determine S(i) and AIR(g). First phase C-peptide/insulin secretion and basal, first, and second phase beta-cell sensitivity to glucose were determined using C-peptide modeling with standard kinetic parameters developed in adults. The incremental C-peptide to insulin molar ratio over the 3-h test period, an index of hepatic insulin extraction, was calculated with the trapezoidal method. S(i) was lower and AIR(g) was higher in AA vs. C children. First phase C-peptide/insulin secretion and first phase beta-cell sensitivity to glucose were approximately 2-fold greater in AA vs. C children (P < 0.001); there were no between-group differences in basal or second phase beta-cell sensitivity to glucose. Hepatic insulin extraction was lower in AA vs. C (3.77 +/- 1.78% vs. 5.99 +/- 2.18%; P < 0.001). Multiple linear regression modeling indicated that first phase C-peptide/insulin secretion and hepatic insulin extraction contributed independently to AIR(g); however, it was only first phase C-peptide/insulin secretion that explained the significant independent contribution of ethnicity/race to AIR(g) after adjusting for S(i). The results of this study suggest that greater AIR(g) among AA is due to both greater insulin secretion and lesser hepatic insulin extraction, and that AIR(g) above that predicted based on lower S(i) is due to greater insulin secretion. The insulin secretion data await verification that the kinetic parameters used apply to children and AA.  相似文献   

4.
Eleven patients with noninsulin-dependent diabetes mellitus were studied before and after 6-10 weeks of glyburide therapy. Patients were studied during a 24-h period on a mixed diet comprising 30 Cal/kg divided into three meals. The following day a hyperglycemic clamp study was performed, with glucose levels clamped at 300 mg/dL (16.7 mmol/L) for a 3-h period. Insulin secretion rates were calculated by deconvolution of peripheral C-peptide concentrations using individual C-peptide clearance kinetics derived after bolus injection of biosynthetic human C-peptide. After 6-10 weeks on glyburide, the identical studies were repeated. In response to glyburide, the fasting plasma glucose level decreased from 12.3 +/- 1.2 to 6.8 +/- 0.9 mmol/L. Although the mean glucose over the 24 h of the meal study decreased from 12.7 +/- 1.4 to 10.8 +/- 1.2 mmol/L, postprandial hyperglycemia persisted on therapy, and after breakfast, glucose levels exceeded 10 mmol/L and did not return to fasting levels for the remainder of the day. Fasting serum insulin, plasma C-peptide, and the insulin secretion rate were not different before (152 +/- 48 pmol/L, 0.82 +/- 0.16 pmol/mL, and 196 +/- 34 pmol/min, respectively) and after (186 +/- 28 pmol/L, 0.91 +/- 0.11 pmol/mL, and 216 +/- 23 pmol/min, respectively) glyburide treatment despite lowering of the glucose level. However, average insulin and C-peptide concentrations over the 24-h period increased from 366 +/- 97 pmol/L and 1.35 +/- 0.19 pmol/mL to 434 +/- 76 pmol/L and 1.65 +/- 0.15 pmol/mL, respectively. The total amount of insulin secreted over the 24-h period rose from 447 +/- 58 nmol before therapy to 561 +/- 55 nmol while receiving glyburide. Insulin secretion was demonstrated to be pulsatile in all subjects, with periodicity ranging from 2-2.5 h. The number of insulin secretory pulses was not altered by glyburide, whereas pulse amplitude was enhanced after lunch and dinner, suggesting that the increased insulin secretion is characterized by increased amplitude of the individual pulses. In response to a hyperglycemic clamp at 300 mg/dL (16.7 mmol/L), insulin secretion rose more than 2-fold, from 47 +/- 9 nmol over the 3-h period before treatment to 103 +/- 21 nmol after glyburide therapy. We conclude that the predominant mechanism of action of glyburide in patients receiving therapy for 6-10 weeks is to increase the responsiveness of the beta-cell to glucose.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Insulin secretion is increased in insulin resistance. In this study, we examined whether high insulin sensitivity results in low insulin secretion. Twelve male master athletes [age 25.6 +/- 4.1 (mean +/- SD) yr] and seven male sedentary students (age 25.0 +/- 2.0 yr) underwent a hyperinsulinemic, euglycemic clamp and a glucose-dependent arginine stimulation test. Athletes had high insulin sensitivity [230 +/- 18 vs. 92 +/- 12 (nmol glucose/kg.min)/(pmol insulin/liter), P < 0.001] and low insulin response to arginine (at fasting glucose 135 +/- 22 vs. 394 +/- 60 pmol/liter, P < 0.001), which resulted in unaltered disposition index (32.8 +/- 3.8 vs. 33.5 +/- 3.3 micro mol glucose/kg.min, NS). Also, the C-peptide response to arginine was reduced (at fasting glucose 0.71 +/- 0.09 vs. 0.89 +/- 0.09 nmol/liter, P = 0.034). However, the C-peptide reduction was not as large as the insulin reduction yielding increased disposition index in athletes when calculated from C-peptide data (184 +/- 9 vs. 76 +/- 11 micro mol glucose/kg.min, P < 0.001). This difference is explained by increased insulin clearance among the athletes during the first 5 min after arginine (81.1% +/- 1.8% vs. 53.6% +/- 4.7%, P < 0.001). Also, the glucagon response to arginine was reduced in the athletes (58.8 +/- 6.7 vs. 90.1 +/- 9.9 ng/liter at fasting glucose, P = 0.009). We conclude that high insulin sensitivity results in low islet hormone secretion and increased insulin clearance.  相似文献   

