首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Study design

A cross-sectional study of the data retrospectively collected by chart review.

Objectives

This study aimed to clarify screw perforation features in 129 consecutive patients treated with computer-assisted cervical pedicle screw (CPS) insertion and to determine important considerations for computer-assisted CPS insertion.

Summary of background data

CPS fixation has been criticized for the potential risk of serious injury to neurovascular structures. To avoid such serious risks, computed tomography (CT)-based navigation has been used during CPS insertion, but screw perforation can occur even with the use of a navigation system.

Methods

The records of 129 consecutive patients who underwent cervical (C2–C7) pedicle screw insertion using a CT-based navigation system from September 1997 to August 2013 were reviewed. Postoperative CT images were used to evaluate the accuracy of screw placement. The screw insertion status was classified as grade 1 (no perforation), indicating that the screw was accurately inserted in pedicle; grade 2 (minor perforation), indicating perforation of less than 50 % of the screw diameter; and grade 3 (major perforation), indicating perforation of 50 % or more of the screw diameter. We analyzed the direction and rate of screw perforation according to the vertebral level.

Results

The rate of grade 3 pedicle screw perforations was 6.7 % (39/579), whereas the combined rate of grades 2 and 3 perforations was 20.0 % (116/579). No clinically significant complications, such as vertebral artery injury, spinal cord injury, or nerve root injury, were caused by the screw perforations. Of the screws showing grade 3 perforation, 30.8 % screws were medially perforated and 69.2 % screws were laterally perforated. Of the screws showing grades 2 and 3 perforation, 21.6 % screws were medially perforated and 78.4 % screws were laterally perforated. Furthermore, we evaluated screw perforation rates according to the vertebral level. Grade 3 pedicle screw perforation occurred in 6.1 % of C2 screws; 7.5 % of C3 screws; 13.0 % of C4 screws; 6.5 % of C5 screws; 3.2 % of C6 screws; and 4.0 % of C7 screws. Grades 2 and 3 pedicle screw perforations occurred in 12.1 % of C2 screws, 22.6 % of C3 screws, 31.5 % of C4 screws, 22.2 % of C5 screws, 14.4 % of C6 screws, and 12.1 % of C7 screws. C3–5 screw perforation rate was significantly higher than C6–7 (p = 0.0024).

Conclusions

Careful insertion of pedicle screws is necessary, especially at C3 to C5, even when using a CT-based navigation system. Pedicle screws tend to be laterally perforated.  相似文献   

2.

Purpose

Single center evaluation of the placement accuracy of thoracolumbar pedicle screws implanted either with fluoroscopy or under CT-navigation using 3D-reconstruction and intraoperative computed tomography control of the screw position. There is in fact a huge variation in the reported placement accuracy of pedicle screws, especially concerning the screw placement under conventional fluoroscopy most notably due to the lack of the definition of screw misplacement, combined with a potpourri of postinstrumentation evaluation methods.

Methods

The operation data of 1,006 patients operated on in our clinic between 1995 and 2005 is analyzed retrospectively. There were 2,422 screws placed with the help of CT-navigation compared to 2,002 screws placed under fluoroscopy. The postoperative computed tomography images were reviewed by a radiologist and an independent spine surgeon.

Results

In the lumbar spine, the placement accuracy was 96.4 % for CT-navigated screws and 93.9 % for pedicle screws placed under fluoroscopy, respectively. This difference in accuracy was statistically significant (Fishers Exact Test, p = 0.001). The difference in accuracy became more impressing in the thoracic spine, with a placement accuracy of 95.5 % in the CT-navigation group, compared to 79.0 % accuracy in the fluoroscopy group (p < 0.001).

Conclusion

This study underlines the relevance of CT-navigation-guided pedicle screw placement, especially when instrumentation of the middle and upper thoracic spine is carried out.  相似文献   

3.

Purpose

To compare single-level circumferential spinal fusion using pedicle (n = 27) versus low-profile minimally invasive facet screw (n = 35) posterior instrumentation.

