首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations, haplotypes, and other polymorphic markers in the phenylalanine hydroxylase (PAH) gene were analysed in 133 unrelated Czech families with classical phenylketonuria (PKU). Almost 95% of all mutant alleles were identified, using a combination of PCR and restriction analysis, denaturing gradient gel electrophoresis (DGGE), and sequencing. A total of 30 different mutations, 16 various RFLP/VNTR haplotypes, and four polymorphisms were detected on 266 independent mutant chromosomes. The most common molecular defect observed in the Czech population was R408W (54.9%). Each of the other 29 mutations was present in no more than 5% of alleles and 13 mutations were found in only one PKU allele each (0.4%). Four novel mutations G239A, R270fsdel5bp, A342P, and IVS11nt-8g-->a were identified. In 14 (5.1%) alleles, linked to four different RFLP/VNTR haplotypes, the sequence alterations still remain unknown. Our results confirm that PKU is a heterogeneous disorder at the molecular level. Since there is evidence for the gene flow coming from northern, western, and southern parts of Europe into our Slavic population, it is clear that human migration has been the most important factor in the spread of PKU alleles in Europe.  相似文献   

2.
Characterization of the molecular basis of phenylketonuria (PKU) in Latvia has been accomplished through the analysis of 96 unrelated chromosomes from 50 Latvian PKU patients. Phenylalanine hydroxylase (PAH) gene mutations have been analyzed through a combined approach in which R158Q, R252W, R261Q, G272X, IVS10-11G>A and R408W mutations were first screened for by PCR or restriction generating PCR amplification of PAH gene exons 5, 7, 11 and 12 followed by digestion with the appropriate diagnostic enzyme. Subsequently 'broad range' denaturing gradient gel electrophoresis analysis of the 13 PAH gene exons has been used to study uncharacterized PKU chromosomes. A mutation detection rate of 98% was achieved. 12 different mutations were found, with the most frequent mutation, R408W, accounting for 76% of Latvian PKU alleles. Six mutations (R408W, E280K, R158Q, A104D, R261Q and P281L) represent 92% of PKU chromosomes. PAH VNTR and STR alleles have been also identified and minihaplotype associations with PKU mutations were also determined.  相似文献   

3.
Mutation screening of phenylketonuria in the Far East of Russia   总被引:3,自引:0,他引:3  
We analyzed mutant genotypes at the human phenylalanine hydroxylase (PAH) locus among phenylketonuria (PKU) patients in the Far East of Russia. A total of 60 variant alleles from 30 PKU families were analyzed for prevalent Caucasian mutations and restriction fragment length polymorphism/variable number of tandem repeats (RFLP/VNTR) haplotypes. Seventy-eight percent of all variant alleles carried six mutations. The most prevalent mutation was R408W (63%), with a haplotype background of 2.3. It also showed a very high degree of homozygosity (43%). The other five mutations (R158Q, R261Q, R252W, R261X, and IVS12nt-1) accounted for 1.7%–6.7% of all PKU alleles, and a single haplotype was associated with each genotype, except for R261Q. The genetic structure of PKU patients in the Far East of Russia seems to be relatively homogeneous, compared with that in the other Slavic and Oriental populations of surrounding countries. Prediction of a clinical phenotype and carrier detection will be feasible using DNA tests. Received: June 30, 1999 / Accepted: August 10, 1999  相似文献   

4.
Phenylketonuria (PKU) is an important error of amino acid metabolism which results in most patients from phenylalanine hydroxylase (PAH) deficiency. PKU displays a marked genotypic heterogeneity both within and between different populations. The aim of this study was to establish the genotypic spectrum of PKU in eastern Germany, and to compare this to the distribution of mutations in western Germany. The study population included 302 patients in 290 families who were followed at treatment centers in Berlin, Leipzig and Jena. The study showed marked genotypic variability with a total of 75 mutations, including 15 that have so far not been described (eleven missense mutations, one splicing mutation, and three small deletions). One of these novel mutations, E183Q, occurred in cis to a R408W mutation. In the non-immigrant eastern German population, the frequency of R408W accounted for 40.1% of the PKU alleles. In the immigrant Turkish population of the former West Berlin, the most prevalent mutation was IVS10-11G>A (57%). There was a marked difference of the genotypic spectrum between the population studied here and the data reported from the western part of the country.  相似文献   

