首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: On the basis of the previous studies, the magnesium alloy is processed into porous scaffolds. OBJECTIVE: To investigate the effect of porous magnesium alloy scaffolds on osteoblast function. METHODS: MC3T3-E1 osteoblastic cell lines were seeded on the porous magnesium alloy scaffold or porous pure magnesium scaffold, respectively. After 6, 12 and 24 hours of incubation, the adhesion ability of osteoblasts on the scaffold was observed by acridine crange staining. At 1, 3 and 5 days after incubation, the proliferation ability of osteoblasts on the scaffold was evaluated by MTT assay; after 21-day incubation, the mineralization of osteoblasts was investigated using calcein staining. RESULTS AND CONCLUSION: The number of osteoblasts adherent to the porous magnesium alloy scaffold was significantly more than that adherent to the porous pure magnesium scaffold after 24-hour incubation (P < 0.05). And the proliferation assay showed that a significantly higher absorbance was observed on the porous magnesium alloy scaffold than that of the porous pure magnesium scaffold after 3 and 5 days of incubation (P < 0.05). Moreover, the number and area of mineralized nodules formed on the the porous magnesium alloy scaffold were greater than those on the porous pure magnesium scaffold after 21-day incubation (P < 0.05). These results show that the porous magnesium alloy scaffold with an excellent bioactivity can promote the adhesion, proliferation and mineralization abilities of osteoblasts.  相似文献   

2.
《Acta biomaterialia》2014,10(5):2014-2023
Silk fibroin (SF) scaffolds have been designed and fabricated for multiple organ engineering owing to SF’s remarkable mechanical property, excellent biocompatibility and biodegradability, as well as its low immunogenicity. In this study, an easy-to-adopt and mild approach based on a modified freeze-drying method was developed to fabricate a highly interconnected porous SF scaffold. The physical properties of the SF scaffold, including pore morphology, pore size, porosity and compressive modulus, could be adjusted by the amount of ethanol added, the freezing temperature and the concentration of SF. Fourier transform infrared spectroscopy illustrated that treatment of the lyophilized scaffolds with 90% methanol led to a structure transition of SF from silk I (random coil) to silk II (beta-sheet), which stabilized the SF scaffolds in water. We also incorporated heparin during fabrication to obtain a heparin-loaded scaffold which possessed excellent anticoagulant property. The heparin that was incorporated into the SF scaffolds could be released in a sustain manner for approximately 7 days, inhibiting the proliferation of human smooth muscle cells within the scaffold in vitro while promoting neovascularization in vivo. We therefore propose that the SF porous scaffold fabricated here may be an attractive candidate for use as a potential vascular graft for implantation based on its high porosity, excellent blood compatibility and mild fabrication process.  相似文献   

3.
Nanohydroxyapatite (op-HA) surface-modified with l-lactic acid oligomer (LAc oligomer) was prepared by LAc oligomer grafted onto the hydroxyapatite (HA) surface. The nanocomposite of op-HA/PLGA with different op-HA contents of 5, 10, 20 and 40 wt.% in the composite was fabricated into three-dimensional scaffolds by the melt-molding and particulate leaching methods. PLGA and the nanocomposite of HA/PLGA with 10 wt.% of ungrafted hydroxyapatite were used as the controls. The scaffolds were highly porous with evenly distributed and interconnected pore structures, and the porosity was around 90%. Besides the macropores of 100–300 μm created by the leaching of NaCl particles, the micropores (1–50 μm) in the pore walls increased with increasing content of op-HA in the composites of op-HA/PLGA. The op-HA particles could disperse more uniformly than those of pure HA in PLGA matrix. The 20 wt.% op-HA/PLGA sample exhibited the maximum mechanical strength, including bending strength (4.14 MPa) and compressive strength (2.31 MPa). The cell viability and the areas of the attached osteoblasts on the films of 10 wt.% op-HA/PLGA and 20 wt.% op-HA/PLGA were evidently higher than those on the other composites. For the animal test, there was rapid healing in the defects treated with 10 and 20 wt.% op-HA/PLGA, where bridging by a large bony callus was observed at 24 weeks post-surgery. There was non-union of radius defects implanted with PLGA and in the untreated group. This was verified by the Masson’s trichrome staining photomicrographs of histological analysis. All the data extrapolated that the composite with 10 and 20 wt.% op-HA exhibited better comprehensive properties and were the optimal composites for bone repairing.  相似文献   

