首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present study was to document the topographical and cytopathological lesions in the white matter (WM) of Binswangers disease (BD) brains. Subcortical WM lesions in each lobe and fiber bundle lesions related to the medial thalamic and hippocampal structures in clinicopathologically proven BD brains were evaluated by Klüver-Barrera staining using a grading score. Lesions in the frontal subcortical WM of BD brains, brains from non-neurological patients, and brains with cerebral hemorrhage or large cortical infarcts were also examined immunohistochemically using molecular markers for axonal flow damage: amyloid precursor protein (APP); and for demyelinating axonopathy: encephalitogenic peptide (EP). Our results indicated that the WM lesions in BD were significantly more prominent in the frontal periventricular and subcortical regions as compared with other subcortical WM lesions, in the order of the parietal, occipital and temporal lobes. Fiber bundle lesions in the capsular genu, including the anterior thalamic peduncle, were also significantly more prominent in BD brains as compared with the other bundle lesions. Furthermore, the frequency of damaged nerve fibers labeled by the EP antiserum and APP immunoreactive fibers was significantly higher in BD brains as compared with the control brains. The grading scores for the WM damage correlated significantly with those for the APP and EP immunoreactive fibers in all brains, including the control brains. The axonal damage in the frontal WM lesions of the BD brains was clearly revealed in our study using immunohistochemistry for APP and EP.  相似文献   

2.
Cerebral white matter lesions commonly observed in Binswanger's disease, multi-infarct encephalopathy and elderly people are neuropathologically characterized by diffuse incomplete demyelination and considered to be ischemic in nature. Arteriolosclerosis in the white matter is a common feature in these white matter lesions. To investigate a possible alteration of the distribution of amyloid precursor protein (APP), chromogranin A (CgA) and synaptophysin (Syn) in such white matter lesions, we examined 15 cases with white matter lesions and 5 without white matter lesions. Many bundles of axons with APP-like immunoreactivity (LI) were observed particularly in mild white matter lesions. Such bundles of axons showed similar but less intense CgA-LI and Syn-LI. They appeared to occur in areas with many ameboid or ramified microglia labeled with anti-leukocyte common antigen and few astrocytes labeled with anti-glial fibrillary acidic protein. In the center of moderate of severe white matter lesions bundles of axons with APP-LI were never observed. Since APP, CgA and Syn undergo fast axonal transport, and since following ischemic insults to central nervous system microglial reaction occurs earlier than astroglial changes, our results suggest that axonal damage, which induces disturbance of fast axonal transport, can occur even in the early stage of white matter lesions.Partly supported by a grant from the Ministry of Health and Welfare, Grant-in-Aid for Scientific Research on Priority Areas, and Scientific Research (C) (03670418) from the Ministry of Education, Science and Culture of Japan  相似文献   

3.
Activation of glial cells and white matter changes (rarefaction of the white matter) induced in the rat brain by permanent bilateral occlusion of the commom carotid arteries were immunohistochemically investigated up to 90 days. One day after ligation of the arteries, expression of the major histocompatibility complex (MHC) class I antigen in microglia increased in the white matter including the optic nerve, optic tract, corpus callosum, internal capsule, anterior commissure and traversing fiber bundles of the caudoputamen. After 3 days of occlusion, MHC class I antigen was still elevated and in addition MHC class II antigen and leukocyte common antigen were up-regulated in the microglia in these same regions. Astroglia, labeled with glial fibrillary acidic protein, increased in number in these regions after 7 days of occlusion. A few lymphocytes, labeled with CD4 or CD8 antibodies, were scattered in the neural parenchyma 1 h after occlusion. Activation of glial cells and infiltration of lymphocytes persisted after 90 days of occlusion in the white matter and the retinofugal pathway. However, cellular activation and infiltration in microinfarcts of the gray matter was less extensive and was substantially diminished 30 days after occlusion. The white matter changes were most intense in the optic nerve and optic tract, moderate in the medial part of the corpus callosum, internal capsule and anterior commissure, and slight in the fiber bundles of the caudoputamen. These results indicated that chronic cerebral hypoperfusion induced glial activation preferentially in the white matter. This activation seemed to be an early indicator of the subsequent changes in the white matter.  相似文献   

