首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
A rare genotype G6P[9] was identified in two human group A rotavirus strains designated as KF14 and KF17, that were detected in stool specimens from children with diarrhea in Japan. VP7 gene sequences of these two strains were identical and genetically closely related to G6 human rotavirus strains reported in European countries and the United States. To our knowledge, this is the first report of detection of a G6 human rotavirus in Japan. For further genetic analysis to elucidate the origin of the G6 rotavirus, nearly full-length sequences of all 11 RNA segments were determined for the KF17 strain. The complete genomic constellation of KF17 was determined as G6-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3, a novel genotype constellation for human rotavirus. Phylogenetic analysis indicated that VP6, VP1-3, and NSP2 genes of KF17 clustered with bovine-like G6 human strains and some animal strains into sub-lineages distinct from those of common DS-1-like G2 human rotaviruses. On the other hand, KF17 genes encoding VP4, NSP1, and NSP3-5 showed high sequence identities to the human G3P[9] strain AU-1, and clustered with AU-1 and some feline strains within the same lineage. These findings suggested that the G6P[9] human rotavirus detected in Japan may have occurred through reassortment among uncommon bovine-like human rotaviruses and human/feline AU-1-like rotaviruses.  相似文献   

3.
During the 2004 surveillance of rotaviruses in Wuhan, China, a G4P[6] rotavirus strain R479 was isolated from a stool specimen collected from a 2‐year‐old child with diarrhea. The strain R479 had an uncommon subgroup specificity I + II, and analysis of the VP6 gene suggested that it was related to porcine rotaviruses. In the present study, full‐length nucleotide sequences of all the RNA segments of R479 were determined and analyzed phylogenetically to identify the origin of individual RNA segments. According to the rotavirus genotyping system based on 11 RNA segments, the genotype of R479 was expressed as G4‐P[6]‐I5‐R1‐C1‐M1‐A1‐N1‐T7‐E1‐H1. This genotype includes the porcine‐like VP6 genotype (I5) and bovine‐like NSP3 genotype (T7). Phylogenetic analysis revealed that R479 genes encoding VP1, VP2, VP3, VP6, VP7, VP8*, NSP1, NSP4, and NSP5 were more closely related to those of porcine rotaviruses than human or other animal rotaviruses. In contrast, it was remarkable that the NSP3 gene of R479 was genetically closely related to only a bovine rotavirus strain UK. The NSP2 gene of R479 was also unique and clustered with only the G5P[8] human strain IAL28 and G3P[24] simian strain TUCH. These results suggested that R479 may be a reassortant virus having the NSP3 gene from a bovine rotavirus in the genetic background of a porcine rotavirus, with an NSP2 gene related to the porcine‐human reassortant strain IAL28. To our knowledge, R479 is the first porcine–bovine reassortant rotavirus isolated from a human. J. Med. Virol. 82:1094–1102, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
An unusual strain of human rotavirus G3P[10] (CMH079/05) was detected in a stool sample of a 2‐year‐old child admitted to the hospital with severe diarrhea in Chiang Mai, Thailand. Analysis of the VP7 gene sequence revealed highest identities with unusual human rotavirus G3 strain CMH222 at 98.7% on the nucleotide and 99.6% on the amino acid levels. Phylogenetic analysis of the VP7 sequence confirmed that the CMH079/05 strain formed a cluster with G3 rotavirus reference strains and showed the closest lineage with the CMH222 strain. Analysis of partial VP4 gene of CMH079/05 revealed highest degree of sequence identities with P[10] rotavirus prototype strain 69M at nucleotide and amino acid levels of 92.9% and 94.6%, respectively. Phylogenetic analysis of the VP4 sequence revealed that CMH079/05 and 69M clustered closely together in a monophyletic branch separated from other rotavirus genotypes. To our knowledge, this is a novel G–P combination of G3 and P[10] genotypes. In addition, analyses of VP6, NSP4, and NSP5/6 genes revealed these uncommon genetic characteristics: (i) the VP6 gene differed from the four other known subgroups; (ii) the NSP4 gene was identified as NSP4 genetic group C, an uncommon group in humans; and (iii) the NSP5/6 gene was most closely related with T152, a G12P[9] rotavirus previously isolated in Thailand. The finding of uncommon G3P[10] rotavirus in this pediatric patient provided additional evidence of the genetic diversity of human group A rotaviruses in Chiang Mai, Thailand. J. Med. Virol. 81:176–182, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

