首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
These studies were undertaken to examine the contribution of central nervous system mechanisms to the cardiovascular and sympathoadrenal effects of cocaine. Changes in systolic and diastolic blood pressure, heart rate and plasma catecholamine concentrations were determined in response to cocaine injected i.a. or i.c.v. in conscious unrestrained rats. Systemically administered cocaine produced brisk, transient dose-related increases in systolic and diastolic pressure at doses of 0.05 to 5 mg/kg i.a. Plasma catecholamine concentrations increased in a dose-related manner, reaching peak levels at 5 to 10 min after i.a. cocaine injection. Only the higher doses of cocaine induced reflex vagal bradycardia that was blocked by atropine (0.4 mg/kg i.a.). Propranolol (1 mg/kg i.a.) prolonged the duration of cocaine-induced hypertension and bradycardia. Ganglionic blockade with chlorisondamine (7.5 mg/kg i.a.) antagonized completely the cardiovascular and sympathoadrenal effects of cocaine, indicating that intact ganglionic transmission is required for full expression of the autonomic responses. Antagonist drugs selective for the D-1 or D-2 dopamine receptors attenuated effects of cocaine on plasma catecholamine concentrations but not on cardiovascular parameters. Intracerebroventricular injection of cocaine (50-250 micrograms) increased systolic pressure and plasma catecholamine concentrations, providing direct evidence for an action of cocaine in the central nervous system. These results demonstrate that cocaine acts centrally to increase sympathetic outflow leading to hypertension and reflex bradycardia in conscious rats.  相似文献   

2.
The aim of this experiment was to investigate whether the anorectic effect of apolipoprotein A-IV (apo A-IV) after lipid feeding is mediated via the central nervous system. Infusion of 0.5 micrograms of apo A-IV into the third ventricle failed to suppress food intake. Higher doses (1 micrograms or higher) of apo A-IV infused into the third ventricle inhibited food intake in a dose-dependent manner. In contrast, when apo A-I was infused into the third ventricle it had no effect on food intake. To further test the hypothesis that apo A-IV is an important factor controlling food intake, we administered goat anti-rat apo A-IV serum into the third ventricle of rats that were allowed food and water and lib. In all rats tested, this treatment resulted in enhanced food intake. In contrast, infusion of goat anti-rat apo A-IV serum failed to elicit such a response. Lastly, we determined the apo A-IV concentration in plasma and cerebrospinal fluid before and during active lipid absorption. Apo A-IV concentration in cerebrospinal fluid was about 1/20 that of plasma. Both serum and cerebrospinal fluid apo A-IV increased markedly as a result of feeding of lipid. In conclusion, we propose that apo A-IV may act centrally to control food intake.  相似文献   

3.
4.
The cardiovascular effects of i.v. cocaine were studied in conscious dogs with chronically implanted arterial and venous catheters. The effects of i.v. cocaine on arterial blood pressure, heart rate and rate-pressure product were studied at doses ranging from 0.063 to 8 mg/kg. To avoid any possibility that development of acute tolerance to the actions of cocaine might interfere with our results, each dose of cocaine was administered on a separate day. Cocaine-induced changes in mean arterial blood pressure ranged from an increase of 11.8 +/- 2.1 mmHg at a dose of 0.063 mg/kg to an increase of 95.8 +/- 11 mmHg at a dose of 8 mg/kg. Similarly, cocaine-induced changes in heart rate ranged from a decrease of 4.5 +/- 0.9 beats/min to an increase of 83 +/- 10 beats/min at the 0.063 and 8 mg/kg cocaine doses, respectively. Although the rate-pressure product was not significantly altered by doses of cocaine below 0.25 mg/kg, doses above that level produced dose-dependent increases in this parameter. The rate-pressure product, which was increased approximately 27% by the 0.25 mg/kg dose of cocaine, was more than doubled by the 2 mg/kg cocaine dose and was increased almost 4-fold by the 8 mg/kg dose of cocaine. The blood pressure response observed after cocaine administration was significantly decreased by pretreatment with 10 mg/kg hexamethonium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
The mechanism of the pressor response to ephedrine is controversial. In the present study. i.v. injections of ephedrine increased systemic and pulmonary arterial pressure, and i.a. injections decreased hindlimb blood flow in a dose-related manner. Responses to ephedrine were inhibited by alpha-receptor blocking agents and were not attenuated by blockade of the norepinephrine reuptake transporter (NET) or by catecholamine depletion using reserpine or a combination of reserpine and alpha-methyl-p-tyrosine, whereas responses to tyramine and amphetamine were inhibited by these treatments. The magnitude of the pressor response to ephedrine was similar in anesthetized and conscious rats. Tachyphylaxis developed to pressor responses to ephedrine and amphetamine with sequential injections; however, ephedrine tachyphylaxis differed in that subsequent responses to alpha-receptor agonists were attenuated. These results suggest that the systemic and pulmonary pressor and hindlimb vasoconstrictor responses to ephedrine are mediated by direct action on alpha-adrenergic receptors and that the release of norepinephrine from adrenergic terminals plays no significant role. These results provide support for the hypothesis that responses to ephedrine are directly mediated in the intact rat, whereas responses to amphetamine are mediated in a large part by the release of norepinephrine from adrenergic terminals.  相似文献   