5.
The mutation spectrum and polymorphic haplotype background in 22 Romanian families have been analysed in this study using the restriction digestion of phenylalanine hydroxylase (PAH) regions specifically amplified or the DGGE/direct sequencing methods. Eleven PAH mutations specifically associated with six mutant haplotypes were detected. In spite of the relative heterogeneity of the molecular defects in the PAH gene, three mutations covered almost 70% of all alleles: R408W, 47.72%, 21/44; K363fsdelG 13.63%, 6/44; and P225T 6.81%, 3/44. Among these, R408W, the most frequent mutation in our population, represented 50% of all the phenylketonuric (PKU) chromosomes. Splice mutation IVS12nt1g→a affected two PAH alleles (4.54%); the remaining seven mutations were rare, each having an effect on just one chromosome (1/44), resulting in a relative frequency of 2.27%. A high frequency was observed in our PKU samples for the relatively uncommon mutations, K363fsdelG and P225T mutation, suggesting a possible founder effect at origin. Within the investigated panel, these mutations, both very rare among other Caucasians were exclusively linked to haplotype 5.8 and 1.7, respectively. These results provide a basis for the development of a routine molecular analysis of Romanian PKU families. Hum Mutat 12:314–319, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

6.
127例PKU患者PAH基因第12外显子点突变及其频率研究   总被引:1,自引:0,他引:1  
目的 了解中国人苯丙酮尿症 ( phenylketonuria,PKU)患者的苯丙氨酸羟化酶( phenylalanine hydroxylase,PAH)基因第 12外显子点突变种类和频率。方法 应用单链构象多态性( single strand conformation polymorphism,SSCP)、变性梯度凝胶电泳 ( denaturing gradient gelelectrophoresis,DGGE)、DNA测序分析了 12 7例 PKU患者的 PAH基因第 12外显子点突变种类及频率。结果  DNA测序分析显示 10例患者存在 R4 13P、S4 11X、R4 0 8W、R4 0 8Q 4种杂合突变 ,其突变频率分别为 2 .76 %、0 .39%、0 .39%、0 .39% ,S4 11X突变为中国人中首次报道。 SSCP分析仅发现 2例 R4 13P杂合突变 ,DGGE分析显示 10例出现 3种类型的异常电泳带型。R4 13P突变在南北方人之间、在经典型 PKU和高苯丙氨酸血症之间的分布差异无显著性。结论  DGGE对 PAH基因第 12外显子点突变检出率明显高于 SSCP。 DGGE结合 DNA测序是明确 PAH基因第 12外显子点突变种类和频率较好的方法。 R4 13P突变在南北方人中分布无明显差异  相似文献   

7.
Phenylketonuria (PKU) is the most common inborn error of amino acid metabolism in Caucasians. PKU is caused by mutations in the gene encoding phenylalanine hydroxylase (PAH) enzyme. Here, we report the spectrum and the frequency of mutations in the PAH gene and discuss genotype-phenotype correlation in 34 unrelated patients with PKU from Serbia and Montenegro. Using both polymerase chain reaction-restriction fragment length polymorphism and 'broad-range' denaturing-gradient gel electrophoresis/DNA sequencing analysis, 19 disease-causing mutations were identified, corresponding to mutation detection rate of 97%. The most frequent ones were L48S (21%), R408W (18%), P281L (9%), E390G (7%) and R261Q (6%), accounting for 60% of all mutant alleles. The genotype-phenotype correlation was studied in homozygous and functionally hemizygous patients. We found that the most frequent mutation, L48S, was exclusively associated with the classical (severe) PKU phenotype. The mutation E390G gave rise to mild PKU. For the mutation R261Q, patients had been recorded in two phenotype categories. Considering allele frequencies, PKU in Serbia and Montenegro is heterogeneous, reflecting numerous migrations over the Balkan Peninsula.  相似文献   