4.
《Acta biomaterialia》2014,10(5):1985-1995
Disc herniation as a result of degenerative or traumatic injury is believed to be the primary instigator of low back pain. At present there is a lack of viable treatment options to repair damaged annulus fibrosus (AF) tissue. Developing alternative strategies to fill and repair ruptured AF tissue is a key challenge. In this work we developed a porous alginate scaffold with shape-memory properties which can be delivered using minimally invasive approaches and recover its original geometry once hydrated. Covalently cross-linked alginate hydrogels were created using carbodiimide chemistry, followed by a freeze-drying step to impart porosity and create porous scaffolds. Results showed that porous alginate scaffolds exhibited shape-memory recovery and mechanical behaviour that could be modulated depending on the cross-linker concentrations. The scaffold can be repeatedly compressed and expanded, which provides the potential to deliver the biomaterial directly to the damaged area of the AF tissue. In vitro experiments demonstrated that scaffolds were cytocompatible and supported cell seeding, penetration and proliferation under intervertebral-disc-like microenvironmental conditions (low glucose media and low oxygen concentration). Extracellular matrix (ECM) was secreted by AF cells with TGF-β3 stimulation and after 21 days had filled the porous scaffold network. This biological matrix was rich in sulfated glycosaminoglycan and collagen type I, which are the main compounds of native AF tissue. Successful ECM deposition was also confirmed by the increase in the peak stress of the scaffold. However, the immaturity of the matrix network after only 21 days of in vitro culture was not sufficient to attain native AF tissue mechanical properties. The ability to deliver porous scaffolds using minimal invasive approaches that can potentially promote the regeneration of AF defects provides an exciting new avenue for disc repair.  相似文献   

5.
Limitations of current clinical methods for bone repair continue to fuel the demand for a high strength, bioactive bone replacement material. Recent attempts to produce porous scaffolds for bone regeneration have been limited by the intrinsic weakness associated with high porosity materials. In this study, ceramic scaffold fabrication techniques for potential use in load-bearing bone repairs have been developed using naturally derived silk from Bombyx mori. Silk was first employed for ceramic grain consolidation during green body formation, and later as a sacrificial polymer to impart porosity during sintering. These techniques allowed preparation of hydroxyapatite (HA) scaffolds that exhibited a wide range of mechanical and porosity profiles, with some displaying unusually high compressive strength up to 152.4 ± 9.1 MPa. Results showed that the scaffolds exhibited a wide range of compressive strengths and moduli (8.7 ± 2.7 MPa to 152.4 ± 9.1 MPa and 0.3 ± 0.1 GPa to 8.6 ± 0.3 GPa) with total porosities of up to 62.9 ± 2.7% depending on the parameters used for fabrication. Moreover, HA-silk scaffolds could be molded into large, complex shapes, and further machined post-sinter to generate specific three-dimensional geometries. Scaffolds supported bone marrow-derived mesenchymal stem cell attachment and proliferation, with no signs of cytotoxicity. Therefore, silk-fabricated HA scaffolds show promise for load bearing bone repair and regeneration needs.  相似文献   