6.
Two hundred and nineteen second generation Japanese-American men were classified with a 75-g oral glucose tolerance test: 77 with normal glucose tolerance, 74 with impaired glucose tolerance (IGT), and 68 with noninsulin-dependent diabetes mellitus (NIDDM). The peak insulin response to the oral glucose load was progressively delayed with each of the 3 glucose tolerance categories. A similar finding was observed with the peak C-peptide response to oral glucose, except for the absence of distinction between IGT and NIDDM. Variables measuring the initial rate of insulin or C-peptide secretion (0-30 min) after oral glucose also demonstrated a progressive diminution with increasing glucose intolerance. The relative incremental insulin response at 30 min and the relative incremental C-peptide response at 30 min were highly correlated with the fasting glucose levels (r = -0.61 and r = -0.62; P less than 0.0001, respectively). Variables measuring the 0-30 min secretory response had high variances, whereas the variance for fasting glucose was low. Twelve men who were initially classified as IGT subsequently developed NIDDM. These 12 men had significantly higher fasting glucose levels at baseline than the remaining men who did not develop diabetes, but the 30 min secretory parameters after oral glucose, although lower in those who subsequently developed diabetes, were not significantly different at baseline. However, if fasting glucose is used as a surrogate measure of secretory response, these 12 men appear to have had an impairment of oral glucose-stimulated insulin secretion antedating the development of NIDDM. The inability of the secretory parameters to detect the abnormality may be due to a type II statistical error, which may be resolved by a larger sample size.  相似文献   

7.
We studied the effect of high doses of biosynthetic human C-peptide on pancreatic hormone secretion in response to oral (75 g) and intravenous [( IV] 0.33 g/kg of D50%) glucose on normal volunteers. The infusion of human C-peptide at a rate of 360 ng/kg/min body weight, increased the plasma C-peptide concentration from a basal level of 0.32 +/- 0.04 pmol/mL to 38.5 +/- 1.8 pmol/ml. Overall, C-peptide had no significant effect on the serum levels of glucose, insulin, proinsulin, glucagon, and pancreatic polypeptide, either under basal conditions or following IV and oral glucose administration. However, small decreases in glucose and insulin concentrations that were not statistically significant were seen during the first hour after C-peptide infusion. The results of the present studies are therefore consistent with the conclusion that even supraphysiologic plasma concentrations of infused C-peptide do not affect basal insulin secretion or overall insulin secretory responses to oral or IV glucose. However, we cannot definitively exclude a small reduction in insulin secretion in the first hour after oral glucose ingestion.  相似文献   

8.
In mild glucose intolerance plasma concentration of C-peptide seems to give an estimate of pancreatic B cell secretion more reliable than plasma insulin itself. In the present study we measured the plasma levels of insulin and C-peptide after oral glucose load in 100 mildly glucose intolerant subjects, focusing our attention on high and low insulin responders. According to an insulin incremental area after oral glucose higher or lower than the mean +/- SD of the mean, 16 subjects were classified as "high insulin responders", and 17 as "low insulin responders". The two groups were similar for sex, age and bw. Mean insulin incremental area was almost 9-fold greater in high insulin responders than in low insulin responders (0.88 +/- 0.03 vs 0.10 +/- 0.01 pmol/ml min, p less than 0.001). Also mean C-peptide incremental area was significantly greater in high insulin responders than in low insulin responders, but the differences between the two groups were smaller. Indeed, mean C-peptide area was approximately 2.5-fold greater in high insulin responders than in low insulin responders (1.58 +/- 0.12 vs 0.66 +/- 0.07 pmol/ml min, p less than 0.001). These results give further support to the concept that in mild glucose intolerance insulin metabolism is a major determinant of peripheral insulin response to oral glucose load.  相似文献   