8.
Mutational spectrum of the phenylalanine hydroxylase (PAH) deficiency was investigated in 107 families (90% of the Slovene PKU population). The entire coding region of the PAH gene was analyzed with dHPLC to select the samples where subsequently the automated sequencing analysis was performed. MLPA analysis was performed to identify large deletions, which were later confirmed with long-range PCR. Correlations with patients' phenotypes and genotype-based predictions of BH(4)-responsiveness were assessed. Altogether, disease-causing mutations were identified on 209 alleles (detection rate 97.7%). A spectrum of 36 different disease-causing mutations was identified: 20 missense mutations (80% of the alleles), eight splicing mutations (13% of the alleles), one nonsense mutation (0.5% of the alleles), four small deletions with frame shift (6% of the alleles), one small insertion with frame shift (0.5% of the alleles), and two large deletions (2% of the alleles). The most frequent mutation was p.R408W in exon 12, representing 29% of the alleles, which is in concordance with other neighboring and/or Slavic PKU populations. Other common mutations were: p.R158Q, p.A403V, p.P281L and p.E390G, accounting for 9%, 7%, 7% and 7% of the alleles respectively. Five novel mutations were detected: c.43_44insAG, c.56_59+1delACAGG, p.V45A, p.L62P and p.R157S. Large deletion of exon 5 (EX5del955) was found in three patients and a deletion of exon 3 (EX3del4765) in one patient. A spectrum of 64 different genotypes was found, seven of them accounting for over than a third of all families. Among thirteen families with homozygous mutation (13% of the PKU population), 10 had p.R408W, two had p.R158Q and one had p.E390G. Among 107 families, 58 were classified as classic PKU (54.2%), 28 as mild PKU (25.9%) and 21 as MHP (19.6%). Twenty-six different genotypes (40.6%) were predicted to be BH(4)-responsive, represented by 38 different families (35.5%).  相似文献   

9.
In order to elucidate the molecular basis of phenylketonuria (PKU) in Portugal, a detailed study of the Portuguese mutant phenylalanine hydroxylase (PAH) genes was performed. A total of 222 mutant alleles from 111 PKU families were analysed for 26 mutations and restriction fragment length polymorphismlvariable number tandem repeat (RFLP/VNTR) haplotypes. It was possible to characterise 55% of the mutant alleles, in which 14 different mutations (R261Q, V388M, IVS10nt-11, I65T, P281L, R252W, R158Q, L348V, Y414C, L311P, Y198fsdel22bp, R408W, R270K, and R261X) and three polymorphisms (Q232Q, V245V, and L385L) were identified. A total of 14 different haplotypes were observed, with a high prevalence of haplotype 1 among mutant and normal alleles. The results reported in this study show considerable genetic heterogeneity in the Portuguese PKU population, as has also been described for other southern European populations.  相似文献   

10.
We present the results of a comprehensive analysis of mutations, polymorphisms and haplotypes in the phenylalanine hydroxylase (PAH) gene in 39 Croatian families with phenylketonuria (PKU). A total of 21 disease-causing mutations was identified on 78 out of 79 independent chromosomes. The commonest mutation, R408W on haplotype 2 was found with a relative frequency of 37 %. P281L accounted for 11 %, R261Q and E390G each for 9 % of mutant chromosomes. There were three novel mutations: L249P (c.746T>C) in exon 7, IVS8+2T>C (c.912T>C) in intron 8, and F402L (c.1206T>G) in exon 12 of the PAH gene. Two known PKU mutations were found in cis on the same chromosome in one family, highlighting the need to perform full mutation scanning in recessive disease genes for molecular diagnosis even if two known mutations have been identified in a patient. This is the first comprehensive report on PKU mutations in southeastern Europe, adding to the growing bulk of molecular data for population genetic investigations.  相似文献   