Method

A prospective two-arm cohort study with 5-year outcomes as follow-up was conducted. Assessment included back and leg pain, pain drawing, Oswestry disability index (ODI), pain medication usage, self-assessment of procedure success, and >1-year postoperative lumbar magnetic resonance imaging.

Results

Significantly less operative time, estimated blood loss and costs were incurred for the facet group. Clinical improvement was significant for both groups (p < 0.01 for all outcomes scales). Outcomes were significantly better for back pain and ODI for the facet relative to the pedicle group at follow-up periods >1 year (p < 0.05). Postoperative magnetic resonance imaging found that 20 % had progressive adjacent disc degeneration, and posterior muscle changes tended to be greater for the pedicle screw group.

Conclusion

One-level circumferential spinal fusion using facet screws proved superior to pedicle screw instrumentation.  相似文献   

4.

Purpose

For posterior spinal stabilization, loosening of pedicle screws at the bone-screw interface is a clinical complication, especially in the osteoporotic population. Axial pullout testing is the standard pre-clinical testing method for new screw designs although it has questioned clinical relevance. The aim of this study was to determine the fixation strength of three current osteoporotic fixation techniques and to investigate whether or not pullout testing results can directly relate to those of the more physiologic fatigue testing.

Methods

Thirty-nine osteoporotic, human lumbar vertebrae were instrumented with pedicle screws according to four treatment groups: (1) screw only (control), (2) prefilled augmentation, (3) screw injected augmentation, and (4) unaugmented screws with an increased diameter. Toggle testing was first performed on one pedicle, using a cranial-caudal sinusoidal, cyclic (1.0 Hz) fatigue loading applied at the screw head. The initial compressive forces ranged from 25 to 75 N. Peak force increased stepwise by 25 N every 250 cycles until a 5.4-mm screw head displacement. The contralateral screw then underwent pure axial pullout (5 mm/min).

Results

When compared to the control group, screw injected augmentation increased fatigue force (27 %, p = 0.045) while prefilled augmentation reduced fatigue force (?7 %, p = 0.73). Both augmentation techniques increased pullout force compared to the control (ps < 0.04). Increasing the screw diameter by 1 mm increased pullout force (24 %, p = 0.19), fatigue force (5 %, p = 0.73), and induced the least stiffness loss (?29 %) from control.

Conclusions

For the osteoporotic spine, screw injected augmentation showed the best biomechanical stability. Although pullout testing was more sensitive, the differences observed were not reflected in the more physiological fatigue testing, thus casting further doubt on the clinical relevance of pullout testing.  相似文献   

5.

Purpose

To assess the accuracy of O-arm-navigation-based pedicle screw insertion in dystrophic scoliosis secondary to NF-1 and compare it with free-hand pedicle screw insertion technique.

Methods

32 patients with dystrophic NF-1-associated scoliosis were divided into two groups. A total of 92 pedicle screws were implanted in apical region (two vertebrae above and below the apex each) in 13 patients using O-arm-based navigation (O-arm group), and 121 screws were implanted in 19 patients using free-hand technique (free-hand group). The postoperative CT images were reviewed and analyzed for pedicle violation. The screw penetration was divided into four grades: grade 0 (ideal placement), grade 1 (penetration <2 mm), grade 2 (penetration between 2 and 4 mm), and grade 3 (penetration >4 mm).

Results

The accuracy rate of pedicle screw placement (grade 0, 1) was significantly higher in the O-arm group (79 %, 73/92) compared to 67 % (81/121) of the free-hand group (P = 0.045). Meanwhile, a significantly lower prevalence of grade 2–3 perforation was observed in the O-arm group (21 vs. 33 %, P < 0.05), and the incidence of medial perforation was significantly minimized by using O-arm navigation compared to free-hand technique (2 vs. 15 %, P < 0.01). Moreover, the implant density in apical region was significantly elevated by using O-arm navigation (58 vs. 42 %, P < 0.001).

Conclusion

We reported 79 % accuracy of O-arm-based pedicle screw placement in dystrophic NF-1-associated scoliosis. O-arm navigation system does facilitate pedicle screw insertion in dystrophic NF-1-associated scoliosis, demonstrating superiorities in the safety and accuracy of pedicle screw placement in comparison with free-hand technique.
  相似文献   

6.