4.
Periventricular leukomalacia is an important cause of cerebral palsy and characterized by cysts and coagulation necrosis in the periventricular white matter. Since no model of periventricular leukomalacia has been established in small animals, it is expected to establish a new model of white matter injury in immature rodents. Bilateral carotid arteries were occluded in neonatal rats at 5 days of age, and the brain neuropathologically examined at 7 days of age. Among 22 brains histologically examined, 20 (90.9%) had white matter changes including coagulation necrosis and cystic lesions in and around the internal capsule, while only two had small cerebral infarction and five showed some ischemic neurons in the cerebral cortex. Cerebral blood flow (CBF) decreased to about 25% of controls in the subcortical white matter in the animals with bilateral carotid artery occlusion (BCAO). Amyloid precursor protein (APP) immunohistochemistry demonstrated various APP-immunoreactive axonal profiles in the internal capsule and the subcortical white matter, and stronger expression of APP in pyramidal neurons in the cerebral cortex of BCAO brains. These results indicated that the white matter is more vulnerable than the cerebral cortex in 5-day-old rats when CBF decreases to about 25% and suggested that this model is useful for investigating the white matter changes induced by cerebral hypoperfusion in the neonatal brain, since previous models of hypoxic-ischemic brain injury in neonatal mice and rats revealed preferential susceptibility of the gray matter. It was also indicated that APP is a sensitive marker for mild axonal disruption in the white matter of the immature brain.  相似文献   

5.
Neuroprotective effects of immunosuppressive agents have been shown in cerebral ischemia. To investigate the role of immunosuppressive agents in chronic cerebral ischemia and to design a drug protocol with safe therapeutic windows, we examined the effects of FK506, a potent immunosuppressive agent, on chronic cerebral ischemia. Both common carotid arteries were ligated in 73 male Wistar rats. Fifty-eight of these rats received a chronic injection of FK506 (0.2, 0.5, 1.0 mg/kg) and the remaining 15 received a vehicle solution injection. Microglia/macrophage was investigated with immunohistochemistry for leukocyte common antigen and major histocompatibility complex, and astroglia was examined with glial fibrillary acidic protein as markers. White matter rarefaction and the number of immunopositive glial cells were assessed from 7 to 30 days after the ligation. In the vehicle-treated animals, there was persistent and extensive activation of the microglia/macrophages and astroglia in the white matter, including the optic nerve, optic tract, corpus callosum, internal capsule, anterior commissure and traversing fiber bundles of the caudoputamen. In the FK506-treated rats, the number of activated microglia/macrophages was significantly reduced in a dose-dependent manner (p<0.01) as compared to the vehicle-treated rats. Rarefaction of the white matter was also inhibited by FK506 in a dose-dependent manner (p<0.01). Thus, a clinically-relevant dosage of FK506 attenuated both glial activation and white matter changes in chronic cerebral ischemia in the rat. These results indicate a potential use for FK506 in cerebrovascular diseases.  相似文献   

6.
The purpose of this study is to define the topographical distribution of gray matter (GM) and white matter (WM) damage in patients with primary progressive multiple sclerosis (PPMS), using a multiparametric MR‐based approach. Using a 3 Tesla scanner, dual‐echo, 3D fast‐field echo (FFE), and diffusion tensor (DT) MRI scans were acquired from 18 PPMS patients and 17 matched healthy volunteers. An optimized voxel‐based (VB) analysis was used to investigate the patterns of regional GM density changes and to quantify GM and WM diffusivity alterations of the entire brain. In PPMS patients, GM atrophy was found in the thalami and the right insula, while mean diffusivity (MD) changes involved several cortical‐subcortical structures in all cerebral lobes and the cerebellum. An overlap between decreased WM fractional anisotropy (FA) and increased WM MD was found in the corpus callosum, the cingulate gyrus, the left short temporal fibers, the right short frontal fibers, the optic radiations, and the middle cerebellar peduncles. Selective MD increase, not associated with FA decrease, was found in the internal capsules, the corticospinal tracts, the superior longitudinal fasciculi, the fronto‐occipital fasciculi, and the right cerebral peduncle. A discrepancy was found between regional WM diffusivity changes and focal lesions because several areas had DT MRI abnormalities but did not harbor T2‐visible lesions. Our study allowed to detect tissue damage in brain areas associated with motor and cognitive functions, which are known to be impaired in PPMS patients. Combining regional measures derived from different MR modalities may be a valuable tool to improve our understanding of PPMS pathophysiology. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Though cerebral white matter injury is a frequently described phenomenon in aging and dementia, the cause of white matter lesions has not been conclusively determined. Since the lesions are often associated with cerebrovascular risk factors, ischemia emerges as a potential condition for the development of white matter injury. In the present study, we induced experimental cerebral hypoperfusion by permanent, bilateral occlusion of the common carotid arteries of rats (n=6). A sham-operated group served as control (n=6). Thirteen weeks after the onset of occlusion, markers for astrocytes, microglia, and myelin were found to be labeled by means of immunocytochemistry in the corpus callosum, the internal capsule, and the optic tract. The ultrastructural integrity and oligodendrocyte density in the optic tract were investigated by electron microscopy. Quantitative analysis revealed that chronic cerebral hypoperfusion caused mild astrogliosis in the corpus callosum and the internal capsule, while astrocytic disintegration in the optic tract increased by 50%. Further, a ten-fold increase in microglial activation and a nearly doubled oligodendrocyte density were measured in the optic tract of the hypoperfused rats as compared with the controls. Finally, vacuolization and irregular myelin sheaths were observed at the ultrastructural level in the optic tract. In summary, the rat optic tract appears to be particularly vulnerable to ischemia, probably because of the rat brains angioarchitecture. Since the detected glial changes correspond with those reported in vascular and Alzheimer dementia, this model of cerebral hypoperfusion may serve to characterize the causal relationship between ischemia and white matter damage.  相似文献   