6.
Novel tissue engineering scaffold materials of nano-hydroxyapatite (nHA)/silk fibroin (SF) biocomposite were prepared by freeze-drying. The needle-like nHA crystals of about 10 nm in diameter by 50–80 nm in length, which were uniformly distributed in the porous nHA/SF scaffolds, were prepared by a co-precipitation method with a size. The as-prepared nHA/SF scaffolds showed good homogeneity, interconnected pores and high porosity. XRD and FT-IR analysis suggested that the silk fibroin was in β-sheet structure, which usually provides outstanding mechanical properties for silk materials. In this work, composite scaffolds containing as high as 70% (w/w) nHA were prepared, which had excellent compressive modulus and strength, higher than the scaffolds at low nHA content level and other porous biodegradable polymeric scaffolds often considered in bone-related tissue engineering reported previously. The cell compatibility of composite scaffolds was evaluated through cell viability by MTT assay. All these results indicated that these nHA/SF scaffold materials may be a promising biomaterial for bone tissue engineering.  相似文献   

7.
Novel tissue engineering scaffold materials of nano-hydroxyapatite (nHA)/silk fibroin (SF) biocomposite were prepared by freeze-drying. The needle-like nHA crystals of about 10 nm in diameter by 50-80 nm in length, which were uniformly distributed in the porous nHA/SF scaffolds, were prepared by a co-precipitation method with a size. The as-prepared nHA/SF scaffolds showed good homogeneity, interconnected pores and high porosity. XRD and FT-IR analysis suggested that the silk fibroin was in beta-sheet structure, which usually provides outstanding mechanical properties for silk materials. In this work, composite scaffolds containing as high as 70% (w/w) nHA were prepared, which had excellent compressive modulus and strength, higher than the scaffolds at low nHA content level and other porous biodegradable polymeric scaffolds often considered in bone-related tissue engineering reported previously. The cell compatibility of composite scaffolds was evaluated through cell viability by MTT assay. All these results indicated that these nHA/SF scaffold materials may be a promising biomaterial for bone tissue engineering.  相似文献   

8.
Pore architecture in 3D polymeric scaffolds is known to play a critical role in tissue engineering as it provides the vital framework for the seeded cells to organize into a functioning tissue. In this report, we investigated the effects of different freezing temperature regimes on silk fibroin protein 3D scaffold pore microstructure. The fabricated scaffolds using freeze-dry technique were used as a 3D model to monitor cell proliferation and migration. Pores of 200–250 μm diameter were formed by slow cooling at temperatures of ?20 and ?80 °C but were found to be limited in porosity and pore interconnectivity as observed through scanning electron microscopic images. In contrast, highly interconnected pores with 96% porosity were observed when silk solutions were rapidly frozen at ?196 °C. A detailed study was conducted to assess the affect of pore size, porosity and interconnectivity on human dermal fibroblast cell proliferation and migration on these 3D scaffolds using confocal microscopy. The cells were observed to migrate within the scaffold interconnectivities and were found to reach scaffold periphery within 28 days of culture. Confocal images further confirmed normal cell attachment and alignment of actin filaments within the porous scaffold matrix with well-developed nuclei. This study indicates rapid freeze-drying technique as an alternative method to fabricate highly interconnected porous scaffolds for developing functional 3D silk fibroin matrices for potential tissue engineering, biomedical and biotechnological applications.  相似文献   

9.
Peng F  Yu X  Wei M 《Acta biomaterialia》2011,7(6):2585-2592
Highly porous hydroxyapatite (HA)/poly(L-lactide) (PLLA) nanofibrous scaffolds were prepared by incorporating needle-shaped nano- or micro-sized HA particles into PLLA nanofibers using electrospinning. The scaffolds had random or aligned fibrous assemblies and both types of HA particles were perfectly oriented along the fiber long axes. The biocompatibility and cell signaling properties of these scaffolds were evaluated by in vitro culture of rat osteosarcoma ROS17/2.8 cells on the scaffold surface. Cell morphology, viability and alkaline phosphatase (ALP) activity on each scaffold were examined at different time points. The HA/PLLA scaffolds exhibited higher cell viability and ALP activity than a pure PLLA scaffold. In addition, micro-sized HA particles supported cell proliferation and differentiation better than nano-sized ones in random scaffolds through a 10 day culture period and in aligned scaffolds at an early culture stage. The fibrous assembly of the scaffold had a pronounced impact on the morphology of the cells in direct contact with the scaffold surface, but not on cell proliferation and differentiation. Thus, HA/PLLA nanofibrous scaffolds could be good candidates for bone tissue engineering.  相似文献   