Background

Minimally invasive spinal fusions frequently require placement of pedicle screws through small incisions with limited visualization. Polyaxial pedicle screws are favored due to the difficulty of rod insertion with fixed monoaxial screws. Recently, a novel monoplanar screw became available that is mobile in the coronal plane to ease rod insertion but fixed in the sagittal plane to eliminate head slippage during flexion loads; however, the strength of this screw has not been established relative to other available screw designs.

Questions/purposes

We compared the static and dynamic load to failure in polyaxial, monoaxial, and monoplanar pedicle screws.

Methods

Six different manufacturers’ screws (42 total) were tested in three categories (polyaxial, n = 4; monoaxial, n = 1; monopolar, n = 1) utilizing titanium rods. An additional test was performed using cobalt-chromium rods with the monopolar screws only. Screws were embedded into polyethylene blocks and rods were attached using the manufacturers’ specifications. Static and dynamic testing was performed. Dynamic testing began at 80% of static yield strength at 1 Hz for 50,000 cycles.

Results

In static testing, monoaxial and monoplanar screws sustained higher loads than all polyaxial screw designs (range, 37%–425% higher; p < 0.001). The polyaxial screws failed at the head-screw interface, while the monoaxial and monoplanar screws failed by rod breakage in the static test. The dynamic loads to failure were greater with the monoplanar and monoaxial screws than with the polyaxial screws (range, 35%–560% higher; p < 0.001). With dynamic testing, polyaxial screws failed via screw-head slippage between 40% and 95% of static yield strength, while failures in monoaxial and monoplanar screws resulted from either screw shaft or rod breakage.

Conclusions

All polyaxial screws failed at the screw-head interface in static and dynamic testing and at lower values than monoaxial/monoplanar screw designs. Monoplanar and monoaxial screws failed at forces well above expected in vivo values; this was not the case for most polyaxial screws.

Clinical Relevance

Polyaxial screw heads slip on the screw shank at lower values than monoaxial or monoplanar screws, and this results in angular change between the rod and pedicle screw, which could cause loss of segmental lordosis. The novel monoplanar screw used in this study may combine ease of rod placement with sagittal plane strength.  相似文献   

7.

Objectives

Untreated severe scoliosis is associated with increased mortality and remains a significant surgical challenge. Few studies have reported mortality after the surgical treatment of severe scoliosis beyond a 2-year follow-up. The objectives of this study were to evaluate mortality beyond standard 2-year follow-up and compare radiographic outcomes using hybrid or pedicle screw instrumentation for severe scoliosis.

Methods

We evaluated 32 consecutive patients [11 males, mean age at surgery 15.3 (range 10.7–20.7) years] operated for a scoliosis of 90° or more using either hybrid (n = 15) or pedicle screw (n = 17) instrumentation. The follow-up time averaged 2.9 (2.0–6.6) years for radiographic and quality of life measurements and 5.5 years (2.0–9.0) years for mortality data. Of these patients, one had adolescent idiopathic scoliosis, three secondary scoliosis, and 28 neuromuscular scoliosis. Twelve patients in the hybrid and two patients in the pedicle screw groups underwent anteroposterior surgery (p < 0.001), and three patients in both groups had an apical vertebral column resection.

Results

One (3.1 %) patient died during follow-up for severe pneumonia. Preoperatively, the mean magnitude of the major curve was 109° (90°–127°) in the hybrid and 100° (90°–116°) in the pedicle screw groups (p = 0.015), and was corrected to 45° (19°–69°) in the hybrid and 27° (18°–40°) in the pedicle screw groups at the 2-year follow-up (p < 0.001), with a mean correction of the major curve of 59 % (37–81 %) in the hybrid versus 73 % (60–81 %) in the pedicle screw groups, respectively (p = 0.0023). There were six postoperative complications, including one transient spinal cord deficit necessitating reoperation in the hybrid group as compared with five complications in the pedicle screw group (p = 0.53).