9.
We assessed the effects of weight loss on pancreatic secretion and hepatic extraction of insulin in 11 obese subjects with noninsulin-dependent diabetes mellitus. Weight loss of 15.4 +/- 2.0 kg (mean +/- SE) resulted in decreased fasting insulin [20.2 +/- 2.5 to 9.8 +/- 2.5 microU/mL (145 +/- 18 to 70 +/- 18 pmol/L); P less than 0.02] and C-peptide (850 +/- 80 to 630 +/- 110 pmol/L; P less than 0.05) levels. The plasma glucose response to oral glucose and iv glucagon was improved with unchanged peripheral insulin levels. When plasma glucose levels were matched to those before weight loss, peripheral serum insulin and plasma C-peptide responses to iv glucagon were increased and similar to those in obese nondiabetic subjects studied at euglycemia. The total insulin response (area under the curve) to iv glucagon was reduced 30% (P less than 0.005), while the total C-peptide response area did not change after weight loss. At matched hyperglycemia, the total response area was enhanced 72% for insulin (P less than 0.002) and 64% for C-peptide (P less than 0.001). Incremental (above basal) response areas after weight loss did not change for insulin, but increased 66% for C-peptide (P less than 0.05). The incremental areas were augmented nearly 2-fold (196%) for insulin (P less than 0.01) and 1.7-fold (173%) for C-peptide (P less than 0.01) when assessed at matched hyperglycemia. Both basal (7.3 +/- 0.5 to 14.1 +/- 1.8; P less than 0.01) and total stimulated (6.1 +/- 0.4 to 8.8 +/- 1.4; P less than 0.05) C-peptide to insulin molar ratios increased after weight loss. We conclude that after weight loss in noninsulin-dependent diabetes mellitus, 1) insulin secretion is decreased in the basal state but increased after stimulation; 2) changes in insulin secretion are reflected by peripheral levels of C-peptide but not insulin, due in part to enhanced hepatic insulin extraction; and 3) at matched levels of hyperglycemia insulin secretion is markedly increased and similar to that in obese nondiabetic subjects studied at euglycemia.  相似文献   

10.
Our aim was to compare traditional C-peptide-based method and insulin-based method with standardized kinetic parameters in the estimation of prehepatic insulin secretion rate (ISR). One-hundred thirty-four subjects with varying degrees of glucose tolerance received an insulin-modified intravenous glucose tolerance test and a standard oral glucose tolerance test with measurement of plasma insulin and C-peptide. From the intravenous glucose tolerance test, we determined insulin kinetics parameters and selected standardized kinetic parameters based on mean values in a selected subgroup. We computed ISR from insulin concentration during the oral glucose tolerance test using these parameters and compared ISR with the standard C-peptide deconvolution approach. We then performed the same comparison in an independent data set (231 subjects). In the first data set, total ISRs from insulin and C-peptide were highly correlated (R(2) = 0.75, P < .0001), although on average different (103 ± 6 vs 108 ± 3 nmol, P < .001). Good correlation was also found in the second data set (R(2) = 0.54, P < .0001). The insulin method somewhat overestimated total ISR (85 ± 5 vs 67 ± 3 nmol, P = .002), in part because of differences in insulin assay. Similar results were obtained for fasting ISR. Despite the modest bias, the insulin and C-peptide methods were consistent in predicting differences between groups (eg, obese vs nonobese) and relationships with other physiological variables (eg, body mass index, insulin resistance). The insulin method estimated first-phase ISR peak similarly to the C-peptide method and better than the simple use of insulin concentration. The insulin-based ISR method compares favorably with the C-peptide approach. The method will be particularly useful in data sets lacking C-peptide to assess β-cell function through models requiring prehepatic secretion.  相似文献   