10.
A thermal-induced phase separation combined sugar template method was used to fabricate the Poly (L-lactide) acid (PLLA) scaffolds with precisely regulated porous structure. The effect of tuned porous structure of scaffolds on osteoblasts proliferation and differentiation was investigated. The results showed that the pore diameters (200–300, 300–400, 400–500 μm), porosity and interconnectivity of PLLA scaffolds can be accurately controlled indicated by scanning electron microscope. The results of cell experiments showed that the porous structure including the pore size and interconnectivity of scaffolds dramatically influence the cell proliferation and differentiation. The scaffold with pore diameter of 400–500 μm exhibited the highest cell viability and alkaline phosphatase activity among all the scaffolds for the MC3T3-E1 cells. The higher cell proliferation and biocompatibility observed in the 400–500 μm scaffold indicated the high selectivity for MC3T3-E1cells on the pore size of scaffold in tissue engineering. The precise control of the porous structure of scaffold may better guide the cell–matrix interaction in the future research.  相似文献   

11.
Mimicking certain features (e.g. nanoscale topography and biological cues) of natural extracellular matrix (ECM) is advantageous for the successful regeneration of damaged tissue. In this study, nanofibrous gelatin/apatite (NF-gelatin/apatite) composite scaffolds have been fabricated to mimic both the physical architecture and chemical composition of natural bone ECM. A thermally induced phase separation (TIPS) technique was developed to prepare nanofibrous gelatin (NF-gelatin) matrix. The NF-gelatin matrix mimicked natural collagen fibers and had an average fiber diameter of about 150 nm. By integrating the TIPS method with porogen leaching, three-dimensional NF-gelatin scaffolds with well-defined macropores were fabricated. In comparison to Gelfoam® (a commercial gelatin foam) with similar pore size and porosity, the NF-gelatin scaffolds exhibited a much higher surface area and mechanical strength. The surface area and compressive modulus of NF-gelatin scaffolds were more than 700 times and 10 times higher than that of Gelfoam®, respectively. The NF-gelatin scaffolds also showed excellent biocompatibility and mechanical stability. To further enhance pre-osteoblast cell differentiation as well as improving mechanical strength, bone-like apatite particles (<2 μm) were incorporated onto the surface of NF-gelatin scaffolds via a simulated body fluid (SBF) incubation process. The NF-gelatin/apatite scaffolds 5 days after SBF treatment showed significantly higher mechanical strength than NF-gelatin scaffolds 5 days after SBF treatment. Furthermore, the incorporated apatite in the NF-gelatin/apatite composite scaffold enhanced the osteogenic differentiation. The expression of BSP and OCN in the osteoblast–(NF-gelatin/apatite composite) constructs was about 5 times and 2 times higher than in the osteoblast–(NF-gelatin) constructs 4 weeks after cell culture. The biomimetic NF-gelatin/apatite scaffolds are, therefore, excellent for bone tissue engineering.  相似文献   

12.
Biodegradable viscoelastic poly(ester urethane)-based scaffolds show great promise for tissue engineering. In this study, the preparation of hydroxyapatite nanoparticles (nHA)/poly(ester urethane) composite scaffolds using a salt-leaching-phase inverse process is reported. The dispersion of nHA microaggregates in the polymer matrix were imaged by microcomputed X-ray tomography, allowing a study of the effect of the nHA mass fraction and process parameters on the inorganic phase dispersion, and ultimately the optimization of the preparation method. How the composite scaffold’s geometry and mechanical properties change with the nHA mass fraction and the process parameters were assessed. Increasing the amount of nHA particles in the composite scaffold decreased the porosity, increased the wall thickness and consequently decreased the pore size. The Young’s modulus of the poly(ester urethane) scaffold was improved by 50% by addition of 10 wt.% nHA (from 0.95 ± 0.5 to 1.26 ± 0.4 MPa), while conserving poly(ester urethane) viscoelastic properties and without significant changes in the scaffold macrostructure. Moreover, the process permitted the inclusion of nHA particles not only in the poly(ester urethane) matrix, but also at the surface of the scaffold pores, as shown by scanning electron microscopy. nHA/poly(ester urethane) composite scaffolds have great potential as osteoconductive constructs for bone tissue engineering.  相似文献   

