首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Cardiac stem cell-like populations exist in adult hearts, and their roles in cardiac repair remain to be defined. Sca-1 is an important surface marker for cardiac and other somatic stem cells. We hypothesized that heart-derived Sca-1(+)/CD31(-) cells may play a role in myocardial infarction-induced cardiac repair/remodeling. Mouse heart-derived Sca-1(+)/CD31(-) cells cultured in vitro could be induced to express both endothelial cell and cardiomyocyte markers. Immunofluorescence staining and fluorescence-activated cell sorting analysis indicated that endogenous Sca-1(+)/CD31(-) cells were significantly increased in the mouse heart 7 days after myocardial infarction (MI). Western blotting confirmed elevated Sca-1 protein expression in myocardium 7 days after MI. Transplantation of Sca-1(+)/CD31(-) cells into the acutely infarcted mouse heart attenuated the functional decline and adverse structural remodeling initiated by MI as evidenced by an increased left ventricular (LV) ejection fraction, a decreased LV end-diastolic dimension, a decreased LV end-systolic dimension, a significant increase of myocardial neovascularization, and modest cardiomyocyte regeneration. Attenuation of LV remodeling was accompanied by remarkably improved myocardial bioenergetic characteristics. The beneficial effects of cell transplantation appear to primarily depend on paracrine effects of the transplanted cells on new vessel formation and native cardiomyocyte function. Sca-1(+)/CD31(-) cells may hold therapeutic possibilities with regard to the treatment of ischemic heart disease.  相似文献   

2.
Regeneration of the damaged myocardium is one of the most challenging fronts in the field of tissue engineering due to the limited capacity of adult heart tissue to heal and to the mechanical and structural constraints of the cardiac tissue. In this study we demonstrate that an engineered acellular scaffold comprising type I collagen, endowed with specific physiomechanical properties, improves cardiac function when used as a cardiac patch following myocardial infarction. Patches were grafted onto the infarcted myocardium in adult murine hearts immediately after ligation of left anterior descending artery and the physiological outcomes were monitored by echocardiography, and by hemodynamic and histological analyses four weeks post infarction. In comparison to infarcted hearts with no treatment, hearts bearing patches preserved contractility and significantly protected the cardiac tissue from injury at the anatomical and functional levels. This improvement was accompanied by attenuated left ventricular remodeling, diminished fibrosis, and formation of a network of interconnected blood vessels within the infarct. Histological and immunostaining confirmed integration of the patch with native cardiac cells including fibroblasts, smooth muscle cells, epicardial cells, and immature cardiomyocytes. In summary, an acellular biomaterial with specific biomechanical properties promotes the endogenous capacity of the infarcted myocardium to attenuate remodeling and improve heart function following myocardial infarction.  相似文献   

3.
The cardiac muscle architecture lies at the basis of the mechanical and electrical properties of the heart, and dynamic alterations in fiber structure are known to be of prime importance in healing and remodeling after myocardial infarction. In this study, left ventricular remodeling was characterized using diffusion tensor imaging (DTI) in a mouse model of myocardial infarction. Myocardial infarction was induced in mice by permanent ligation of the left anterior descending coronary artery. Serial ex vivo DTI measurements were performed 7, 14, 28, and 60 days after ligation. Apparent diffusion coefficient, fractional anisotropy, the three eigenvalues of the diffusion tensor, and the myofiber disarray served as readout parameters. After myocardial infarction, the mouse hearts displayed extreme wall thinning in the infarcted area, which covered large parts of the apex and extended into the free wall up to the equator. Average heart mass increased by 70% 7-60 days after infarction. Histological analysis showed that the infarct at 7 days consisted of unstructured tissue with residual necrosis and infiltration of macrophages and myofibroblasts. At 14 days after infarction, the necrotic tissue had disappeared and collagen fibers were starting to appear. From 28 to 60 days, the infarct had fully developed into a mature scar. DTI parameters showed dynamic changes as a function of time after infarction. The apparent diffusion coefficient in the infarcted region was lower than in remote regions and increased as a function of time after infarction. The fractional anisotropy was higher in the infarcted region and was maximum at 28 days, which was attributed to the development of structured collagen fibers. Myofiber disarray, which was analyzed by considering the alignment of fibers in neighboring voxels, was significantly higher in infarcted regions. DTI provides a valuable non-destructive tool for characterizing structural remodeling in diseased myocardium.  相似文献   