11.
We report the spectrum of phenylalanine hydroxylase (PAH) gene mutations in patients with phenylketonuria (PKU) residing in Lithuania. A total of 184 independent chromosomes was investigated. R408W mutation was first analysed through restriction enzyme digestion of exon 12. The remaining uncharacterised PKU chromosomes were analysed by scanning the whole coding sequence of PAH gene by multiplex 'broad range' denaturing gradient gel electrophoresis. Mutations were identified by fluorescent automated sequencing or by restriction enzyme digestion analysis if an abnormal DGGE pattern was recognised. 21 different mutations were identified for 175 PKU chromosomes, with a mutation detection rate of 95%. The most common ones were R408W (73.5% chromosomes) and R158Q (7.0% chromosomes) whereas the remaining mutations appeared to be rare (relative frequencies 0.5%-2%). The high mutation detection rate obtained is an evidence of the efficiency of PAH genetic testing achieved in Lithuania. Moreover, the definition of the PKU mutation profile in the Lithuanian population will allow to perform a genotype-phenotype correlation study thus making feasible genotyped-based prediction of the biochemical phenotype in newborns with hyperphenylalaninemia. This may be useful for refining diagnosis and anticipating dietary requirements.  相似文献   

12.
Identification of molecular basis of phenylketonuria (PKU) in Iran has been accomplished through the analysis of 248 unrelated chromosomes from 124 Iranian classic PKU subjects. Phenylalanine hydroxylase (PAH) gene mutations were analyzed through a combined approach in which p.S67P, p.R252W, p.R261Q, p.R261X, p.L333F, IVS10-11G>A, IVS11+1G>C, p.L364del, p.R408Q and p.R408W mutations were first screened by PCR of PAH gene exons 3, 7, 10, 11 and 12, followed by digestion with the appropriate digestion enzymes. Subsequently SSCP analysis for exons 2, 6, 7 and 11 of the PAH gene and finally, sequencing of 13 PAH gene exons have been used to study uncharacterized PKU chromosomes. 26 different mutations were found. The predominant mutation in this population sample was IVS10-11G>A, with a frequency of 24.6%. Nine mutations (IVS10-11G>A, p.R261Q, p.P281L, IVS11+1G>C, p.K363>NFS, p.R243X, IVS2+5G>C, p.R261X and p.R252W) represent almost 84% of all PKU chromosomes studied. IVS10-11G>A mutation is the major PKU-causing mutation throughout the Mediterranean region. The finding of the high prevalence of this mutation in Iranian population is consistent with the historical and geographical links between Iranian and Mediterranean populations.  相似文献   

13.
In the present study, 115 Brazilian families with phenylketonuria (PKU), mainly from the Southeast of the country, were studied using three laboratory methods (DGGE, SSCP, and sequencing). All 13 exons of the PAH gene were analyzed, including the splicing sites and the promoter region. We identified 50 distinct mutations and characterized 91% of the mutant alleles. The five most prevalent mutations of the 50 mutations identified (50% of the PKU alleles) were IVS10nt-11G-->A (17.4%), followed by R261Q (12.2%), V388M (9.1%), R252W (6.5%), and R270K (4.8%). The other mutations were rare. The mutation spectrum included 10 novel mutations (IVS5nt-54A-->G, IVS6nt17G-->T, E205A, F240S, K274E, I318T, L321L, C357G, IVS11nt17G-->A, and S411X). To characterize the origin and distribution of the PAH alleles we determined the association between the detected mutations and the PCR/RFLP haplotypes and VNTR alleles located on the PAH gene. For those patients whose mutant alleles were detected, we calculated the correlation with pretreatment phenylalanine levels, thus establishing a genotype/phenotype correlation. The present results confirm the marked heterogeneity observed at the PAH locus and contribute to the understanding of the distribution and frequency of PKU mutations in the Brazilian population.  相似文献   