13.
The favorable cellular response of newly developed cell line, buffalo embryonic stem (ES) cells to three-dimensional biodegradable chitosan–gelatin composite scaffolds with regard to stem-cell-based tissue engineering is described. Chitosan–gelatin composites were characterized by a highly porous structure with interconnected pores, and the mechanical properties were significantly enhanced. Furthermore, X-ray diffraction study indicated increased amorphous content in the scaffold on the addition of gelatin to chitosan. To develop a transfectant of green fluorescence protein (GFP)–buffalo ES cell, transfection of GFP plasmid to the cell was carried out via the electroporation procedure. In comparison with pure chitosan, cell spreading and proliferation were greater in highly visualized GFP-expressing cell–chitosan–gelatin scaffold constructs. The relative comparison of biological response involving cell proliferation and viability on the scaffolds suggests that blending of gelatin in chitosan improved cellular efficiency. Studies involving scanning electron and fluorescence microscopy, histological observations and flow cytometer analysis of the constructs implied that the polygonal cells attached to and penetrated the pores, and proliferated well, while maintaining their pluripotency during the culture period for 28 days. Chitosan–gelatin scaffolds were cytocompatible with respect to buffalo ES cells. The study underscores for the first time that chitosan–gelatin scaffolds are promising candidates for ES-cell-based tissue engineering.  相似文献   

14.
X. Wu  Y. Liu  X. Li  P. Wen  Y. Zhang  Y. Long  X. Wang  Y. Guo  F. Xing  J. Gao 《Acta biomaterialia》2010,6(3):1167-1177
Porous gelatin scaffolds with microtubule orientation structure were manufactured by unidirectional freeze-drying technology, and their porous structure was characterized by scanning electron microscopy. Scaffolds with tunable pore size and high porosity up to 98% were obtained by adjusting the concentration of the gelatin solution and crosslinking agent during the preparation process. All the porous gelatin scaffolds exhibited oriented microtubule pores, with width and length from 50 to 100 μm and 100 to 500 μm, respectively. Meanwhile, the properties of the scaffolds, such as porosity, water adsorption ability and compressive strength, were studied. In vitro enzymatic degradation results showed that the absolute weight loss of the gelatin scaffolds exhibited an increasing trend from low to high gelatin concentration used to prepare gelatin scaffolds; in vitro cell culture results indicated that the porous gelatin scaffolds were non-toxic to cartilage cells, since the cells spread and grew well.  相似文献   

15.
Calcium phosphate ceramics have been widely used for filling bone defects to aid in the regeneration of new bone tissue. Addition of osteogenic cells to porous ceramic scaffolds may accelerate the bone repair process. This study demonstrates the feasibility of culturing marrow stromal cells (MSCs) on porous biphasic calcium phosphate ceramic scaffolds in a flow perfusion bioreactor. The flow of medium through the scaffold porosity benefits cell differentiation by enhancing nutrient transport to the scaffold interior and by providing mechanical stimulation to cells in the form of fluid shear. Primary rat MSCs were seeded onto porous ceramic (60% hydroxyapatite, 40% β-tricalcium phosphate) scaffolds, cultured for up to 16 days in static or flow perfusion conditions, and assessed for osteoblastic differentiation. Cells were distributed throughout the entire scaffold by 16 days of flow perfusion culture whereas they were located only along the scaffold perimeter in static culture. At all culture times, flow perfused constructs demonstrated greater osteoblastic differentiation than statically cultured constructs as evidenced by alkaline phosphatase activity, osteopontin secretion into the culture medium, and histological evaluation. These results demonstrate the feasibility and benefit of culturing cell/ceramic constructs in a flow perfusion bioreactor for bone tissue engineering applications.  相似文献   