11.
Islet amyloid polypeptide (IAPP) is a beta-cell peptide that can oppose insulin action in animal systems, but has not been shown to have any action in man; previously, we failed to show an effect of infused IAPP on iv glucose tolerance in human volunteers. We have reexamined its effects at even higher concentrations in six volunteers who received iv glucose (0.5 g/kg) during infusions of IAPP (25 and 50 pmol/kg.min) or normal saline. IAPP rose from a mean basal of 14.7 +/- 5.3 pmol/L to peak levels of 1,420 +/- 110, 2,240 +/- 140, and 27.7 +/- 9 pmol/L, respectively. IAPP at 25 pmol/kg.min had no effect on the plasma glucose disposal rate or the total incremental insulin response, but, in contrast, at 50 pmol/kg.min decreased the insulin response to glucose compared to the saline infusion (incremental area under the curve, 11,276 +/- 2,353 vs. 17,549 +/- 2,687 U; mean +/- SEM; P less than 0.02). This decrease was observed both during the first phase (0-10 min postglucose) insulin response (3,210 +/- 985 vs. 4,382 +/- 815 U; P less than 0.05) and the second phase response (11-90 min, 8,520 +/- 1,719 vs. 13,679 +/- 2,326 U; P less than 0.03). Glucose disposal rate, however, was unaffected (2.0 +/- 0.2 vs. 1.9 +/- 0.2). Thus, circulating IAPP concentrations greater than 90 times normal postprandial peaks were necessary to affect the insulin response to glucose. IAPP appears unlikely to be a circulating hormone influencing carbohydrate metabolism in man.  相似文献   

12.
In the present study we evaluated C-peptide peripheral levels after an oral glucose load in 30 healthy subjects (18 females, 12 males, aged from 15 to 55) with high or low insulin response to glucose challenge in order to clarify whether or not their beta-cell secretion rate keeps pace with peripheral insulin levels. Moreover, by the study of the relations between C-peptide and insulin in peripheral blood, we had an insight into the extent of insulin metabolism. On the basis of an insulin incremental area higher or lower than the mean +/- 1 SD after a 100-gram oral glucose load, 6 subjects were classified as 'high insulin responders' and 6 other subjects as 'low insulin responders'. Their insulin incremental area after glucose averaged 0.25 +/- 0.01 nmol X 1-1 X min and 0.078 +/- 0.005 nmol X 1-1 X min, respectively (p less than 0.001). The two groups were matched for sex, age and body weight. The glycemic profile after oral glucose load was higher in low insulin responders than in high insulin responders. C-peptide concentrations after glucose load were similar in the two groups, as well as C-peptide incremental areas (0.92 +/- 0.12 vs. 0.74 +/- 0.08 nmol X l-1 X min in high insulin responders and low insulin responders, respectively). The molar ratios of C-peptide to insulin after oral glucose load, as well as the relations between the incremental areas of the two peptides, were significantly lower in high insulin responders than in low insulin responders.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The present study was designed to compare insulin extraction by the liver following oral glucose administrations of different size, in order to evaluate insulin removal by the liver in relation to the insulin exposure, and to the amount of ingested glucose. Insulin secretion by the pancreas was estimated by the measurement of peripheral C-peptide levels, and insulin extraction by the liver by the analysis of peripheral C-peptide to insulin ratios and relations. Ten healthy subjects (5 males and 5 females), aged 16 to 66 yr, with normal bw, and without family history of diabetes mellitus were investigated by means of the administration, on alternate days, of 50 and 150 g oral glucose loads. After the 150 g oral glucose load plasma glucose levels were significantly higher than after the 50 g oral glucose administration: glucose incremental areas of 1.45 +/- 0.12 vs. 0.55 +/- 0.04 mmol/l X min, respectively (p less than 0.001). Similarly, insulin concentrations were significantly higher following 150 g than after 50 g glucose ingestion: insulin incremental areas of 0.52 +/- 0.09 vs. 0.20 +/- 0.04 nmol/l X min (p less than 0.001). Also C-peptide levels were higher after 150 vs. 50 g oral glucose load: C-peptide incremental areas of 1.85 +/- 0.41 vs. 0.64 +/- 0.13 nmol/l X min (p less than 0.01). C-peptide to insulin molar ratios were similar during the two glucose challenge, and averaged 5.25 +/- 0.42 vs. 5.08 +/- 0.50 after 50 and 150 g oral glucose loads, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
CONTEXT: First-phase insulin secretion (within 10 min after a sudden rise in plasma glucose) is reduced in type 2 diabetes mellitus (DM2). The incretin mimetic exenatide has glucoregulatory activities in DM2, including glucose-dependent enhancement of insulin secretion. OBJECTIVE: The objective of the study was to determine whether exenatide can restore a more normal pattern of insulin secretion in subjects with DM2. DESIGN: Fasted subjects received iv insulin infusion to reach plasma glucose 4.4-5.6 mmol/liter. Subjects received iv exenatide (DM2) or saline (DM2 and healthy volunteers), followed by iv glucose challenge. PATIENTS: Thirteen evaluable DM2 subjects were included in the study: 11 males, two females; age, 56 +/- 7 yr; body mass index, 31.7 +/- 2.4 kg/m2; hemoglobin A1c, 6.6 +/- 0.7% (mean +/- sd) treated with diet/exercise (n = 1), metformin (n = 10), or acarbose (n = 2). Controls included 12 healthy, weight-matched subjects with normal glucose tolerance: nine males, three females; age, 57 +/- 9 yr; and body mass index, 32.0 +/- 3.0 kg/m2. SETTING: The study was conducted at an academic hospital. MAIN OUTCOME MEASURES: Plasma insulin, plasma C-peptide, insulin secretion rate (derived by deconvolution), and plasma glucagon were the main outcome measures. RESULTS: DM2 subjects administered saline had diminished first-phase insulin secretion, compared with healthy control subjects. Exenatide-treated DM2 subjects had an insulin secretory pattern similar to healthy subjects in both first (0-10 min) and second (10-180 min) phases after glucose challenge, in contrast to saline-treated DM2 subjects. In exenatide-treated DM2 subjects, the most common adverse event was moderate nausea (two of 13 subjects). CONCLUSIONS: Short-term exposure to exenatide can restore the insulin secretory pattern in response to acute rises in glucose concentrations in DM2 patients who, in the absence of exenatide, do not display a first phase of insulin secretion. Loss of first-phase insulin secretion in DM2 patients may be restored by treatment with exenatide.  相似文献   