4.
Oxidative stress and inflammation are involved in cardiac remodeling after acute myocardial infarction (AMI). We have found that pigment epithelium-derived factor (PEDF) inhibits vascular inflammation through its anti-oxidative properties. However, effects of PEDF on cardiac remodeling after AMI remain unknown. We investigated whether PEDF could inhibit left ventricular remodeling and improve cardiac function in rats with AMI. AMI was induced in 8-week-old Sprague-Dawley rats by ligation of the left ascending coronary artery. Rats were treated intravenously with vehicle or 10 μg PEDF/100 g b.wt. every day for up to 2 weeks after AMI. Each rat was followed until 16 weeks of age. PEDF levels in infarcted areas and serum were significantly decreased at 1 week after AMI and remained low during the observational periods. PEDF administration inhibited apoptotic cell death and oxidative stress generation around the infarcted areas at 2 and 8 weeks after AMI. Further, PEDF injection suppressed cardiac fibrosis by reducing transforming growth factor-β and type III collagen expression, improved left ventricular ejection fraction, ameliorated diastolic dysfunction, and inhibited the increase in left ventricular mass index at 8 weeks after AMI. The present study demonstrated that PEDF could inhibit tissue remodeling and improve cardiac function in AMI rats. Substitution of PEDF may be a novel therapeutic strategy for cardiac remodeling after AMI.  相似文献   

5.
目的:评价阿托伐他汀对兔急性心肌梗死再灌注(AMI/R)后一氧化氮(NO)、内皮素-1(ET-1)水平的影响及对心功能的作用。方法:新西兰大白兔24只随机分成AMI/R组、阿托伐他汀治疗组(5mg·kg-1.d-1)和假手术组,每组8只。冠状动脉结扎60min,松解120min制备AMI/R模型。梗死前、后和再灌注后均行血流动力学测定,采用硝酸还原酶法检测血浆及心肌组织NO水平,采用放射免疫方法测定血浆及心肌组织ET-1水平。结果:(1)与AMI前相比较,AMI/R组AMI60min和再灌注后120min,心率(HR)、主动脉收缩压(SBP)和舒张压(DBP)、左室收缩压(LVSP)、左心室内压最大收缩和舒张变化速率(±dp/dtmax)及心排量(CO)均显著下降,左室舒张末压(LVEDP)显著升高(P0.05或P0.01)。与AMI前相比,阿托伐他汀治疗组AMI60min和再灌注后120min上述各项指标变化与AMI/R组的变化趋势相似(P0.05或P0.01),但再灌注后120minLVSP、LVEDP、±dp/dtmax及CO比AMI60min有显著恢复(P0.01),且比AMI/R组恢复更显著(P0.05或P0.01);另外,治疗组SBP、DBP下降幅度明显低于AMI/R组(P0.01)。(2)与AMI/R组相比,阿托伐他汀能使AMI再灌注后血浆NO水平显著升高,ET-1水平显著降低(P0.01);而心肌组织NO、ET-1的含量治疗组仅复流区显著降低(P0.05或P0.01)。(3)与AMI/R组相比,阿托伐他汀可促进AMI后心功能的恢复。结论:阿托伐他汀能使缺血再灌注后血浆及心肌NO水平显著升高,ET-1水平显著降低,具有内皮保护作用;可促进AMI后心功能的恢复。  相似文献   

6.
McGinn AN  Nam HY  Ou M  Hu N  Straub CM  Yockman JW  Bull DA  Kim SW 《Biomaterials》2011,32(3):942-949
Implantation of skeletal myoblasts to the heart has been investigated as a means to regenerate and protect the myocardium from damage after myocardial infarction. While several animal studies utilizing skeletal myoblasts have reported positive findings, results from clinical studies have been mixed. In this study we utilize a newly developed bioreducible polymer system to transfect skeletal myoblasts with a plasmid encoding vascular endothelial growth factor (VEGF) prior to implantation into acutely ischemic myocardium. VEGF has been demonstrated to promote revascularization of the myocardium following myocardial infarction. We report that implanting VEGF expressing skeletal myoblasts into acutely ischemic myocardium produces superior results compared to implantation of untransfected skeletal myoblasts. Skeletal myoblasts expressing secreted VEGF were able to restore cardiac function to non-diseased levels as measured by ejection fraction, to limit remodeling of the heart chamber as measured by end systolic and diastolic volumes, and to prevent myocardial wall thinning. Additionally, arteriole and capillary formation, retention of viable cardiomyocytes, and prevention of apoptosis was significantly improved by VEGF expressing skeletal myoblasts compared to untransfected myoblasts. This work demonstrates the feasibility of using bioreducible cationic polymers to create engineered skeletal myoblasts to treat acutely ischemic myocardium.  相似文献   