14.
A direct mutational analysis of the phenylala nine hydroxylase gene (PAH) in Gypsy families with phenylketonuria (PKU) has not yet been presented. However, they obviously represent a group at high risk for this inherited disease. We analyzed the PAH loci of 65 Gypsies originating from Eastern Slovakia by a combination of PCR amplification, direct sequencing and ASO hybridization. These studies uncovered 10 “classical PKU” patients to be homozygous for a R252W (CGG-TGG) transition, and 29 heterozygous carriers of this mutation. Fifteen control Caucasoid PKU patients from the Czech and Slovak Republics were selected. In this group we detected R252W mutation in two subjects (6.67% of all mutant alleles). Both were compound heterozygous for two different mutations. Previous haplotype studies of Welsh Gypsies with PKU were uniformative in the determination of heterozygosity. ASO hybridization served us effectively for the consequent analyses in Gypsy PKU-related families and to identify the carriers among the unrelated subjects. © 1994 Wiley-Liss, Inc.  相似文献   

15.
The genetic defects responsible for most phenylketonuria (PKU) and hyperphenylalaninemia (HPA) cases are located in the phenylalanine hydroxylase (PAH) gene. Approximately 50-60 mutations have been reported in Caucasians and are reflected in a wide range of clinical severities. Most mutations are linked to specific haplotypes, as defined by eight polymorphic restriction sites in the PAH gene. We hypothesized that there is at least one mild mutation linked to haplotype 12 in the Swedish PKU/HPA population, since 7 of 8 patients carrying haplotype 12 had mild HPA. Sequence analysis revealed a C-to-G transversion at the second base of codon 322, resulting in a substitution of glycine for alanine, in four mutant haplotype 12 genes, and a G-to-A transition at the second base of codon 408, resulting in a substitution of glutamine for arginine, in another three mutant haplotype 12 genes. These mutations segregated with mutant haplotype 12 alleles in nuclear families but were not present on normal or other mutant alleles. Both mutations were tested in a eukaryotic expression system in which enzyme activities of different mutant PAH enzymes reflect the relative severities of the mutations, although these in vitro activities cannot be translated directly into in vivo hepatic activities. The A322G mutant PAH had about 75% and the R408Q mutant PAH about 55% of the wild-type PAH enzyme activity. These in vitro activities are the highest reported for mutant PAH enzymes produced in the same expression system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Mutations at the phenylalanine hydroxylase (PAH) locus are the major cause of hyperphenylalaninemia. We have previously described four mutations (M1V, IVS12nt1, R408W, and S349P) at the PAH locus in French Canadians with ancestry in eastern Quebec. Here we report (1) identification of another mutation, on a haplotype 9 chromosome, which converts codon 65 from isoleucine (ATT) to threonine (ACT), (2) expression analysis of the I65T mutation in COS cells demonstrating 75% loss of both immunoreactive protein and enzyme activity, and (3) expression analysis of the most prevalent PKU allele (M1V) in eastern Quebec, showing nondetectable levels of PAH protein and activity, a finding compatible with a mutation in the translation initiation codon. Homozygosity for M1V and codominant inheritance of I65T/R408W were both associated with classical phenylketonuria.  相似文献   

17.
BackgroundResidual phenylalanine hydroxylase (PAH) activity is the key determinant for the phenotype severity in phenylketonuria (PKU) patients and correlates with the patient's genotype. Activity of in vitro expressed mutant PAH may predict the patient's phenotype and response to tetrahydrobiopterin (BH4), the cofactor of PAH.MethodsA robust LC–ESI-MSMS PAH assay for the quantification of phenylalanine and tyrosine was developed. We measured PAH activity a) of the PAH mutations p.Y417C, p.I65T, p.R261Q, p.E280A, p.R158Q, p.R408W, and p.E390G expressed in eukaryotic COS-1 cells; b) in different cell lines (e.g. Huh-7, Hep3B); and c) in liver, brain, and kidney tissue from wild-type and PKU mice.ResultsThe PAH assay was linear for phenylalanine and tyrosine (r2  0.99), with a detection limit of 105 nmol/L for Phe and 398 nmol/L for Tyr. Intra-assay and inter-assay coefficients of variation were < 5.3% and < 6.2%, respectively, for the p.R158Q variant in lower tyrosine range. Recovery of tyrosine was 100%. Compared to the wild-type enzyme, the highest PAH activity at standard conditions (1 mmol/L L-Phe; 200 μmol/L BH4) was found for the mutant p.Y417C (76%), followed by p.E390G (54%), p.R261Q (43%), p.I65T (33%), p.E280A (15%), p.R158Q (5%), and p.R408W (2%). A relative high PAH activity was found in kidney (33% of the liver activity), but none in brain.ConclusionsThis novel method is highly sensitive, specific, reproducible, and efficient, allowing the quantification of PAH activity in different cells or tissue extracts using minimum amounts of samples under standardized conditions.  相似文献   