8.
We investigated whether the angiotensin converting enzyme inhibitor, ramipril, could attenuate white matter lesions caused by chronic hypoperfusion in the rat, and whether suppression of oxidative stress is involved in the resulting neuroprotection. The ramipril treatment group showed significant protection from development of white matter lesions in the optic tract, the anterior commissure, the corpus callosum, the internal capsule and the caudoputamen. The level of malondialdehyde (MDA) and the oxidized glutathione (GSSG)/total glutathione (GSH t) ratio was also significantly decreased in the ramipril group compared to the vehicle-treated group. These results suggest that ramipril can protect against white matter lesions that result from chronic ischemia due to its effects on free radical scavenging. Further efficacy should be studied in the treatment of cerebrovascular insufficiency states and vascular dementia.  相似文献   

9.
White matter lesions are thought to result from chronic cerebral ischemia and constitute a core pathology of subcortical vascular dementia. This rarefaction has been known to be associated with microglial activation. We investigated whether minocycline, a microglial inhibitor, attenuates the white matter damage induced by chronic cerebral hypoperfusion that is used as a model of vascular dementia. Male Wistar rats were subjected to bilateral, permanent occlusion of the common carotid arteries (BCCAO) to induce chronic cerebral hypoperfusion. Minocycline or saline was injected daily for 2 weeks after BCCAO. In the corpus callosum and the optic tract, white matter damage observed with Klüver-Barrera staining was significantly attenuated in the minocycline-treated group compared to saline-treated controls. In control rats, immunoreactivities of major basic protein (MBP), Ox-42 as a microglial marker, and matrix metalloproteinase (MMP)-2 were increased in the corpus callosum. Minocycline significantly reduced these changes. Co-expression of Ox-42 and MMP-2 was confirmed by double immunofluorescence histochemistry. Our results suggest that chronic treatment with minocycline could be protective against at least some ischemic white matter damage, and its mechanism may be related to suppressing microglial activation.  相似文献   

10.
Some lines of evidence have suggested that subcortical ischemic vascular dementia (SIVD) is a common form of vascular dementia (VaD), and that its pathological changes are the development of ischemic white matter (WM) lesions under chronic hypoperfusion and lacunes. Here, we have developed a novel mouse model of VaD with WM lesions, which was induced by right unilateral common carotid artery occlusion (rUCCAO). The mice subjected to rUCCAO exhibited chronic cerebral hypoperfusion in the cerebral hemisphere ipsilateral to rUCCAO monitored using a laser-Doppler flow meter (p<0.01), and significant WM damage in the corpus callosum (p<0.05) and deficits in object recognition test correlated with the damage of frontal-subcortical circuits (p<0.01). However, no differences in spontaneous alternation or spontaneous motor activity were observed. Furthermore, the levels of pro-inflammatory cytokines, such as interleukin-1beta (IL-1beta) and interleukin-6 (IL-6), significantly increased (p<0.01), and those of anti-inflammatory cytokines, such as interleukin-4 (IL-4) and interleukin-10 (IL-10), significantly decreased in the ischemic brain (p<0.05). These results suggest that this model is a useful tool for investigating the associations among inflammatory reactions, cognitive impairment, and WM damage, which may help elucidating the pathomechanism of VaD, particularly SIVD.  相似文献   