5.
Shi H  Chen J  Li H  Sun D  Wang C  Feng L 《Archives of virology》2012,157(10):1897-1903
The fifth most important G genotype, G9 rotavirus, is recognized as an emerging genotype that is spreading around the world. Sequence analysis was completed of a rare group A rotavirus, strain G9P[23], that was designated rotavirus A pig/China/NMTL/2008/G9P[23] and abbreviated as NMTL. It was isolated from a piglet with diarrhea in China. Nucleotide sequence analysis revealed that the VP7 gene clustered within the G9 lineage VId. The VP4 gene clustered within the rare P[23] genotype. NMTL is the first porcine G9 stain reported in China. Thus, to further characterize the evolutionary diversity of the NMTL strain, all gene segments were used to draw a phylogenetic tree. Based on the new classification system of rotaviruses, the NMTL sequence revealed a G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genotype with close similarity to human Wa-like and porcine strains. The results showed that (i) NSP2 and NSP4 genes of NMTL exhibited higher genetic relatedness to human group A rotaviruses than to porcine strains, (ii) the VP2 and VP4 genes clustered with porcine and porcine-like human strains, and (iii) VP1 genes clustered apart from the Wa-like human and porcine clusters. In view of rotavirus evolution, this report provides additional evidence to support the notion that the human and porcine rotavirus genomes might be related.  相似文献   

6.
7.
The human rotavirus G9 strain is the fifth most common rotavirus worldwide. A human rotavirus G9P[8] strain CAU05-202 was isolated from a young child with diarrhea using a cell culture system, and its major gene sequences were determined. Phylogenetic analysis of the VP7 gene revealed that CAU05-202 clustered into genetic lineage III-d and was most closely related to G9 rotaviruses from Turkey (strain GUH13) and Sri Lanka (strain 05SLC056 and 05SLC057). VP4 and NSP4 gene analysis showed that CAU05-202 belongs to the P[8]-3 lineage and genotype B, respectively. In addition, CAU05-202 has a long RNA electropherotype, supported by VP6 gene analysis, which is clearly associated with subgroup II specificity. Analysis of the G9 rotavirus strain CAU05-202 provides information concerning the genetic relationships among global rotavirus G9 strains, suggesting that closely related G9 strains are persistent and widespread in Asian countries.  相似文献   

8.
Hospital-based surveillance of rotavirus genotypes was conducted in Wuhan, China, between March 2008 and May 2011. The detection rates of group A rotavirus were 24.6% (458/1859) and 12.1% (96/795) in children and adults, respectively, with diarrhea. Among the 554 positive specimens, the most frequent genotype was G3P[8] (57.9%), followed by G1P[8] (29.4%). Compared with previous studies in Wuhan (2000-2008), the relative frequency of G3P[8] has been decreasing year by year, while the predominant genotype G3 shifted to G1 in 2011. In the present study, a rare P[8]b subtype of the VP4 gene (OP354-like P[8]) was identified in nine strains. Full-length sequences of VP7, VP4, VP6 and NSP4 genes of two G9P[8]b strains (RVA/Human-wt/CHN/E1545/2009/G9P[8]b and RVA/Human-wt/CHN/Z1108/2008/G9P[8]b) were determined for phylogenetic analysis. The four genes of these strains were closely related to one another, and the G9-VP7 genes of these strains belonged to lineage III, which contains globally spreading G9 rotaviruses. The full-length sequence of VP4 gene segments of the P[8]b strains in Wuhan clustered with those of P[8]b strains in Vietnam, Russia and Belgium, while they were distinct from those of the OP354 strain from Malawi and Bangladeshi strains. The VP6 and NSP4 genes of two P[8]b strains belonged to the I1 and E1 genotype, respectively, and clustered with those of strains belonging to Wa-like human rotaviruses from various Asian countries. These findings indicate the changing epidemiologic trend of rotavirus genotypes in Wuhan, i.e., the shift of the predominant type from G3 to G1 and the emergence of P[8]b strains genetically related to those distributed in other Asian countries.  相似文献   

9.
The G and P type specificity of the human rotavirus strain T-152 (G12P[9]) isolated in Thailand was serologically confirmed with G12-specific monoclonal antibodies prepared in this study by using a reference G12 strain, L26, as an immunizing antigen and a P[9]-specific monoclonal antibody, respectively. The genomic relationship of strain T-152 with representative human rotavirus strains was examined by means of Northern blot analysis. The results showed that T152 is closely related to strain AU-1 (G3P[9]). Gene 5 (NSP1 gene) of T152, which did not hybridize with those of any other strains examined, was characterized by sequence determination. The T152 NSP1 gene is 1,652 nucleotides in length, encodes 493 amino acids, and exhibits low identity to those of representative human and animal rotaviruses.  相似文献   