18.
This work was undertaken in order to ascertain the PKU mutational spectrum in Minas Gerais, Brazil, the relative frequency of the mutations in the State and the origin of these mutations by haplotype determination. Minas Gerais is a trihybrid population formed by miscegenation from Europeans, Africans and Amerindians. All 13 exons of the PAH gene from 78 PKU patients were analyzed, including splicing sites and the promoter region. We identified 30 different mutations and 98% of the PAH alleles were established. A new mutation (Q267X) was identified as well. The most common mutations found were V388M (21.2), R261Q (16.0%), IVS10‐11G>A (15.3%), I65T (5.8%), IVS2+5G>C (5.8%), R252W (5.1%), IVS2+5G>A (4.5%), P281L (3.8%) and L348V (3.2%). These nine mutations correspond to 80% of the PKU alleles in the state. Haplotypes were determined to characterize the origin of the PAH alleles. The majority of the mutations found, with respective haplotypes, are frequent in the Iberian Peninsula. However, there were some mutations that are rare in Europe and four previously unreported mutation‐haplotype associations. I65T and Q267X were found in association with haplotype 38 and may be African in origin or the result of miscegenation in the Brazilian population.  相似文献   

19.
When analyzed in the context of the phenylalanine hydroxylase (PAH) three-dimensional structure, only a minority of the PKU mutations described world-wide affect catalytic residues. Consistent with these observations, recent data point to defective folding and subsequent aggregation/degradation as a predominant disease mechanism for several mutations. In this work, we use a combined approach of expression in eukaryotic cells at different temperatures and a prokaryotic system with co-expression of chaperonins to elucidate and confirm structural consequences for 18 PKU mutations. Three mutations are located in the amino terminal regulatory domain and 15 in the catalytic domain. Four mutations were found to abolish the specific activity in all conditions. Two are catalytic mutations (Y277D and E280K) and two are severe structural defects (IVS10-11G>A and L311P). All the remaining mutations (D59Y, I65T, E76G, P122Q, R158Q, G218V, R243Q, P244L, R252W, R261Q, A309V, R408Q, R408W, and Y414C) are folding defects causing reduced stability and accelerated degradation, although some of them probably affect residues involved in regulation. In these cases, we have demonstrated that the amount of mutant PAH protein and residual activity could be modulated by in vitro experimental conditions, and therefore the observed in vivo metabolic variation may be explained by interindividual variation in the quality control systems. The results derived provide an experimental framework to define the mutation severity relating genotype to phenotype. They also explain the observed inconsistencies for some mutations in patients with similar genotype and different phenotypes.  相似文献   

20.
The R408W mutation in the phenylalanine hydroxylase gene (PAH)of phenylketonurla patients occurs on haplotypes 2.3 and 1.8in Europeans. The mutation involves a CpG dinucleotide; nonetheless,a single recombination event might also explain the two haplotypeassociations. By analysis of an STR in the PAH gene 5' to the408 codon and of the VNTR system in the 3' UTR, we identifiedunique features of the haplotype 1.8 chromosome harbouring theR408W mutation which are not accounted for by recombination.We conclude that recurrent mutation is the origin of R408W ondifferent PAH haplotypes in Europeans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号