首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The technique of pedicle screw stabilization is finding increasing popularity for use in the cervical spine. Implementing anterior transpedicular screws (ATPS) in cervical spine offers theoretical advantages compared to posterior stabilization. The goal of the current study was the development of a new setting for navigated insertion of ATPS, combining the advantage of reduced invasiveness of an anterior approach with the technical advantages of navigation.

Methods

20 screws were implanted in levels C3 to C6 of four cervical spine models (SAWBONES® Cervical Vertebrae with Anterior Ligament) with the use of 3D fluoroscopy navigation system [Arcadis Orbic 3D, Siemens and VectorVision fluoro 3D trauma software (BrainLAB)]. The accuracy of inserted screws was analyzed according to postoperative CT scans and following the modified Gertzbein and Robbins classification.

Results

20 anterior pedicle screws were placed in four human cervical spine models. Of these, eight screws were placed in C3, two screws in C4, six screws in C5, and four screws in C6. 16 of 20 screws (80 %) reached a grade 1 level of accuracy according to the modified Gertzbein and Robbins Classification. Three screws (15 %) were grade 2, and one screw (5 %) was grade 3. Grade 4 and 5 positions were not evident. Summing grades 1 and 2 together as “good” positions, 95 % of the screws achieved this level. Only a single screw did not fulfill these criteria.

Conclusion

The setting introduced in this study for navigated insertion of ATPS into cervical spine bone models is well implemented and shows excellent results, with an accuracy of 95 % (Gertzbein and Robbins grade 2 or better). Thus, this preliminary study represents a prelude to larger studies with larger case numbers on human specimens.
  相似文献   

2.

Study design

We evaluated the trajectory and the entry points of anterior transpedicular screws (ATPS) in the cervicothoracic junction (CTJ).

Objective

This study aimed at investigating the feasibility of ATPS fixation in the CTJ.

Summary of background data

Application of an ATPS in the lower cervical spine has been reported; however, there were no reports exploring the feasibility of anterior transpedicular screw fixation in the CTJ.

Methods

CT scans were performed in 50 cases and multiplanar reformation was used to measure the related parameters on pedicle axis view at C6–T2. Transverse pedicle angle, outer pedicle width, pedicle axis length, distance transverse intersection point (DtIP), sagittal pedicle angle, anterior vertebral body height, outer pedicle height, and distance sagittal intersection point (DsIP) were measured. The prozone of CTJ was divided into three different regions, which were named as the “manubrium region”, the region “above” and “below” the manubrium. The distribution of the trajectory of sagittal pedicle axes was recorded in the three regions and the related data were statistically analyzed.

Results

There was no statistical difference in gender (P > 0.05). The transverse pedicle angle decreased from C6 (46.77° ± 2.72°) to T2 (20.62° ± 5.04°). DtIP increased from C6 to T2. DsIP was an average of 7.17 mm. The sagittal pedicle axis lines of the C6 and C7 were located in the region above the manubrium. T1 was mainly in the manubrium region followed by the region above the manubrium. T2 was mainly located in the manubrium region followed by the region below the manubrium.

Conclusion

Implantation of ATPS at C6, C7, and some T1 is feasible through the low anterior cervical approach, while it is almost impossible to approach T2 that way.
  相似文献   

3.
目的:比较下颈椎前路椎弓根螺钉(ATPS)锁定固定系统和普通前路椎体螺钉(VBS)锁定固定系统的静力学特性。方法:采集新鲜颈椎标本16具,分解为C3.,4,C4,5,C5,6,C6,7共32个运动节段(functionalspinalunit,FSU),其中C3,4,C4,5,C5,6,C6,7各8个。将其按照不同节段随机分成A、B两组,对所获标本椎间盘切除后模拟植骨,分别植入自行设计生产的下颈椎前路椎弓根螺钉配套钢板系统和普通颈椎前路椎体螺钉钢板系统。在生物力学试验机上行钢板的垂直拔出强度试验。结果:下颈椎前路椎弓根螺钉的最大轴向拔出力为(604.68±48.76)N,椎体螺钉为(488.24±32.42)N,两者比较差异有统计学意义(t=2.147,P〈0.05),前路椎弓根螺钉固定系统与椎体螺钉固定系统在各FSU间差异无统计学意义(A组和B组的F值分别为2.27、2.05,P〉0.05)。结论:下颈椎前路椎弓根螺钉钢板系统的拔出力明显优于普通前路椎体螺钉钢板系统,从生物力学角度上来看具有应用可行性。  相似文献   

4.