7.
8.
The contribution of adrenergic receptors to the cardiovascular responses to cocaine (5 mg/kg i.v.) were examined in conscious, free-moving rats instrumented for continuous measurement of arterial pressure, heart rate and blood flows in the mesentery and hindquarters or ascending aorta. Cocaine elicits an immediate (peak) and sustained pressor response with a concomitant reduction in heart rate. Prazosin (0.1 mg/kg i.v.) pretreatment significantly reduced both the peak and sustained pressor responses by attenuating the increases in systemic, mesenteric and hindquarters vascular resistances. Idazoxan pretreatment (1 mg/kg i.v.) attenuated the peak increase in hindquarters vascular resistance. Whereas propranolol pretreatment (1 mg/kg i.v.) attenuated the peak pressor response, the sustained pressor response was enhanced due to increased hindquarters and systemic vascular resistances. Metoprolol pretreatment (1 mg/kg i.v.) enhanced the sustained pressor response to cocaine, in part due to increased heart rate and mesenteric vascular resistances. Upon examination of the cardiac effects of cocaine, a sustained bradycardic response was observed, whereas stroke volume and cardiac output were relatively unaffected. The bradycardic response to cocaine was attenuated by yohimbine (0.1 mg/kg i.v.), prevented by prazosin and converted to a tachycardia after idazoxan (1 mg/kg) pretreatment. After propranolol pretreatment, cocaine substantially decreased cardiac output and stroke volume. Our results demonstrate that cocaine produces a biphasic pressor response in conscious rats and that the mechanisms underlying the dual responses vary in intensity and mode of action in different vascular beds, but are primarily dependent upon alpha-1 adrenergic receptor-mediated vasoconstriction.  相似文献   

9.
Autoreceptors in the central nervous system   总被引:3,自引:0,他引:3  
  相似文献   

10.
Apoptosis induced by HIV-1 infection of the central nervous system.   总被引:12,自引:1,他引:12       下载免费PDF全文
Apoptosis plays a role in AIDS pathogenesis in the immune system, but its role in HIV-1-induced neurological disease is unknown. In this study, we examine apoptosis induced by HIV-1 infection of the central nervous system (CNS) in an in vitro model and in brain tissue from AIDS patients. HIV-1 infection of primary brain cultures induced apoptosis in neurons and astrocytes in vitro as determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and propidium iodide staining and by electron microscopy. Apoptosis was not significantly induced until 1-2 wk after the time of peak virus production, suggesting induction by soluble factors rather than by direct viral infection. Apoptosis of neurons and astrocytes was also detected in brain tissue from 10/11 AIDS patients, including 5/5 patients with HIV-1 dementia and 4/5 nondemented patients. In addition, endothelial cell apoptosis was frequently detected in the brain of AIDS patients and was confirmed by electron microscopy. Most of the apoptotic cells were not localized adjacent to HIV-1-infected cells, providing further evidence for induction by soluble factors. In six non-AIDS control patients with normal brain, apoptotic cells were absent or limited to rare astrocytes. However, TUNEL-positive neurons and astrocytes were frequently detected in seven patients with Alzheimer's disease or abundant senile plaques. These studies suggest that apoptosis is a mechanism of CNS injury in AIDS which is likely to be induced by soluble factors. The apoptosis of endothelial cells in the CNS raises the possibility that some of these factors may be blood-derived.  相似文献   