Conclusions

The mid-term mortality rate after the surgical treatment of severe scoliosis was low. Severe scoliosis can be treated safely with significantly better correction of the spinal deformity using pedicle screws than hybrid instrumentation.  相似文献   

8.

Purpose

Dorsal spinal instrumentation with pedicle screw constructs is considered the gold standard for numerous spinal pathologies. Screw misplacement is biomechanically disadvantageous and may create severe complications. The aim of this study was to assess the accuracy of patient-specific template-guided pedicle screw placement in the thoracic and lumbar spine compared to the free-hand technique with fluoroscopy.

Methods

Patient-specific targeting guides were used for pedicle screw placement from Th2–L5 in three cadaveric specimens by three surgeons with different experience levels. Instrumentation for each side and level was randomized (template-guided vs. free-hand). Accuracy was assessed by computed tomography (CT), considering perforations of <2 mm as acceptable (safe zone). Time efficiency, radiation exposure and dependencies on surgical experience were compared between the two techniques.

Results

96 screws were inserted with an equal distribution of 48 screws (50 %) in each group. 58 % (n = 28) of template-guided (without fluoroscopy) vs. 44 % (n = 21) of free-hand screws (with fluoroscopy) were fully contained within the pedicle (p = 0.153). 97.9 % (n = 47) of template-guided vs. 81.3 % (n = 39) of free-hand screws were within the 2 mm safe zone (p = 0.008). The mean time for instrumentation per level was 01:14 ± 00:37 for the template-guided vs. 01:40 ± 00:59 min for the free-hand technique (p = 0.013), respectively. Increased radiation exposure was highly associated with lesser experience of the surgeon with the free-hand technique.

Conclusions

In a cadaver model, template-guided pedicle screw placement is faster considering intraoperative instrumentation time, has a higher accuracy particularly in the thoracic spine and creates less intraoperative radiation exposure compared to the free-hand technique.
  相似文献   

9.

Introduction

Posterior-only approach using pedicle screws’ fixation has emerged as the preferred surgical technique for Scheuermann kyphosis (SK) correction. Insertion of multiple pedicle screws while increasing stability increases also the risk of complications related to screw malpositioning and surgical cost. The optimal screw density required in surgical correction of SK remains unclear. This study compares the safety and efficacy of low screw density (LSD) versus high screw density (HSD) technique used in posterior-only correction of SK.

Methods

Twenty-one patients underwent surgical correction of SK between 2007 and 2011 and were reviewed after a mean of 29 months. HSD technique (i.e., 100 % of available pedicles, averaged 25.2 ± 4 screws) was used in 10 cases and LSD technique (i.e., 54–69 % of available pedicles in a pre-determined pattern, averaged 16.8 ± 1.3 screws; p < 0.001) was used in 11 cases. Kyphosis correction was assessed by comparing thoracic kyphosis, lumbar lordosis and sagittal balance on preoperative and postoperative radiographs. Cost saving analysis was performed for each group.

Results

Preoperative thoracic kyphosis, lumbar lordosis and sagittal balance were similar for both groups. The average postoperative kyphosis correction was similar in both HSD and LSD groups (29° ± 9° vs. 34° ± 6°, respectively; p = 0.14). Complication occurred in four patients (19 %) in the HSD group and in two patients (9 %) in the LSD group (p = 0.56). Three patients required re-operation. Compared to HSD using LSD saves 4,200£ per patient in hardware and 88,200£ for the entire cohort.

Conclusion

LSD technique is as safe and effective as HSD technique in posterior-only correction of SK. Implant-related cost could be reduced by 32 %.  相似文献   

10.

Purpose

We report a single-center, prospective, randomized study for pedicle screw insertion in opened and percutaneous spine surgeries, using a computer-assisted surgery (CAS) technique with three-dimensional (3D) intra-operative images intensifier (without planification on pre-operative CT scan) vs conventional surgical procedure.

Material and method

We included 143 patients: Group C (conventional, 72 patients) and Group N (3D Fluoronavigation, 71 patients). We measured the pedicle screw running time, and surgeon’s radiation exposure. All pedicle runs were assessed according to Heary by two independent radiologists on a post-operative CT scan.