Objective

Many thoracic pedicles are too small for the safe acceptance of a transpedicular screw. However, few studies have so far reported on the methods to select a proper pedicle screw size and to confirm the morphologic changes for such a small thoracic spine pedicle. The objective of this work was to determine the potential limits of a pedicle screw diameter for transpedicular screw placement in the thoracic spine.

Methods

T2–T9 vertebrae from eleven patients that underwent posterior thoracic instrumentation with the use of fluoroscopically assisted insertion method were analyzed. The outcome measures were the pedicle widths, the gap between the outer pedicle width and the selected pedicle screw diameter, and the penetration length of the pedicle screws using computed tomography. The screws were distributed into two groups according to the pedicle width and screw diameter, and the screw perforation rate of the two groups was compared. The relationships of the gap and the distance of the screw penetration were compared and investigated in regard to the pedicle screw diameter selection.

Results

A total of 16 screws demonstrated a smaller diameter than the inner pedicle widths, while 22 screws had a larger diameter than the inner pedicle widths. One screw (6.3%) perforated the pedicle cortex in the smaller screw group, and twelve screws (54.5%) perforated the pedicle cortex in the larger screw group (P?=?0.006). A linear regression analysis in the larger screw group revealed that when the gap was less than 0.5?mm, a risk of a pedicle wall violation was observed.

Conclusions

When the screws with a larger diameter than the inner pedicle width are selected, the screw perforation rate increases. Therefore, the size of the screw diameter must be at least 0.5?mm less than the outer pedicle width to ensure safe transpedicular screw placement.  相似文献   

5.

Background:

Anterior cervical interbody grafts/cages combined with a plate were frequently used in multilevel discectomies/corpectomies. In order to avoid additional posterior stabilization in patients who undergo anterior reconstructive surgery, an anterior cervical transpedicular screw fixation, which offers higher stability is desirable. We investigated in this study the anatomical (morphologic) characters for cervical anterior transpedicular screw fixation.

Materials and Methods:

Left pedicle parameters were measured on computed tomography (CT) images based on 36 cervical spine CT scans from healthy subjects. The parameters included outer pedicle width (Distance from lateral to medial pedicle surface in the coronal plane), outer pedicle height (OPH) (Distance from upper to lower pedicle surface in the sagittal plane), maximal pedicle axis length (MPAL), distance transverse insertion point (DIP), distance of the insertion point to the upper end plate (DIUP), pedicle sagittal transverse angle (PSTA) and pedicle transverse angle (PTA) at C3 to C7.

Results:

The values of outer pedicle width and MPAL in males were larger than in females from C3 to C7. The OPH in males was larger than in females at C3 to C6, but there was no difference at C7. The DIP and PTA were significantly greater in males than in females at C3, but there was no difference in the angle at C4-7. The PSTA was not statistically different between genders at C3, 4, 7, but this value in males was larger than females at C5, 6. The DIUP was significantly greater in males at C3, 4, 6, 7 but was non significant at C5.

Conclusions:

The placement of cervical anterior transpedicular screws should be individualized for each patient and based on a detailed preoperative planning.  相似文献   

6.

Background

While convergent placement of pedicle screws in the axial plane is known to be more advantageous biomechanically, surgeons intuitively aim toward a parallel placement of screws in the sagittal plane. It is however not clear whether parallel placement of screws in the sagittal plane is biomechanically superior to a non-parallel construct. The hypothesis of this study is that sagittal non-parallel pedicle screws do not have an inferior initial pull-out strength compared to parallel placed screws.

Methods

The established lumbar calf spine model was used for determination of pull-out strength in parallel and non-parallel intersegmental pedicle screw constructs. Each of six lumbar calf spines (L1-L6) was divided into three levels: L1/L2, L3/L4 and L5/L6. Each segment was randomly instrumented with pedicle screws (6/45 mm) with either the standard technique of sagittal parallel or non-parallel screw placement, respectively, under fluoroscopic control. CT was used to verify the intrapedicular positioning of all screws. The maximum pull-out forces and type of failure were registered and compared between the groups.