11.
Thromboembolic stroke in rats leads to a well-described pattern of histopathological and behavioral abnormalities. However, limited data are available in animal models concerning the response of the white matter to embolic events. The purpose of this study was to document patterns of white matter abnormalities using β-amyloid precursor protein (βAPP) immunocytochemistry as a marker of axonal damage. Twelve male Wistar rats underwent photochemically induced right common carotid artery thrombosis (CCAT) or sham procedures. At 3 days after CCAT, rats were perfusion-fixed and sections immunostained for the visualization of βAPP or stained with hematoxylin and eosin for routine histopathological analysis. As previously described, CCAT produced small ipsilateral embolic infarcts and ischemic cell change within gray matter structures including the medial cerebral cortex, striatum, hippocampus and thalamus. In areas of frank infarction, numerous reactive profiles were observed within borderzones of the damaged site. However, βAPP immunocytochemistry also revealed reactive axonal profiles within various white matter tracts including the corpus callosum, external capsule and fimbria of the hippocampus. In many cases, the presence of axonal damage could not be appreciated with routine hematoxylin and eosin staining. These data indicate that CCAT leading to platelet embolization to the brain not only produces embolic infarcts but also produces more subtle white matter abnormalities. Previously undetected white matter damage would be expected to participate in the sensorimotor and cognitive behavioral deficits following embolic stroke. Received: 8 August 1997 / Revised, accepted: 10 November 1997  相似文献   

12.
Cerebrovascular white matter lesions represent an age-related neurodegenerative condition that appears as a hyperintense signal on magnetic resonance images. These lesions are frequently observed in aging, hypertension and cerebrovascular disease, and are responsible for cognitive decline and gait disorders in the elderly population. In humans, cerebrovascular white matter lesions are accompanied by apoptosis of oligodendroglia, and have been thought to be caused by chronic cerebral ischemia. In the present study, we tested whether chronic cerebral hypoperfusion induces white matter lesions and apoptosis of oligodendroglia in the rat. Doppler flow meter analysis revealed an immediate reduction of cerebral blood flow ranging from 30% to 40% of that before operation; this remained at 52–64% between 7 and 30 days after operation. Transferrin-immunoreactive oligodendroglia decreased in number and the myelin became degenerated in the medial corpus callosum at 7 days and thereafter. Using the TUNEL method, the number of cells showing DNA fragmentation increased three- to eightfold between 3 and 30 days post-surgery compared to sham-operated animals. Double labeling with TUNEL and immunohistochemistry for markers of either astroglia or oligodendroglia showed that DNA fragmentation occurred in both of these glia. Messenger RNA for caspase-3 increased approximately twofold versus the sham-operated rats between 1 and 30 days post-surgery. Immunohistochemistry revealed up-regulation of caspase-3 in the oligodendroglia of the white matter, and also in the astroglia and neurons of the gray matter. Molecules involved in apoptotic signaling such as TNF- and Bax were also up-regulated in glial cells. These results indicate that chronic cerebral hypoperfusion induces white matter degeneration in association with DNA fragmentation in oligodendroglia.  相似文献   

13.
This study investigated the effect of CD20-positive B-cell depletion on central nervous system (CNS) white and gray matter pathology in experimental autoimmune encephalomyelitis in common marmosets, a relevant preclinical model of multiple sclerosis. Experimental autoimmune encephalomyelitis was induced in 14 marmosets by immunization with recombinant human myelin oligodendrocyte glycoprotein in complete Freund adjuvant. At 21 days after immunization, B-cell depletion was achieved by weekly intravenous injections of HuMab 7D8, a human-anti-human CD20 antibody that cross-reacts with marmoset CD20. In vivo magnetic resonance imaging showed widespread brain white matter demyelination in control marmosets that was absent in CD20 antibody-treated marmosets. High-contrast postmortem magnetic resonance imaging showed white matter lesions in 4of the 7 antibody-treated marmosets, but these were significantly smaller than those in controls. The same technique revealed gray matter lesions in 5 control marmosets, but none in antibody-treated marmosets. Histologic analysis confirmed that inflammation, demyelination, and axonal damage were substantially reduced in brain, spinal cord, and optic nerves of CD20 antibody-treated marmosets. In conclusion, CD20-postive B-cell depletion by HuMab 7D8 profoundly reduced the development of both white and gray matter lesions in the marmoset CNS. These data underline the central role of B cells in CNS inflammatory-demyelinating disease.  相似文献   