7.
New directions in strategies using cell therapy for heart disease   总被引:10,自引:0,他引:10  
Congestive heart failure remains a major public health problem and is frequently the end result of cardiomyocyte apoptosis and fibrous replacement after myocardial infarction, a process referred to as left ventricular remodeling. Cardiomyocytes undergo terminal differentiation soon after birth and are generally considered to irreversibly withdraw from the cell cycle. In response to ischemic insult adult cardiomyocytes undergo cellular hypertrophy, nuclear ploidy, and a high degree of apoptosis. A small number of human cardiomyocytes retain the capacity to proliferate and regenerate in response to ischemic injury. However, whether these cells are derived from a resident pool of cardiomyocyte stem cells or from a renewable source of circulating bone marrow-derived stem cells that home to the damaged myocardium is at present not known. Replacement and regeneration of functional cardiac muscle after an ischemic insult to the heart could be achieved by either stimulating proliferation of endogenous mature cardiomyocytes or resident cardiac stem cells or by implanting exogenous donor-derived or allogeneic cells such as fetal or embryonic cardiomyocyte precursors, bone marrow derived mesenchymal stem cells, or skeletal myoblasts. The newly formed cardiomyocytes must integrate precisely into the existing myocardial wall in order to augment synchronized contractility and avoid potentially life-threatening alterations in the electrical conduction of the heart. A major impediment to survival of the implanted cells is altered immunogenicity by prolonged ex vivo culture conditions. In addition, concurrent myocardial revascularization is required to ensure viability of the repaired region and prevent further scar tissue formation. Human adult bone marrow contains endothelial precursors which resemble embryonic angioblasts and can be used to induce infarct bed neovascularization after experimental myocardial infarction. This results in protection of cardiomyocytes against apoptosis, induction of cardiomyocyte proliferation and regeneration, long-term salvage and survival of viable myocardium, prevention of left ventricular remodeling, and sustained improvement in cardiac function. It is reasonable to anticipate that cell therapy strategies for ischemic heart disease will need to incorporate (a) a renewable source of proliferating, functional cardiomyocytes, and (b) angioblasts to generate a network of capillaries and larger size blood vessels for supply of oxygen and nutrients to both the chronically ischemic endogenous myocardium and to the newly implanted cardiomyocytes  相似文献   

8.
Myocardial infarction (MI) remains a common and deadly disease. Using tissue-engineered cardiac grafts to repair infarcted myocrdium is considered to be a therapeutic approach. This study tested the feasibility of using MSCs-seeded SIS to repair chronic myocardial infarction in a rabbit model. MI in rabbits was created by ligation of the left anterior descending artery. BrdU-labeled mesenchymal stem cells (MSCs) were seeded on the small intestinal submucosa and cultured for 5–7 days prior to implantation. Four weeks after myocardial infarction, cardiac grafts were implanted onto the epicardial surface of infarcted myocardium. Four weeks after implantation of the membranes, a serial of tests including echocardiography, hemodynamics, histology and immunohistochemistry were undertaken to evaluate the effect of the implanted grafts on recovery of the infarcted myocardium. It was shown that left ventricular contractile function and dimension, the capillary density of the infarcted region, and myocardial pathological changes were significantly improved in rabbits implanted either SIS or MSCs-seeded SIS. But the MSCs-seeded SIS was more effective. Immunofluorescence staining demonstrated the migration of Brdu-labeled MSCs from the membrane into the infarcted area and their differentiation to cardiomyocytes and smooth muscle cells. Taken together, these results suggest that MSCs-seeded SIS can be used to repair chronic myocardial infarction, which enhances myocardial regeneration.  相似文献   