10.
Summary.  In an epidemiological study of symptomatic human rotaviruses in Mysore, India during 1993 and 1994, isolates MP409 and MP480 were isolated from two children suffering from severe, acute dehydrating diarrhea. Both isolates exhibited ‘long’ RNA pattern and subgroup I specificity suggesting the likelihood of their animal origin. Both isolates did not react with monoclonal antibodies (MAbs) specific for serotypes G1 to G6 as well as G10. To determine the genetic origin of these isolates, complete nucleotide sequences of genes encoding the outer capsid proteins VP4 and VP7, nonstructural proteins NSP1 and NSP3 and viral enterotoxin protein NSP4 from MP409 and partial sequences of genes from MP480 were determined. Comparison of the 5′ and 3′ terminal sequences of 250 nucleotides revealed complete identity of the gene sequences in both strains suggesting that MP409 and MP480 are two different isolates of a single strain. Comparison of the nucleotide and deduced amino acid sequences of VP4, VP7, NSP1 and NSP3 of MP409 with published sequences of strains belonging to different serotypes revealed that both outer capsid proteins VP4 and VP7 and NSP1 are highly related to the respective proteins from the P6[1], G8 type bovine rotavirus A5 isolated from a calf with diarrhoea in Thailand and that the NSP3 is highly homologous to that of bovine rotaviruses. The NSP4 protein showed greatest sequence identity with NSP4s belonging to the KUN genetic group to which NSP4s from human G2 type strains and bovine rotaviruses belong. MP409 and MP480 likely signify interspecies transmission of P6[1], G8 type strains from cattle to humans and represent the first P6[1] type rotaviruses isolated in humans. These and our previous studies on the asymptomatic neonatal strain I321 are of evolutionary and epidemiological significance in the context of close association of majority of the Indian population with cattle. Received September 29, 1999 Accepted February 4  相似文献   

11.
Rotaviruses are the major etiological agents of diarrhea in children less than 5 years of age. Two unusual rotavirus strains not previously reported in India, G11P[25] (CRI 10795) and G3P[3] (CRI 33594) were isolated from faecal samples of asymptomatic children in India. The strains were characterized by sequence analysis of the genes encoding the VP7, VP4, VP6, and NSP4. The G11P[25] strain was closely related to the human G11P[25] strains from Bangladesh (with 98% identity at the nucleotide [nt] level and the amino acid [aa] level for the VP7 gene and 96% identity at the nt and 98% at the aa level for the VP4 gene). The G3P[3] strain was found to be related to a G3P[3] strain isolated in Thailand (CMH222; 88% identity at the nt level and 97% at aa level for the VP7 gene and 84% identity at the nt level and 90% at the aa level for the VP4 gene). Phylogenetic analysis of the VP6 and the NSP4 genes revealed that the Vellore G11P[25] strain was of VP6 subgroup II and NSP4 genotype B. The G3P[3] strain was identified as NSP4 genotype C and the VP6 gene showed 97% identity at the deduced amino acid level with strain CMH222 (Thailand) strain but did not cluster with sequences of SGI, SGII, SGI+II or SG-nonI/nonII. Both strains had gene segments of animal rotavirus origin suggesting inter-species transmission of rotavirus, and in the case of G11P[25] possibly underwent reassortment subsequently with human strains resulting in an animal-human hybrid strain.  相似文献   