16.
J. Wang  X. Yu 《Acta biomaterialia》2010,6(8):3004-3012
In a previous study, a three-dimensional nanofibrous spiral scaffold for bone tissue engineering was developed, which showed enhanced human osteoblast cell attachment, proliferation and differentiation compared with traditional cylinder scaffolds, owing to the incorporation of spiral structures and nanofiber. However, the application of these scaffolds to bone tissue engineering was limited by their weak mechanical strength. This limitation triggered the design for novel structured scaffolds with reinforced physical characteristics. In this study, spiral polycaprolactone (PCL) nanofibrous scaffolds were inserted into poly(lactide-co-glycolide) (PLGA) microsphere sintered tubular scaffolds to form integrated scaffolds to provide mechanical properties and bioactivity appropriate for bone tissue engineering. Four experiment groups were designed: PLGA cylinder scaffold; PLGA tubular scaffold; PLGA tubular scaffold with PCL spiral structured inner core; PLGA tubular scaffold with PCL nanofiber containing spiral structured inner core. The morphology, porosity and mechanical properties of the scaffolds were characterized. Furthermore, human osteoblastic cells were seeded on these scaffolds, and the cell attachment, proliferation, differentiation and mineralized matrix deposition on the scaffolds were evaluated. The integrated scaffolds had Young’s modulus 250–300 MPa, and compressive strength 8–11 MPa under uniaxial compression. With the addition of an inner highly porous insert to the tubular shell, human osteoblast cells seeded on the integrated scaffolds showed slightly higher cell proliferation, 20–25% more alkaline phosphatase expression and twofold higher calcium deposition than those on the cylinder and tubular scaffolds. Furthermore, compared with sintered PLGA cylinder scaffolds, the integrated scaffolds allowed better cellular infiltration Therefore, this design demonstrates great potential for integrated scaffolds in bone tissue engineering applications.  相似文献   

17.
Regeneration of bone, cartilage and osteochondral tissues by tissue engineering has attracted intense attention due to its potential advantages over the traditional replacement of tissues with synthetic implants. Nevertheless, there is still a dearth of ideal or suitable scaffolds based on porous biomaterials, and the present study was undertaken to develop and evaluate a useful porous composite scaffold system. Here, hydroxyapatite (HA)/tricalcium phosphate (TCP) scaffolds (average pore size: 500 μm; porosity: 87%) were prepared by a polyurethane foam replica method, followed by modification with infiltration and coating of poly(lactic-co-glycolic acid) (PLGA). The thermal shock resistance of the composite scaffolds was evaluated by measuring the compressive strength before and after quenching or freezing treatment. The porous structure (in terms of pore size, porosity and pore interconnectivity) of the composite scaffolds was examined. The penetration of the bone marrow stromal stem cells into the scaffolds and the attachment of the cells onto the scaffolds were also investigated. It was shown that the PLGA incorporation in the HA/TCP scaffolds significantly increased the compressive strength up to 660 kPa and the residual compressive strength after the freezing treatment decreased to 160 kPa, which was, however, sufficient for the scaffolds to withstand subsequent cell culture procedures and a freeze–drying process. On the other hand, the PLGA coating on the strut surfaces of the scaffolds was rather thin (<5 μm) and apparently porous, maintaining the high open porosity of the HA/TCP scaffolds, resulting in desirable migration and attachment of the bone marrow stromal stem cells, although a thicker PLGA coating would have imparted a higher compressive strength of the PLGA-coated porous HA/TCP composite scaffolds.  相似文献   