9.
Cardiac remodeling in response to a myocardial infarction or chronic pressure-overload is an independent risk factor for the development of heart failure. In contrast, cardiac remodeling produced by regular physical exercise is associated with a decreased risk for heart failure. There is evidence that exercise training has a beneficial effect on disease progression and survival in patients with cardiac remodeling and dysfunction, but concern has also been expressed that exercise training may aggravate pathological remodeling and dysfunction. Here we present studies from our laboratory into the effects of exercise training on pathological cardiac remodeling and dysfunction in mice. The results indicate that even in the presence of a large infarct, exercise training exerts beneficial effects on the heart. These effects were mimicked in part by endothelial nitric oxide synthase (eNOS) overexpression and abrogated by eNOS deficiency, demonstrating the importance of nitric oxide signaling in mediating the cardiac effects of exercise. Exercise prior to a myocardial infarction was also cardioprotective. In contrast, exercise tended to aggravate pathological cardiac remodeling and dysfunction in the setting of pressure-overload produced by an aortic stenosis. These observations emphasize the critical importance of the underlying pathological stimulus for cardiac hypertrophy and remodeling, in determining the effects of exercise training. Future studies are needed to define the influence of exercise type, intensity and duration in different models and severities of pathological cardiac remodeling. Together such studies will aid in optimizing the therapy of exercise training in the setting of cardiovascular disease.  相似文献   

10.
The proinflammatory cytokine interleukin (IL)-1 signals exclusively through the type I IL-1 receptor (IL-1RI). IL-1 expression is markedly induced in the infarcted heart; however, its role in cardiac injury and repair remains controversial. We examined the effects of disrupted IL-1 signaling on infarct healing and cardiac remodeling using IL-1RI(-/-) mice. After reperfused infarction IL-1RI-null mice exhibited decreased infiltration of the infarcted myocardium with neutrophils and macrophages and reduced chemokine and cytokine expression. In the absence of IL-1 signaling, suppressed inflammation was followed by an attenuated fibrotic response. Infarcted IL-1RI(-/-) mice had decreased myofibroblast infiltration and reduced collagen deposition in the infarcted and remodeling myocardium. IL-1RI deficiency protected against the development of adverse remodeling; however, infarct size was comparable between groups suggesting that the beneficial effects of IL-1RI gene disruption were not attributable to decreased cardiomyocyte injury. Reduced chamber dilation in IL-1RI-null animals was associated with decreased collagen deposition and attenuated matrix metalloproteinase (MMP)-2 and MMP-3 expression in the peri-infarct area, suggesting decreased fibrotic remodeling of the noninfarcted heart. IL-1beta stimulated MMP mRNA synthesis in wild-type, but not in IL-1RI-null cardiac fibroblasts. In conclusion, IL-1 signaling is essential for activation of inflammatory and fibrogenic pathways in the healing infarct, playing an important role in the pathogenesis of remodeling after infarction. Thus, interventional therapeutics targeting the IL-1 system may have great benefits in myocardial infarction.  相似文献   

11.
背景:药物治疗和支架置入治疗尚不能修复心肌梗死后已坏死的心肌。 目的:观察外周血间充质干细胞移植治疗对心肌梗死兔新生血管及心功能的影响。 方法:随机抽签法将36只大白兔分为假手术组,间充质干细胞移植组和对照组,结扎兔冠状动脉左室支建立心肌梗死模型。 结果与结论:移植后4周,流式细胞仪分析显示绝大部分间充质干细胞表达CD44,极少量细胞表达CD34和CD45。间充质干细胞移植组梗死心肌组织有移植的间充质干细胞存活,超声心动仪示间充质干细胞移植组左心室射血分数及短轴缩短率明显高于对照组(P < 0.01);左心室收缩末内径和舒张末内径明显小于对照组(P < 0.01)。间充质干细胞移植组心肌纤维化程度、心肌梗死面积均明显小于对照组(P < 0.01)。免疫组织化学染色显示间充质干细胞移植组新生毛细血管密度明显高于对照组(P < 0.01)。提示外周血间充质干细胞移植增加了梗死心肌新生血管密度,改善心脏的功能。  相似文献   