14.
White matter lesions are closely associated with cognitive impairment and motor dysfunction in the aged. To explore the pathophysiology of these lesions, the authors examined the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9 in the white matter in a rat model of chronic cerebral hypoperfusion. After bilateral clipping of the common carotid arteries, myelin staining revealed demyelinating changes in the optic tract and the corpus callosum on day 7. Zymographic analyses indicated an increase in the level of MMP-2, but not MMP-9, after the hypoperfusion. Immunohistochemical analyses revealed the presence (most abundantly on day 3) of MMP-2-expressing activated microglia in the optic tract and corpus callosum. In contrast, the capillary endothelial cells expressed MMP-2 later. IgM-immunoreactive glial cells were absent in the sham-operated animals, but were present in the hypoperfused animals by day 3, reflecting the disrupted blood-brain barrier. These findings suggest that the main sources of the elevated MMP-2 were the microglia and the endothelium, and that these cells may contribute to the remodeling of the white matter myelin and microvascular beds in chronic cerebral hypoperfusion.  相似文献   

15.
Three-week-old mice which had been infected intracerebrally with herpes simplex virus type 2 (HSV-2) were examined electron-microscopically for the presence of intra-axonal virus in or near optic nerve and spinal cord demyelinative lesions. Acute lesions and their margins frequently contained a very small proportion of abnormal axons, and in a few of these mature virus particles, nucleocapsids, or other incomplete forms were found. A similar range of particle morphology was present in the cytoplasm of infected and degenerating glia. Axons containing similar particles were not identified in fibers in normal white matter surrounding demyelinative lesions. It is proposed that neuronal infection and axonal transport of virus may lead to foci of oligodendroglial infection, destruction and central nervous system (CNS) demyelination near to or remote from the cell bodies of infected neurons. In some instances, the topography of lesions could reflect a tract association. Anatomical features of nervous tissue could favor amplification of demyelination from a relatively minimal neuronal infection, with little evidence of tract degeneration. This hypothesis is consistent with the great predominance of demyelination relative to gray matter disease seen experimentally in non-fatal CNS infections with HSV-2. It would also explain the marked tendency for demyelinative lesions in at least certain CNS locations to be greatly elongated in the long axis of fiber tracts. This mechanism could be of importance in other animal models of virus-induced demyelination, and perhaps also in multiple sclerosis.  相似文献   

16.
Abstract. Previous neuroimaging studies have indicated that corpus callosum atrophy in Alzheimers disease (AD) and large vessel occlusive disease (LVOD) is caused by interhemispheric disconnection, namely Wallerian degeneration of interhemispheric commissural nerve fibers originating from pyramidal neurons in the cerebral cortex. However, this hypothesis has not been tested from a neuropathological viewpoint. In the present study, 22 brains with AD (presenile onset, 9; senile onset, 13), 6 brains with Binswangers disease (BD), a form of vascular dementia and 3 brains with LVOD were compared with 6 non-neurological control brains.White matter lesions in the deep white matter and corpus callosum were quantified as a fiber density score by image analysis of myelin-stained sections. Axonal damage and astrogliosis were assessed by immunohistochemistry for amyloid precursor protein and glial fibrillary acidic protein, respectively.The corpus callosum thickness at the anterior part of the body was decreased in AD and LVOD,but not in BD significantly, as compared with the controls. The corpus callosum thickness correlated roughly with brain weight in AD (R = 0.50),and with the severity of deep white matter lesions in BD (R = 0.81). Atrophy of the brain and corpus callosum was more marked in presenile onset AD than in senile onset AD. With immunohistochemistry, the corpus callosum showed axonal damage and gliosis with a decreased fiber density score in BD and LVOD, but not in AD. Thus, corpus callosum atrophy was correlated with brain atrophy in AD, which is relevant to the mechanism of interhemispheric disconnection,whereas corpus callosum lesions in BD were secondary to deep white matter lesions. Corpus callosum atrophy in LVOD may indicate interhemispheric disconnection, but focal ischemic injuries may also be involved.  相似文献   