Results

3D Fluoronavigation appeared less accurate in percutaneous procedures (24 % of misplaced pedicle screws vs 5 % in Group C) (p = 0.007), but more accurate in opened surgeries (5 % of misplaced pedicle screws vs 17 % in Group C) (p = 0.025). For one vertebra, the average surgical running time reached 8 min in Group C vs 21 min in Group N for percutaneous surgeries (p = 3.42 × 10?9), 7.33 min in Group C vs 16.33 min in Group N (p = 2.88 × 10?7) for opened surgeries. The 3D navigation device delivered less radiation in percutaneous procedures [0.6 vs 1.62 mSv in Group C (p = 2.45 × 10?9)]. For opened surgeries, it was twice higher in Group N with 0.21 vs 0.1 mSv in Group C (p = 0.022).

Conclusion

The rate of misplaced pedicle screws with conventional techniques was nearly the same as most papers and a little bit higher with CAS. Surgical running time and radiation exposure were consistent with many studies. Our work hypothesis is partially confirmed, depending on the type of surgery (opened or closed procedure).
  相似文献   

11.

Purpose

Patients with severe spinal deformities often have small pedicle diameters, and pedicle dimensions vary between segments and individuals. Free-hand pedicle screw placement can be inaccurate. Individualized drill guide templates may be used, but the accuracy of pedicle screw placement in severe scoliosis remains unknown. The accuracy of drill guide templates and free-hand technique for the treatment of adolescent patients with severe idiopathic scoliosis are compared in this study.

Methods

This study included 37 adolescent patients (mean age 16.4 ± 1.3 years) with severe idiopathic scoliosis treated surgically at a single spine center between January 2014 and June 2017. Spinal deformities were corrected using posterior pedicle screw fixation. Patients in group I were treated with rapid prototype drill guide template technique (20 patients; 396 screws) and patients in group II were treated with free-hand technique (17 patients; 312 screws). Outcomes that included operative time, correction rate, and the incidence and distribution of screw misplacement were evaluated.

Results

Operative time in group I was 283 ± 22.7 min compared to 285 ± 25.8 min in group II (p = 0.89). The scoliosis correction rate was 55.0% in group I and 52.9% in group II (p = 0.33). Based on both axial and sagittal reconstruction images, the accuracy rate of pedicle screw placement was 96.7% in group I and 86.9% in group II (p = 0.000).

Conclusion

The drill guide template technique has potential to offer more accurate and thus safer placement of pedicle screws than free-hand technique in the treatment of severe scoliosis in adolescents.
  相似文献   

12.

Purpose

To determine the reliability of pedicle screws placed in children younger than 7 years of age, and to evaluate the effect of pedicle screw insertion on further growth of the vertebra and spinal canal.

Methods

A retrospective study of 35 consecutive patients through Jan 2003–Dec 2010 for congenital scoliosis in <7 years children was performed at one spine center. Patients undergoing pedicle screw instrumentation of at least two levels, which had been followed-up for at least 24 months were included. Measurements were performed in instrumented and adjacent non-instrumented levels. The effect of pedicle screw insertion on further growth was evaluated.

Results

The average age at surgery was 4.4 year (53 months, range, 23–84 months). 190 segments in 35 patients met the inclusion criteria. 77 segments had no screws and 113 had at least one screw. There was a significant difference between the pre-operative and final follow-up values of the measurement of spinal canal and vertebral body parameters (P < 0.001). No significant difference existed between growth rates of vertebral bodies and the sagittal diameters of spinal canal with or without screws. The growth rates of vertebral bodies in lumbar spine were higher than in thoracic spine in both instrumented and adjacent groups.

Conclusion

Pedicle screw instrumentation does not cause a retardation effect on the development of vertebral bodies and the spinal canal in children at an early age. It is a safe and reliable procedure to achieve a stable fixation.  相似文献   

13.

Purpose

To experimentally study the influence of pilot hole diameter (smaller than or equal to the internal (core) diameter of the screw) on biomechanical (insertion torque and pullout strength) and histomorphometric parameters of screw–bone interface in the acute phase and 8 weeks after pedicle screw insertion.