12.
A total of 1,385 stool specimens were collected from children with diarrhea at two hospitals in Wuhan, Hubei Province, China, in 1994 and 1995, and screened for rotavirus by polyacrylamide gel electrophoresis of viral RNA. Group A rotavirus was detected with high frequency; 56.5% (87/154) and 40.8% (502/1,231) of the specimens collected in 1994 and 1995, respectively, were positive for rotavirus. Assignment of G serotype and P type (VP4 genotype) of group A rotavirus by ELISA with monoclonal antibodies and/or PCR, respectively, showed that strains of G2-P[4] and G1-P[8] specificity were predominant in 1994 and in 1995, respectively. In contrast, a single strain was found to have a P[9] type specificity, and no G4 strain was detected. Unusual combinations of RNA pattern-subgroup-G serotype-P type, such as long pattern-subgroup I-G1-P[8], short pattern-subgroup II-G3-P[4] and short pattern-subgroup I-G1-P[4], were detected in four specimens. Nucleotide sequences of the VP8* and/or NSP5 genes from two Chinese P[8] strains 470 and 582 and one Chinese P[9] strain 512 as well as five Japanese P[9] strains (K8, AU1, M318, O264, and O265) were determined and compared with the published sequences of the corresponding gene. In the phylogenetic tree of VP8* sequences of P[9] strains, which formed two clusters each having strain K8 or AU-1 as the representative strain, the Chinese P[9] strain was found in the cluster represented by AU-1, although it was most distantly related to other strains. While NSP5 sequences of human strains with P[9] specificity were related to simian and bovine strains, that of Chinese P[8] strains was most closely related to those of porcine strains. A single group C rotavirus (No. 208) was detected. Nucleotide sequences of its VP4, VP6, VP7, and NSP4 genes were very similar to those of group C human rotaviruses detected worldwide. J. Med. Virol. 55:168–176, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
We report the detection and molecular characterization of a rotavirus strain, 10733, isolated from the feces of a buffalo calf affected with diarrhea in Italy. Strain 10733 was classified as a P[3] rotavirus, as the VP8* trypsin cleavage product of the VP4 protein revealed a high amino acid identity (96.2%) with that of rhesus rotavirus strain RRV (P5B[3]), used as the recipient virus in the human-simian reassortant vaccine. Analysis of the VP7 gene product revealed that strain 10733 possessed G6 serotype specificity, a type common in ruminants, with an amino acid identity to G6 rotavirus strains ranging from 88 to 98%, to Venezuelan bovine strain BRV033, and Hungarian human strain Hun4. Phylogenetic analysis based on the VP7 gene of G6 rotaviruses identified at least four lineages and an apparent linkage between each lineage and the VP4 specificity, suggesting the occurrence of repeated interspecies transmissions and genetic reassortment events between ruminant and human rotaviruses. Moreover, strain 10733 displayed a bovine-like NSP4 and NSP5/6 and a subgroup I VP6 specificity, as well as a long electropherotype pattern. The detection of the rare P[3] genotype in ruminants provides additional evidence for the wide genetic and antigenic diversity of group A rotaviruses.  相似文献   

14.
Summary. Long electropherotype with Subgroup I specificity is a common feature of animal rotaviruses. In an epidemic of infantile gastroenteritis in Manipur, India, long but SG I strains predominated in the outbreak in the year 1987–88. One such strain isolated from that region, following the outbreak had G9P [19] specificity. As this is a rare combination, the gene sequences encoding VP4, VP6, VP7, NSP1, NSP2, NSP3, NSP4 and NSP5 of this strain were analyzed. All these genes except VP7 were closely related to porcine rotaviruses (95–99% identity at amino acid level) and clustered with the porcine strains in phylogenetic analysis. In addition, it had subgroup I nature and belonged to NSP4 genotype B which is characteristic of animal rotaviruses. This is the first report of a rotavirus with VP6 and NSP4, two crucial proteins thought to be involved in host range restriction and pathogenicity, were of porcine origin and caused diarrhoea in a human host. Among the genes of this strain sequenced so far, only VP7 had highest identity to human strains at amino acid level. This study suggests reassortment may be occurring between human and other animal strains and some of the reassortant viruses may be virulent to humans.  相似文献   