15.
Subjects with impaired glucose tolerance (IGT) are usually overweight and exhibit insulin resistance with a defective compensation of insulin secretion. In this study, we sought to establish the interrelation between insulin secretion and insulin sensitivity after oral glucose in non-obese subjects with IGT and we also examined this interrelation in relation to the 2 main incretins, glucagon-like peptide (GLP-1) and gastric inhibitory polypeptide (GIP). To that end, 13 women with IGT and 17 women with normal glucose tolerance (NGT) underwent an oral glucose tolerance test (OGTT) with measurements of glucose, insulin, C-peptide, GLP-1, and GIP. Insulin secretion (TIS) and insulin sensitivity (OGIS) were assessed using models describing the relationship between glucose, insulin and C-peptide data. These models allowed estimation also of the hepatic extraction of insulin. The age (54.2 +/- 9.7 [mean +/- SD] years) and body mass index (BMI; 26.0 +/- 4.0 kg/m(2)) did not differ between the groups. Subjects with IGT displayed lower TIS during the initial 30 minutes after oral glucose (0.97 +/- 0.17 [mean +/- SEM] v 1.75 +/- 0.23 nmol/L in NGT; P =.018) and lower OGIS (397 +/- 21 v 463 +/- 12 mL/min/m(2); P =.005). The incremental 30-minute TIS times OGIS (reflecting insulin secretion in relation to insulin sensitivity) was significantly reduced in IGT (359 +/- 51 v 774 +/- 91 nmol/min/m(2), P =.001). This measure correlated inversely to the 2-hour glucose level (r = -0.71; P <.001). In contrast, TIS over the whole 180-minute period was higher in IGT (26.2 +/- 2.4 v 20.0 +/- 2.0 nmol/L; P =.035). Hepatic insulin extraction correlated linearly with OGIS (r = 0.71; P <.001), but was not significantly different between the groups although there was a trend with lower extraction in IGT (P =.055). Plasma levels of GLP-1 and GIP increased after oral glucose. Total secretion of these incretin hormones during the 3-hour test did not differ between the 2 groups. However, the 30-minute increase in GLP-1 concentrations was lower in IGT than in NGT (P =.036). We conclude that also in non-obese subjects with IGT, when adiposity is controlled for in relation to NGT, defective early insulin secretion after oral glucose is a key factor. This defective beta-cell function is associated with, and may be caused by, a reduced early GLP-1 response.  相似文献   