17.
S100 protein is expressed primarily by astroglia in the brain, and accumulates in and around the ischemic lesions. Arundic acid, a novel astroglia-modulating agent, is neuroprotective in acute cerebral infarction, whereas the protective effects remain unknown during chronic cerebral hypoperfusion. Rats undergoing chronic cerebral hypoperfusion were subjected to a bilateral ligation of the common carotid arteries, and were allowed to survive for 3, 7 and 14 days. The animals received a daily intraperitoneal injection of 5.0, 10.0 or 20.0 mg/kg of arundic acid, or vehicle, for 14 days. Alternatively, other groups of rats received a delayed intraperitoneal injection of 20.0 mg/kg of arundic acid or vehicle, which started from 1, 3 or 7 days after ligation and continued to 14 days. The degree of white matter (WM) lesions and the numerical density of S100 protein-immunoreactive astroglia were estimated. In the WM of rats with vehicle injections, the number of S100 protein-immunoreactive astroglia increased significantly after chronic cerebral hypoperfusion as compared to the sham-operation. A dosage of 10.0 and 20.0 mg/kg of arundic acid suppressed the numerical increase in S100 protein-immunoreactive astroglia and the WM lesions. These pathological changes were suppressed with delayed treatment up to 7 days in terms of astroglial activation, and up to 3 days in terms of the WM lesions. The protective effects of arundic acid against WM lesions were demonstrated in a dose-dependent manner, and even after postischemic treatments. These results suggest the potential usefulness of arundic acid in the treatment of cerebrovascular WM lesions.  相似文献   

18.
We investigated the localization and extent of beta-amyloid precursor protein (APP) immunoreactivity as a sensitive marker for impairment of fast axonal transport in the spinal cords of patients with HTLV-I-associated myelopathy (HAM)/tropical spastic paraparesis (TSP). The results from this study show that APP, used as a marker of early axonal damage in HAM/TSP lesions, is more intensively expressed in areas of active-inflammatory lesions than those of inactive-chronic lesions. The close localization to the areas containing inflammation (activation of macrophage/microglia) is striking and suggests that axonal damage is closely associated with inflammation in active-chronic lesions. Although inflammatory cell infiltration in the central nervous system (CNS) is rarely found in inactive-chronic lesions, a few clusters of APP+ axons are found in the spinal cord white matter in some cases. The presence of APP+ axons without relation to inflammatory cells in inactive-chronic lesions, suggest that soluble neurotoxic factors might induce axonal changes in the CNS of HAM/TSP. The occasional myelinated fibers in the anterior and posterior spinal roots in lower thoracic to lumbar levels had APP+ axons, suggesting that spinal nerve roots can be affected in HAM/TSP, especially in lower thoracic to lumbar levels. Impairment of fast axonal transport may contribute to the development of disability in patients with HAM/TSP.  相似文献   

19.
Multiple sclerosis (MS) is the most common inflammatory demyelinating disease of the central nervous system. Traditionally, demyelinating lesions in the white matter have been regarded as the most important pathological feature in MS, but recent pathological and imaging studies confirmed substantial changes in grey matter and normal-appearing white matter. MS lesions are characterized by inflammation, demyelination, axonal damage and astrogliosis. During early MS lesion formation acute axonal injury is extensive and correlates with inflammation. In addition to focal lesions, diffuse wide-spread changes including neuroaxonal degeneration and compartmentalized inflammation are likely to contribute to increasing disability in progressive MS. Neuromyelitis optica (NMO) is classically characterized by severe transverse myelitis and optic neuritis, but brain lesions are also present in the majority of NMO patients. The discovery of the NMO-specific antibody demonstrated that NMO is a disease entity distinct from MS. This antibody binds to aquaporin-4 expressed in astrocytes and ependymal cells. NMO lesions are characterized by inflammation, demyelination, axonal damage and a marked loss of aquaporin-4. Early NMO lesions demonstrate a pronounced humoral inflammatory response and astrocytic cell death with loss of aquaporin-4, followed by inflammatory demyelination and axonal damage. These recent findings contribute to a better understanding of different mechanisms leading to inflammatory demyelination.  相似文献   

20.
We report severe congenital encephalopathy and profound hypotonia associated with necrotizing myopathy, cardiomyopathy, and cataracts in 3 infants, including 2 sisters. Brain scans suggested agenesis of the corpus callosum. Neuropathological findings consisted of severe atrophy of the corpus callosum (not the usual agenesis with longitudinal callosal bundles), atrophy of the white matter, and absence of pyramidal tracts in the medulla. Multiple axonal swellings were present in the white matter and in Purkinje cells. Except for the corpus subthalamicum, gray matter structures were preserved. These findings are considered to be the expression of a primary disorder of axonal development leading to a reduction in interneuronal synaptic contacts. It is suggested that the anomaly may be due to an extension of the normal phenomenon of axonal elimination, related to a primary defect of the axonal cytoskeleton. The concept of a primary axonal disorder may also apply to other, mostly familial, conditions with progressive atrophy of the cerebral white matter and corpus callosum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号