15.
The human rotavirus G1P[8] strain is one of the most common rotaviruses worldwide, including Korea. Six Korean G1P[8] human rotaviruses, isolated using cell culture techniques, were characterized on the basis of sequence differences in VP7, VP4, VP6, and NSP4 genes to elucidate the evolutionary relationships in the community. All strains had a long RNA electropherotype, supported by VP6 gene analysis, clearly associated with subgroup II specificity. The phylogenetic analysis of VP7 gene sequences showed that they all clustered into lineage I, as reported for G1 strains in Japan, China, Vietnam, and Thailand. In addition, phylogenetic analysis of the VP4 gene showed that they belong to two distinct lineages, P[8]‐II and P[8]‐III. With respect to the NSP4 gene, all strains belonged to genotype B. An understanding of the ecology and molecular evolution of rotaviruses circulating in the country is very important for the development of vaccines and vaccination strategies. This study provides new information concerning the genetic variability of the rotavirus strain G1P[8] occurring most commonly as a vaccine candidate. J. Med. Virol. 82: 886–896, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Porcine rotavirus strains (PoRVs) bearing human-like VP4 P[6] gene alleles were identified. Genetic characterization with either PCR genotyping or sequence analysis allowed to determine the VP7 specificity of the PoRVs as G3, G4, G5 and G9, and the VP6 as genogroup I, that is predictive of a subgroup I specificity. Sequence analysis of the VP8* trypsin-cleavage product of VP4 allowed PoRVs to be characterized further into genetic lineages within the P[6] genotype. Unexpectedly, the strains displayed significantly higher similarity (up to 94.6% and 92.5% at aa and nt level, respectively) to human M37-like P[6] strains (lineage I), serologically classifiable as P2A, or to the atypical Hungarian P[6] human strains (HRVs), designated as lineage V (up to 97.0% aa and 96.1% nt), than to the porcine P[6] strain Gottfried, lineage II (<85.1% aa and 82.2 nt), which is serologically classified as P2B. Interestingly, no P[6] PoRV resembling the original prototype porcine strain, Gottfried, was detected, while Japanase P[6] PoRV clustered with the atypical Japanase G1 human strain AU19. By analysis of the 10th and 11th genome segments, all the strains revealed a NSP4B genogroup (Wa-like) and a NSP5/6 gene of porcine origin. These findings strongly suggest interspecies transmission of rotavirus strains and/or genes, and may indicate the occurrence of at least 3 separate rotavirus transmission events between pigs and humans, providing convincing evidence that evolution of human rotaviruses is tightly intermingled with the evolution of animal rotaviruses.  相似文献   

17.
Of five globally important VP7 (G) serotypes (G1-4 and 9) of group A rotaviruses (the single most important etiologic agents of infantile diarrhea worldwide), G9 continues to attract considerable attention because of its unique natural history. Serotype G9 rotavirus was isolated from a child with diarrhea first in the United States in 1983 and subsequently in Japan in 1985. Curiously, soon after their detection, G9 rotaviruses were not detected for about a decade in both countries and then reemerged in both countries in the mid-1990s. Unexpectedly, however, such reemerged G9 strains were distinct genetically and molecularly from those isolated in the 1980s. Thus, the origin of the reemerged G9 viruses remains an enigma. Sequence analysis has demonstrated that the G9 rotavirus VP7 gene belongs to one of at least three phylogenetic lineages: lineage 1 (strains isolated in the 1980s in the United States and Japan), lineage 2 (strains first isolated in 1986 and exclusively in India thus far), and lineage 3 (strains that emerged/reemerged in the mid-1990s). Currently, lineage 3 G9 viruses are the most frequently detected G9 strains globally. We characterized a porcine rotavirus (A2 strain) isolated in the United States that was known to belong to the P[7] genotype but had not been serotyped by neutralization. The A2 strain was found to bear serotype G9 and P9 specificities as well as NSP4 [B] and subgroup I characteristics. By VP7-specific neutralization, the porcine G9 strain was more closely related to lineage 3 viruses than to lineage 1 or 2 viruses. Furthermore, by sequence analysis, the A2 VP7 was shown to belong to lineage 3 G9. These findings raise intriguing questions regarding possible explanations for the emergence of variations among the G9 strains.  相似文献   

18.
Long electropherotype with Subgroup I specificity is a common feature of animal rotaviruses. In an epidemic of infantile gastroenteritis in Manipur, India, long but SG I strains predominated in the outbreak in the year 1987-88. One such strain isolated from that region, following the outbreak had G9P [19] specificity. As this is a rare combination, the gene sequences encoding VP4, VP6, VP7, NSP1, NSP2, NSP3, NSP4 and NSP5 of this strain were analyzed. All these genes except VP7 were closely related to porcine rotaviruses (95-99% identity at amino acid level) and clustered with the porcine strains in phylogenetic analysis. In addition, it had subgroup I nature and belonged to NSP4 genotype B which is characteristic of animal rotaviruses. This is the first report of a rotavirus with VP6 and NSP4, two crucial proteins thought to be involved in host range restriction and pathogenicity, were of porcine origin and caused diarrhoea in a human host. Among the genes of this strain sequenced so far, only VP7 had highest identity to human strains at amino acid level. This study suggests reassortment may be occurring between human and other animal strains and some of the reassortant viruses may be virulent to humans.  相似文献   

19.
During the surveillance of rotavirus strains that were circulating in Argentinean children from 2000 to 2004, seven rotaviruses were detected bearing the genotype combination G9P[8]. The molecular characterization of the VP7 and NSP4 genes and the RNA migration patterns support the hypothesis that rotaviruses G9 could have been reintroduced into Argentina as a novel G9P[8] strain, rather than represent VP7 gene reassortants from G9P[6] strains that had been circulating previously in this country.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号