12.
13.
We review recent and ongoing work from our laboratory that has shed novel insights into the effects of angiotensin II (ANGII) on the baroreflex at the level of the nucleus of the solitary tract (NTS). The NTS is the site of termination for baroreceptor afferents and is a potentially powerful region for neuronal modulation. ANGII applied to this nucleus attenuated the cardiac vagal and cardiac sympathetic components of the baroreceptor reflex. This effect was antagonized by blockade of either gamma-amino butyric acid receptors or nitric oxide synthase within the NTS. Interestingly, nitric oxide donors microinjected into the NTS mimicked the effect of ANGII. Using an adenovirus we showed that ANGII activated the endothelial isoform of nitric oxide synthase. The NTS was transfected to express a dominant negative truncated mutant form of endothelial nitric oxide synthase that prevented the depressant effect of ANGII on the baroreflex. Endothelial nitric oxide synthase was present in both neurones and endothelium in the NTS. A possibility is that ANGII activation of endothelial nitric oxide synthase is calcium dependent. However, in most NTS neurones tested, ANGII failed to elevate intracellular calcium concentration. We conclude that ANGII activates endothelial nitric oxide synthase to release nitric oxide which enhances gamma-amino butyric acid transmission destined for circuitry mediating the baroreflex. We discuss the contribution of endothelial cells within the nucleus of the solitary tract as a potential target for both circulating and/or centrally produced ANGII. These data have relevance to patients with essential hypertension and left heart failure, conditions in which ANGII activity is elevated and the baroreceptor reflex is depressed.  相似文献   

14.
We review recent and ongoing work from our laboratory that has shed novel insights into the effects of angiotensin II (ANGII) on the baroreflex at the level of the nucleus of the solitary tract (NTS). The NTS is the site of termination for baroreceptor afferents and is a potentially powerful region for neuronal modulation. ANGII applied to this nucleus attenuated the cardiac vagal and cardiac sympathetic components of the baroreceptor reflex. This effect was antagonized by blockade of either γ‐amino butyric acid receptors or nitric oxide synthase within the NTS. Interestingly, nitric oxide donors microinjected into the NTS mimicked the effect of ANGII. Using an adenovirus we showed that ANGII activated the endothelial isoform of nitric oxide synthase. The NTS was transfected to express a dominant negative truncated mutant form of endothelial nitric oxide synthase that prevented the depressant effect of ANGII on the baroreflex. Endothelial nitric oxide synthase was present in both neurones and endothelium in the NTS. A possibility is that ANGII activation of endothelial nitric oxide synthase is calcium dependent. However, in most NTS neurones tested, ANGII failed to elevate intracellular calcium concentration. We conclude that ANGII activates endothelial nitric oxide synthase to release nitric oxide which enhances γ‐amino butyric acid transmission destined for circuitry mediating the baroreflex. We discuss the contribution of endothelial cells within the nucleus of the solitary tract as a potential target for both circulating and/or centrally produced ANGII. These data have relevance to patients with essential hypertension and left heart failure, conditions in which ANGII activity is elevated and the baroreceptor reflex is depressed.  相似文献   

15.
BACKGROUND: The development of biomaterials provides a new idea for myocardial infarction treatment, and so far there are numerous biomaterials, such as fibrin glue, matrigel, emulsion of extracellular matrix and alginate, for myocardial infarction. But there is a lack of studies about the platelet-fibrin scaffold for myocardial infarction. OBJECTIVE: To explore the effect of the platelet-fibrin scaffold on rat myocardial infarction. METHODS: Platelet-fibrin was used to prepare a platelet-fibrin scaffold, and 40 rat models of myocardial infarction were randomly divided into two groups: 200 μL platelet fibrins were injected into the tissues around the rat infarcted myocardium as platelet-fibrin scaffold group, and the same amount of DMEM was injected into the tissues around the rat infarcted myocardium as control group. Subsequently, expressions of vascular endothelial growth factor, hepatocyte growth factor and insulin-like growth factor 1 released from the scaffold were detected. Production of endothelial cells and cardiomyocytes, cardiomyocyte apoptosis, capillary density and cardiac function in rats after implantation were observed. RESULTS AND CONCLUSION: The platelet-fibrin scaffold was successfully prepared. The expression of vascular endothelial growth factor, hepatocyte growth factor and insulin-like growth factor 1 in the scaffold group was (115.7±19.45), (23.98±12.32) and (288.4±16.74) ng/L, respectively. The number of von Willebrand factor-positive cells and a-SA-positive cells in the platelet-fibrin scaffold group was significantly higher than that in the control group (P < 0.05). The number of TUNEL-positive cells in the platelet-fibrin scaffold group was significantly lower than that in the control group (P < 0.05). The capillary density and capillaries with blood flow in the platelet-fibrin scaffold group were significantly higher than those in the control group (P < 0.05). Both the left ventricular end-diastolic volume and left ventricular end-systolic volume in the platelet-fibrin scaffold group were significantly lower than those in the control group (P < 0.05). In conclusion, the platelet-fibrin scaffold can promote the generation of endothelial cells, cardiomyocytes and capillaries, and further improve heart function. Besides, the platelet-fibrin scaffold exerts protective effect on the heart probably by secreting cytokines.  相似文献   