16.
The aim of the present study was to evaluate the long-term (30 months) metabolic effects of recombinant human GH (rhGH) given in a mean dose of 6.7 microg/kg x day (= 1.6 IU/day), in 11 patients with adult GH deficiency. Glucose metabolism was evaluated by an oral glucose tolerance test and an iv (frequently sampled iv glucose tolerance test) glucose tolerance test, and body composition was estimated by dual-energy x-ray absorptiometry. Treatment with rhGH induced persistent favorable changes in body composition, with a 10% increase in lean body mass (P < 0.001) and a 12% reduction of fat mass (P < 0.002); however, the glucose tolerance deteriorated significantly, and three patients developed impaired glucose tolerance. Fasting insulin level (P < 0.003) and the homeostasis model assessment insulin resistance score increased significantly, indicating a deterioration in insulin sensitivity; whereas the insulin sensitivity index, calculated from the frequently sampled iv glucose tolerance test, only decreased slightly. The clearance of C-peptide and insulin increased 100% and 60%, respectively, and the prehepatic insulin secretion was tripled during rhGH treatment; but related to the impairment in glucose tolerance, beta-cell response was still inappropriate. Our conclusion is that long-term rhGH-replacement therapy in GH deficiency adults induced a significant deterioration in glucose tolerance, profound changes in kinetics of C-peptide, and insulin and prehepatic insulin secretion, despite an increase in lean body mass and a reduction of fat mass. Therefore, rhGH treatment may precipitate diabetes in some patients already susceptible to the disorder.  相似文献   

17.
Insulin secretion is impaired in type 2 diabetes with the early response being essentially absent. The loss of this early insulin secretion is hypothesized to be important in the deterioration of glucose tolerance. To determine whether enhancement of the early-phase insulin response can enhance glucose tolerance, we administered 1) 120 mg nateglinide, an insulinotropic agent that enhances early insulin secretion; 2) 10 mg glyburide, which enhances the later phases of insulin secretion; or 3) placebo in random order to 21 subjects with type 2 diabetes (14 males and 7 females; aged 59.2 +/- 2.1 yr, x +/- SEM; body mass index 29.7 +/- 1.0 kg/m(2); fasting plasma glucose 8.1 +/- 0.1 mM). beta-Cell function was quantified as the incremental area under the curve for different time periods for the 5 h following iv glucose administration and glucose tolerance as the glucose disappearance constant (Kg) from 10 to 60 min. Insulin release commenced immediately after nateglinide administration, even before glucose injection, but this was not observed with glyburide. Both nateglinide and glyburide enhanced glucose-induced insulin release, compared with placebo (area under the curve -15-300 min: nateglinide 23,595 +/- 11,212 pM/min, glyburide 54,556 +/- 15,253 pM/min, placebo 10,242 +/- 2,414 pM/min). The profiles of insulin release demonstrated significant enhancement of release between -15 and 30 min for nateglinide, compared with glyburide and between 60 and 300 min for glyburide over nateglinide. Kg increased by 15% with nateglinide (0.87 +/- 0.04%/min), but it did not increase significantly with glyburide (0.79 +/- 0.04%/min), compared with placebo (0.76 +/- 0.04%/min). The enhancement of insulin release by glyburide resulted in a lower minimal glucose concentration with glyburide (3.8 +/- 0.2 mM), compared with nateglinide (5.0 +/- 0.2 mM) and placebo (5.9 +/- 0.2 mM). Thus, enhancement of the early phase of insulin secretion improves iv glucose tolerance, whereas delaying it by 30 min results in a slower rate of glucose disappearance for the first 2 h after iv glucose administration. Further, the differences in the kinetics of nateglinide and glyburide action results in continued insulin release with glyburide despite the fact that glucose levels have returned to basal, thus resulting in a further reduction in glucose levels and a lower nadir.  相似文献   