11.
Hemoglobin potentiates central nervous system damage.   总被引:9,自引:1,他引:8       下载免费PDF全文
Iron and iron compounds--including mammalian hemoglobins--catalyze hydroxyl radical production and lipid peroxidation. To determine whether hemoglobin-mediated lipid peroxidation might be important in hemorrhagic injuries to the central nervous system (CNS), we studied the effects of purified hemoglobin on CNS homogenates and injected hemoglobin into the spinal cords of anesthetized cats. Hemoglobin markedly inhibits Na/K ATPase activity in CNS homogenates and spinal cords of living cats. Hemoglobin also catalyzes substantial peroxidation of CNS lipids. Importantly, the potent iron chelator, desferrioxamine, blocks these adverse effects of hemoglobin, both in vitro and in vivo. Because desferrioxamine is not known to interact with heme iron, these results indicate that free iron, derived from hemoglobin, is the proximate toxic species. Overall, our data suggest that hemoglobin, released from red cells after trauma, can promote tissue injury through iron-dependent mechanisms. Suppression of this damage by desferrioxamine suggests a rational therapeutic approach to management of trauma-induced CNS injury.  相似文献   

12.
13.
14.
Lentiviral vectors have been used extensively as gene transfer tools for the central nervous system throughout the past decade since they transduce most cell types in the brain, resulting in high-level and long-term transgene expression. This review discusses some of the recent progress in this field, including preclinical gene therapy experiments in disease models, development of regulated vectors, and the application of siRNA's using lentiviral vectors. We also describe some of the features that make lentiviral vectors a likely candidate for human gene therapy in the brain.  相似文献   

15.
16.
Hemorrhage within the central nervous system (CNS) may be associated with subsequent development of seizure states or paralysis. Prior investigations indicate that hemoglobin, released from extravasated erythrocytes, may be toxic to the CNS by promoting peroxidation of lipids and inhibition of Na,K-ATPase. These deleterious effects are blocked both in vitro and in vivo by the Fe3+ chelator, desferrioxamine, indicating the involvement of free iron derived from hemoglobin. We now report that the Fe2+ chelator, ferene, also inhibits methemoglobin- and ferric iron-mediated CNS lipid oxidation, reflecting the reduction of Fe3+ by some component of the CNS. This reduction is apparent in the accumulation of the highly chromophoric ferene: Fe2+ chelate after the addition of Fe3+ salts to supernatants of murine brain homogenates. Because large amounts of ascorbic acid occur in mammalian CNS, we suspected that this reducing substance might be responsible. Indeed, the peroxidative effects of hemoglobin and iron on murine brain are blocked by washing of CNS membranes or by preincubation of crude homogenates with ascorbate oxidase. Furthermore, the addition of ascorbate to washed CNS membranes fully restores hemoglobin/iron-driven peroxidation. We conclude that posthemorrhagic CNS dysfunction may stem from damaging redox reactions between hemoglobin iron, ascorbic acid, and oxidizable components of the nervous system.  相似文献   

17.
18.
Apoptotic cell death is a fundamental and highly regulated biological process in which a cell is instructed to participate actively in its own demise. This process of cellular suicide is activated by developmental and environmental cues and normally plays an essential role in eliminating superfluous, damaged, and senescent cells of many tissue types. In recent years, a number of experimental studies have provided evidence of widespread neuronal and glial apoptosis following injury to the central nervous system (CNS). These studies indicate that injury-induced apoptosis can be detected from hours to days following injury and may contribute to neurological dysfunction. Given these findings, understanding the biochemical signaling events controlling apoptosis is a first step towards developing therapeutic agents which would target this cell death process. This review will focus on the molecular cell death pathways responsible for generating the apoptotic phenotype, summarize what is currently known about apoptotic signals activated in the injured CNS, and what potential strategies might be pursued to reduce this cell death process as a means to promote functional recovery.  相似文献   

19.
20.
Immune responses in the CNS are common, despite its perception as a site of immune privilege. These responses can be mediated by resident microglia and astrocytes, which are innate immune cells without direct counterparts in the periphery. Furthermore, CNS immune reactions often take place in virtual isolation from the innate/adaptive immune interplay that characterizes peripheral immunity. However, microglia and astrocytes also engage in significant cross-talk with CNS-infiltrating T cells and other components of the innate immune system. Here we review the cellular and molecular basis of innate immunity in the CNS and discuss what is known about how outcomes of these interactions can lead to resolution of infection, neurodegeneration, or neural repair depending on the context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号