Methods

Fifteen sheep were operated upon and pedicle screws inserted in the L1–L3 pedicles bilaterally. The pilot hole was smaller (2.0 mm) than the internal diameter (core) of the screw on the left side pedicle and equal (2.8 mm) to the internal diameter (core) of the screw on the right side pedicle. Ten animals were sacrificed immediately (five animals were assigned to pullout strength tests and five animals were used for histomorphometric bone–screw interface evaluation). Five animals were sacrificed 8 weeks after pedicle screw insertion for histomorphometric bone–screw interface evaluation.

Results

The insertion torque and pullout strength were significantly greater in pedicle screws inserted into pilot holes smaller than internal (core) diameter of the screw. Histomorphometric evaluation of bone–screw interface showed that the percentage of bone-implant contact, the area of bone inside the screw thread and the area of bone outside the screw thread were significantly higher for pilot holes smaller than the internal (core) diameter of the screw immediately after insertion and after 8 weeks.

Conclusion

A pilot diameter smaller than the internal (core) diameter of the screw improved the insertion torque and pullout strength immediately after screw insertion as well the pedicle screw–bone interface contact immediately and 8 weeks after screw placement in sheep with good bone mineral density.  相似文献   

14.

Background

While convergent placement of pedicle screws in the axial plane is known to be more advantageous biomechanically, surgeons intuitively aim toward a parallel placement of screws in the sagittal plane. It is however not clear whether parallel placement of screws in the sagittal plane is biomechanically superior to a non-parallel construct. The hypothesis of this study is that sagittal non-parallel pedicle screws do not have an inferior initial pull-out strength compared to parallel placed screws.

Methods

The established lumbar calf spine model was used for determination of pull-out strength in parallel and non-parallel intersegmental pedicle screw constructs. Each of six lumbar calf spines (L1-L6) was divided into three levels: L1/L2, L3/L4 and L5/L6. Each segment was randomly instrumented with pedicle screws (6/45 mm) with either the standard technique of sagittal parallel or non-parallel screw placement, respectively, under fluoroscopic control. CT was used to verify the intrapedicular positioning of all screws. The maximum pull-out forces and type of failure were registered and compared between the groups.

Results

The pull-out forces were 5,394 N (range 4,221 N to 8,342 N) for the sagittal non-parallel screws and 5,263 N (range 3,589 N to 7,554 N) for the sagittal-parallel screws (p?=?0.838). Interlevel comparisons also showed no statistically significant differences between the groups with no relevant difference in failure mode.

Conclusion

Non-parallel pedicle screws in the sagittal plane have at least equal initial fixation strength compared to parallel pedicle screws in the setting of the here performed cadaveric calf spine experiments.  相似文献   

15.

Purpose

To assess and compare the efficacy of two minimally invasive techniques (percutaneous pedicle screw with intermediate screw vs. percutaneous pedicle screw with kyphoplasty) for spinal fracture fixation by comparing the segmental kyphosis and vertebral kyphosis angles after trauma before surgery, after surgery, and at 4-month and 12-month follow-up.

Methods

Data from 49 patients without neurological deficit treated by either percutaneous pedicle screw with intermediate screw or percutaneous pedicle screw with kyphoplasty were retrospectively analysed. The segmental kyphosis and vertebral kyphosis angles over time were calculated and correlated with the type of procedure, AO classification, lumbar or thoracic site and the age and sex of the patients.

Results

After surgery, both techniques were found to be efficacious means of bringing about a significant correction of the segmental kyphosis angle (p = 0.002) and a just significant correction of the vertebral kyphosis angle (p = 0.06), although less effectively in thoracic fractures (p = 0.004). At follow-up, the vertebral kyphosis angle was stable in both groups, while there was a significant loss of segmental kyphosis angle stability in the percutaneous pedicle screw with kyphoplasty group at 1 year (p = 0.004); fractured thoracic vertebrae maintained a greater vertebral kyphosis angle (p = 0.06) and segmental kyphosis angle (p < 0.001), than the lumbar.