16.
Ryu JH  Kim IK  Cho SW  Cho MC  Hwang KK  Piao H  Piao S  Lim SH  Hong YS  Choi CY  Yoo KJ  Kim BS 《Biomaterials》2005,26(3):319-326
Neovascularization may improve cardiac function and prevent further scar tissue formation in infarcted myocardium. A number of studies have demonstrated that bone marrow-derived cells have the potential to induce neovascularization in ischemic tissues. In this study, we hypothesized that implantation of bone marrow mononuclear cells (BMMNCs) using injectable fibrin matrix further enhances neovascularization in infarcted myocardium compared to BMMNC implantation without matrix. To test this hypothesis, infarction was induced in rat myocardium by cryoinjury. Three weeks later, rat BMMNCs were mixed with fibrin matrix and injected into the infarcted myocardium. Injection of either BMMNCs or medium alone into infarcted myocardium served as controls. Eight weeks after the treatments, histological analyses indicated that implantation of BMMNCs using fibrin matrix resulted in more extensive tissue regeneration in the infarcted myocardium compared to BMMNC implantation without matrix. Examination with fluorescence microscopy revealed that cells labeled with a fluorescent dye prior to implantation survived in the infarcted myocardium at 8 weeks of implantation. Importantly, implantation of BMMNCs using fibrin matrix resulted in much more extensive neovascularization in infarcted myocardium than BMMNC implantation without matrix. The microvessel density in infarcted myocardium was significantly higher (p < 0.05) when BMMNCs were implanted using fibrin matrix (350 +/- 22 microvessels/mm2) compared to BMMNC implantation without matrix (262 +/- 13 microvessels/mm2) and medium injection (76 +/- 9 microvessels/mm2). In addition, average internal diameter of microvessels was significantly larger (p < 0.05) in BMMNC implantation with fibrin matrix group (14.6 +/- 1.2 microm) than BMMNC implantation without matrix group (10.2 +/- 0.7 microm) and medium injection group (7.3 +/- 0.5 microm). These results suggest that fibrin matrix could serve as a cell implantation matrix that enhances neovascularization efficacy for myocardial infarction treatment.  相似文献   

17.
Aims: Heart failure (HF) is a major cause of death and morbidity. Connexin 43 (Cx43) content is reduced in the failing myocardium, but regulating factors have not been identified. In HF, inducible nitric oxide synthase (iNOS)‐induced high levels of nitric oxide (NO) cause apoptosis and cardiac dysfunction. However, a direct iNOS–Cx43 link has not been demonstrated. We investigated this relationship in mice after myocardial infarction. Methods: Effects of myocardial infarction were evaluated 2 weeks after coronary artery ligation in wild‐type C57BL/6 (WT) and iNOS?/? knockout mice. Myocardial Cx43 and Cx45 content were assessed by immunofluorescence confocal imaging and western blotting. Cardiac function was evaluated in anaesthetized mice using a micro pressure‐tipped catheter inserted into the left ventricle. Results: Despite similar infarct size, deficiency in iNOS resulted in significantly lower plasma nitrate/nitrite levels, better haemodynamic performance and lower mortality 2 weeks after coronary ligation. Myocardial Cx43, but not Cx45, content was lower in WT mice following ligation. The reduction in Cx43 was less in iNOS?/? compared with WT mice. To assess the direct effect of NO on Cx43 expression, cultured neonatal mouse cardiomyocytes were employed. Incubation with the NO donor, S‐nitroso‐N‐acetylpenicillamine, elicited a dose‐dependent decrease in Cx43 content in cultured neonatal cardiomyocytes. Conclusions: Increased NO production from iNOS depressed cardiac performance and contributed to the decreased myocardial Cx43 content 2 weeks after myocardial infarction.  相似文献   