18.
We evaluated insulin release and insulin sensitivity in women with basal and/or postprandial hyperglycemia but normal oral glucose tolerance test (OGTT) in previous pregnancy (GHG). These women were individually matched with females without previous hyperglycemia (NGT). Both groups consisted of normal glucose-tolerant women at the time of this study. They underwent OGTT (75 g; n=32 pairs) and hyperglycemic clamp experiments (10 mmoll(-1); n=27 pairs) with plasma glucose, insulin, and C-peptide measurements and calculation of insulinogenic index, first- and second-phase insulin release, and insulin sensitivity index (ISI). The GHG group showed higher glycosylated hemoglobin levels (6.2+/-0.6% versus 5.8+/-0.8%; P<0.05); lower insulinogenic index at 30 min (134.03+/-62.69 pmol mmol(-1) versus 181.59+/-70.26 pmol mmoll(-1); P<0.05) and diminished C-peptide response in relation to glucose (4.05+/-0.36 nmol mmol(-1) versus 4.23+/-0.36 nmol mmol(-1); P<0.05) at OGTT. Both groups did not show difference in insulin secretion and ISI by hyperglycemic clamp technique. We concluded that in up to 12 years from index pregnancy, women with previous GHG, presenting normal glucose tolerance and well-matched with their controls, showed beta-cell dysfunction without change in ISI. As women with previous GHG are at risk of type 2 diabetes, beta-cell dysfunction may be its primary defect.  相似文献   

19.
Ahrén B  Thomaseth K  Pacini G 《Diabetologia》2005,48(10):2140-2146
Aims/hypothesis Glucagon-like peptide-1 (GLP-1) is known to be a potent stimulator of insulin secretion. However, whether GLP-1 also affects insulin clearance is not known. To explore this, we developed a technique to determine prehepatic insulin secretion in mice, based on deconvolution of plasma C-peptide concentrations. The estimated beta cell secretion was then related to plasma insulin levels to allow determination of clearance rate of endogenously produced insulin.Materials and methods Kinetic parameters of C-peptide were estimated after i.v. injection of human C-peptide (0.8 or 3 nmol/kg) or glucose (1 g/kg), either alone or together with GLP-1 (10 nmol/kg), in anaesthetised NMRI mice.Results C-peptide was distributed in two compartments (distribution volume 11.4±0.4 ml, 42±2% of which was in the accessible compartment). Fractional C-peptide clearance was 8.2±0.6% of the total distribution volume per minute. GLP-1 markedly enhanced prehepatic insulin secretion; more than 80% of prehepatic secretion occurred during the first minute after injection. Fractional clearance of endogenously released insulin after glucose was 0.66±0.11 min–1 and this was reduced to 0.36±0.10 min–1 by GLP-1 (p=0.04).Conclusions/interpretation It is possible to perform C-peptide deconvolution for estimating prehepatic insulin secretion in mice. GLP-1 reduces the clearance of endogenously released insulin; therefore, it may affect insulin levels by increasing prehepatic insulin secretion and by reducing insulin clearance.  相似文献   

20.
BACKGROUND/AIMS: To investigate the link between hepatitis C infection and glucose intolerance, we measured insulin sensitivity, glucose effectiveness and beta-cell secretion in noncirrhotic HCV-infected patients with normal glucose tolerance according to WHO criteria as assessed by oral glucose tolerance tests. METHODS: Glucose, insulin and C-peptide data from frequently sampled intravenous glucose tolerance tests were analyzed using the minimal modeling technique for glucose and C-peptide to determine insulin sensitivity, glucose effectiveness, first and second phase insulin secretion in noncirrhotic HCV-infected patients (n = 10) and in healthy control subjects (n = 10). Histological activity index (HAI) as well as the extent of fibrosis were evaluated by scoring liver biopsies. RESULTS: Insulin sensitivity (2.72 +/- 1.63 vs. 6.84 +/- 1. 20 10(-4) min(-1) per microU/ml, p < 0.01) and glucose effectiveness (2.29 +/- 0.45 vs. 2.89 +/- 0.39 10(-2) min(-1), p < 0.05) ere significantly lower in patients with HCV-induced liver disease. Insulin sensitivity was negatively related to serum alanine aminotransferase (r = -0.47, p < 0.05) and aspartate aminotransferase concentrations (r = -0.65, p < 0.05). Multiple linear regression analysis revealed a strong relation of insulin sensitivity with fibrosis score and HAI (r = -0.82, p < 0.02 for both). Second phase insulin secretion was significantly enhanced in HCV-infected patients (14.30 +/- 2.04 vs. 8.29 +/- 1.65 min(-1), p < 0.05). CONCLUSIONS: HCV-infected patients with normal glucose tolerance are insulin and glucose resistant. The impairment of glucose tolerance appears to be closely related with the severity of HCV-induced liver damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号