18.
Appropriate mechanical properties and highly interconnected porosity are important properties for tissue engineering scaffolds. However, most existing hydrogel scaffolds suffer from poor mechanical properties limiting their application. Furthermore, it is relatively infrequent that precision control is achieved over pore size and structure of the scaffold because there are relatively few current technologies that allow such control and there is not a general appreciation that such control is important. To address these shortcomings, by combining double network polymerization and sphere-templating fabrication techniques, we developed a tough, intelligent scaffold based on poly(acrylic acid) and poly(N-isopropyl acrylamide) with a controllable, uniform, and interconnected porous structure. A mechanical assessment showed the toughness of the hydrogel and scaffold to be up to ∼1.4 × 107 Jm−3 and ∼1.5 × 106 Jm−3 respectively, as compared with 104−105 Jm−3 for most synthetic hydrogels. The thermosensitivity and pH-sensitivity were explored in a swelling study. In vitro testing demonstrated the scaffold matrices supported NIH-3T3 cell adhesion, proliferation and infiltration. An in vivo rabbit study showed the scaffolds promote strong cellular integration by allowing cells to migrate into the porous structure from the surrounding tissues. These data suggest that the poly(acrylic acid)/poly(N-isopropyl acrylamide)-based scaffold could be an attractive candidate for tissue engineering.  相似文献   

19.
Biocompatible three-dimensional (3-D) porous scaffolds are of great interest for tissue engineering applications. We here present a novel combined freeze-drying/cross-linking process to prepare porous polysaccharide-based scaffolds. This process does not require an organic solvent or porogen agent. We unexpectedly found that cross-linking of biomacromolecules such as pullulan and dextran with sodium trimetaphosphate could be performed during freeze-drying. We have demonstrated that the freeze-drying pressure modulates the degree of porosity. High freeze-drying pressure scaffolds presented pores with a mean diameter of 55 ± 4 μm and a porosity of 33 ± 12%, whereas low freeze-drying pressure scaffolds contained larger pores with a mean diameter of 243 ± 14 μm and a porosity of 68 ± 3%. Porous scaffolds of the desired shape could be easily obtained and were stable in culture medium for weeks. In vitro viable mesenchymal stem cells were found associated with porous scaffolds in higher proportions than with non-porous scaffolds. Moreover, cells penetrated deeper into scaffolds with larger pores. This novel combined freeze-drying/cross-linking processing of polysaccharides enabled the fabrication of biocompatible scaffolds with controlled porosity and architectures suitable for 3-D in vitro culture and biomedical applications.  相似文献   

20.
《Acta biomaterialia》2014,10(7):3167-3176
Despite advances in burn treatment, burn infection remains a major cause of morbidity and mortality. In this study, an antibacterial silk fibroin (SF) scaffold for burn treatment was designed; gelatin microspheres (GMs) were impregnated with the antibiotic gentamycin sulfate (GS), and the GS-impregnated GMs were then embedded in a SF matrix to fabricate GS/GM/SF scaffolds. The developed GS/GM/SF scaffolds could serve as a dermal regeneration template in full-thickness burns. The average pore size and porosity of the GS/GM/SF scaffolds were 40–80 μm and 85%, respectively. Furthermore, the drug release rate of the scaffolds was significantly slower than that of either GS/GM or GS/SF scaffolds. And the composite scaffold exhibited stronger antimicrobial activities against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Hence, we evaluated the wound-healing effects and antibacterial properties of the GS/GM/SF scaffolds in a rat full-thickness burn infection model. Over 21 days, the GS/GM/SF scaffolds not only significantly reduced burn infection by P. aeruginosa but also accelerated the regeneration of the dermis and exhibited higher epithelialization rates than did GS/SF and SF scaffolds. Thus, GS/GM/SF scaffolds are potentially effective for treatment of full-thickness infected burns, and GS/GM/SF scaffolds are a promising therapeutic tool for severely burned patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号