Conclusion

At 1 year after surgery, the use of intermediate screws in fractured vertebrae seemed to maintain a more efficacious correction with respect to kyphoplasty, although thoracic fracture sites appear to be associated with greater post-traumatic segmental kyphosis and lesser stability in the long term after both percutaneous surgical techniques.
  相似文献   

16.
17.
18.

Study design

Retrospective case series.

Objectives

To identify the variation of C2 vertebral artery groove (VAG) based on the thin-slice computed tomography (CT) scan and choose an individual screw placement method to decrease risk of malposition.

Background

C2 pedicle screws can be successful anchors for a variety of cervical disorders. However, variations of VAG may cause malposition and breach when C2 transpedicle screw was inserted. Recognizing the variations of vertebrae artery groove (VAG) in C2 and choosing an individual screw placement method (transpedicle or translaminar) may be helpful for avoiding violation and decreasing the operation risk in upper cervical surgery.

Methods

From January 2009 to December 2010, a total 45 patients with upper cervical disorders underwent 1–mm-thin-slice CT scans along the C2 pedicle direction to obtain the consecutive spectrum of C2 VAG were included in this study. The C2 VAG (types I, II, III, and IV) was subgrouped based on parameter e (the vertical distance from the apex of VAG to the upper facet joint surface) and parameter a (horizontal distance from the entrance of VAG to the vertebrae canal). Subsequently, individual strategy was used to avoid the VAG violation.

Results

The variations of C2 VAG in these 45 patients include the following: type I 53 (58.9 %), type II 16 (17.8 %) type III 13 (14.4 %), and type IV 8 (8.9 %). Transpedicle screws of C2 were used in types I, III, and IV VAGs (n = 74); translaminar screws were inserted in type II subgroup (n = 16). Postoperative CT scans showed that there were two pedicle screws violated into the artery groove, and no translaminar screw breached into the vertebrae canal. All the other screws were in right position. None of the 45 patients had severe complications such as spinal cord injury, dura tear, and infection.

Conclusion

Thin-slice CT scan along the C2 pedicle direction to analysis the variations of C2 VAG can help choose an individual screw placement method (transpedicle or translaminar) with minimal complication for C2 screw fixation.  相似文献   

19.

Background

Aim of the study was to compare the chosen position of polyaxial locking screws with the position of monoaxial screws in the humeral head of proximal humeral fractures treated by locked plating.

Methods

In a prospective randomized observational study, 124 consecutive patients (mean age 70.9 ± 14.8 years) sustaining a displaced proximal humeral fracture were treated with either monoaxial or polyaxial screw-inserted locking plate fixation. The chosen positions of locking screws were identified from standardized postoperative radiographs in anteroposterior and outlet-view, with regard to a regional mapping of the humeral head.

Results

In monoaxial locking technique, a mean of 6 screws purchased the humeral head (95 % CI 5.1–6.2), and in polyaxial locking technique, a mean of 4 screws (95 % CI 3.3–4.5), respectively. Screws were placed in the regions superolateral: monoaxial 24.8 %, polyaxial 20.7 % (p = 0.49); superomedial: monoaxial 21.9 %, polyaxial 20.0 % (p = 0.433); inferolateral: monoaxial 32.5 %, polyaxial 35.0 % (p = 0.354); inferomedial: monoaxial 20.8 %, polyaxial 24.2 % (p = 0.07), superoposterior: monoaxial 45.5 %, polyaxial 30.8 % (p = 0.57); superoanterior: monoaxial 4.4 %, polyaxial 8.3 % (p = 0.33); inferoposterior: monoaxial 22.5 %, polyaxial 29.8 % (p = 0.49) and inferoanterior: monoaxial 27.5 %, polyaxial: 31.2 % (p = 0.09).

Conclusion

The chosen screws’ position in monoaxial and polyaxial locking plate fixation of displaced proximal humeral fractures do not differ significantly. However, loss of fixation is observed more frequently if the fixation did not include at least one screw within the superoposterior region of the humeral head, suggesting that a screw purchasing the superoposterior region is beneficial in locked plating of proximal humeral fractures.

Level of evidence

Treatment Study, Level II.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号