18.
Evaluation of structural parameters following a myocardial infarction (MI) is important to assess left ventricular function and remodeling. In this study, we assessed the capability of 3D diffusion tensor magnetic resonance imaging (DT-MRI) to assess tissue degeneration shortly after an MI using a porcine model of infarction. Two days after an induced infarction, hearts were explanted and immediately scanned by a 3T MRI scanner with a diffusion tensor imaging protocol. 3D fiber tracks and clustering models were generated from the diffusion-weighted imaging data. We found in a normal explanted heart that DT-MRI fibers showed a multilayered helical structure, with fiber architecture and fiber density reflecting the integrity of muscle fibers. For infarcted heart explants, we observed either a lack of fibers or disruption of fibers in the infarcted regions. Contours of the disrupted DT-MRI fibers were found to be consistent with the infarcted regions. Both histological and mechanical analysis of the infarcted hearts suggested DT-MRI fiber disruption correlated with altered microstructure and tissue mechanics. The ability of 3D DT-MRI to accurately distinguish viable myocardium from dead myocardium only 2 days post infarct without the use of radioisotopes or ionotropic agents makes it a promising approach to evaluate cardiac damage early post-MI.  相似文献   

19.
The transplantation of skeletal myoblasts (SkM) might improve cardiac function after myocardial infarction via paracrine action. We used scaffold-based cell transfer by using vascular endothelial growth factor (VEGF)-overexpressing myoblasts. Skeletal myoblasts were isolated and expanded from newborn Lewis rats. Cells were transfected with pCINeo-VEGF(121) and seeded on polyurethane (PU) scaffolds. The seeded scaffolds were epicardially implanted in rats 2 weeks after myocardial infarction (group: PU-VEGF-SkM). Before this intervention and 6 weeks later, pressure/volume loops were analyzed followed by histology. Additional study groups (n = 10 per group) were injected with VEGF-overexpressing myoblasts (Inj-VEGF-SkM) or unmodified myoblasts (Inj-SkM) or underwent a sham operation. Overexpression of VEGF was verified in vitro. The transplantation of growth factor producing myoblast-seeded scaffolds resulted in enhanced angiogenesis of ischemically damaged myocardium in vivo. However, the infarction size was not reduced. In group Inj-SkM, hemodynamics remained unchanged. Systolic function as measured by dP/dt(max) was not significantly altered in PU-VEGF-SkM (preinterventionally 2,156 ± 1,222 mmHg vs. postinterventionally 2,134 ± 850 mmHg). Other systolic function and diastolic function parameters as measured by dP/dt(min), tau, and pressure half-time were not restored in groups PU-VEGF-SkM and Inj-VEGF-SkM either. Transplantation of VEGF-overexpressing skeletal myoblasts leads to neovascularization in infarcted hearts. No functional myocardial recovery was observed. Scaffold-based transfer of genetically-modified cells remains a useful tool to study paracrine stem cell action.  相似文献   

20.
Gao J  Liu J  Gao Y  Wang C  Zhao Y  Chen B  Xiao Z  Miao Q  Dai J 《Tissue engineering. Part A》2011,17(21-22):2739-2747
Tissue-engineered myocardial patches could be useful in the repair of myocardial injuries. The aim of the present study was to evaluate a collagen targeting delivery system for myocardial repair. A specific peptide collagen-binding domain (CBD) was fused to human vascular endothelial growth factor (VEGF) to enhance the binding of VEGF to collagen. In this study, collagen membranes loaded with CBD-VEGF, natural VEGF, or phosphate-buffered saline are used as cardiac patches to repair the infarcted myocardium in a rabbit model. CBD-VEGF/collagen group could effectively induce more cells to penetrate into the collagen membrane after 4 weeks and promote more vascularization in infarcted myocardium after 12 weeks compared with the other two control groups. Echocardiography and hemodynamic studies both show cardiac function improvement in the CBD-VEGF/collagen group. These results reveal that implantation of CBD-VEGF collagen membrane patch into the infarcted myocardium could effectively improve left ventricle cardiac function and increase the vascular density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号