Results

The pull-out forces were 5,394 N (range 4,221 N to 8,342 N) for the sagittal non-parallel screws and 5,263 N (range 3,589 N to 7,554 N) for the sagittal-parallel screws (p?=?0.838). Interlevel comparisons also showed no statistically significant differences between the groups with no relevant difference in failure mode.

Conclusion

Non-parallel pedicle screws in the sagittal plane have at least equal initial fixation strength compared to parallel pedicle screws in the setting of the here performed cadaveric calf spine experiments.  相似文献   

7.

Purpose

Correction of rigid cervical deformities often requires osteotomies to realign the spine. Cervical pedicle subtraction osteotomy can be technically challenging due to the presence of cervical nerve roots and usually can only be performed at C7 or T1 due to the presence of vertebral arteries. In contrast, anterior cervical osteotomy can be performed throughout the cervical spine and is a safe and effective method for correction of both sagittal and coronal cervical deformities. We describe the anterior cervical osteotomy technique with a review of the pertinent literature.

Methods

A step-by-step technical guide for anterior cervical osteotomy is provided with a focus on surgical nuances and complication avoidance. Two illustrative cases of fixed sagittal and coronal deformities are included to demonstrate the substantial amount of deformity correction achievable using the anterior cervical osteotomy technique.

Results

Both patients in the illustrative cases had successful clinical and radiographic outcome following deformity correction utilizing the anterior cervical osteotomy technique.

Conclusion

Anterior cervical osteotomy is a safe and effective technique for correction of rigid cervical deformities. Spine surgeons should be familiar with this technique to optimize clinical outcome in patients undergoing cervical deformity correction.
  相似文献   

8.
9.

Study design

Radiological reproducibility study.

Purpose

To assess intra and interobserver reliability of radiographic measurements for global sagittal balance parameters and sagittal spine curves, including cervical spine.

Summary of background data

Sagittal spine balance in adolescent idiopathic scoliosis (AIS) is a main issue and many studies have been reported, showing that coronal and sagittal deformities often involve sagittal cervical unbalance. Global sagittal balance aims to obtain a horizontal gaze and gravity line at top of hips when subject is in a static position, involving adjustment of each spine curvature in the sagittal plane. To our knowledge, no study did use a methodologically validated imaging analysis tool able to appreciate sagittal spine contours and distances in AIS and especially in the cervical region.

Methods

Lateral full-spine low-dose EOS radiographs were performed in 75 patients divided in three groups (control subjects, AIS, operated AIS). Three observers digitally analyzed twice each radiograph and 11 sagittal measures were collected for each image. Reliability was assessed calculating intraobserver Pearson’s r correlation coefficient, interobserver intra-class correlation coefficient (ICC) completed with a two-by-two Bland–Altman plot analysis.

Results

This measurement method has shown excellent intra and interobserver reliability in all parameters, sagittal curvatures, pelvic parameters and global sagittal balance.

Conclusions

This study validated a simple and efficient tool in AIS sagittal contour analysis. It defined new relevant landmarks allowing to characterize cervical segmental curvatures and cervical involvement in global balance.  相似文献   

10.

Purpose

To determine the reliability of pedicle screws placed in children younger than 7 years of age, and to evaluate the effect of pedicle screw insertion on further growth of the vertebra and spinal canal.

Methods

A retrospective study of 35 consecutive patients through Jan 2003–Dec 2010 for congenital scoliosis in <7 years children was performed at one spine center. Patients undergoing pedicle screw instrumentation of at least two levels, which had been followed-up for at least 24 months were included. Measurements were performed in instrumented and adjacent non-instrumented levels. The effect of pedicle screw insertion on further growth was evaluated.

Results

The average age at surgery was 4.4 year (53 months, range, 23–84 months). 190 segments in 35 patients met the inclusion criteria. 77 segments had no screws and 113 had at least one screw. There was a significant difference between the pre-operative and final follow-up values of the measurement of spinal canal and vertebral body parameters (P < 0.001). No significant difference existed between growth rates of vertebral bodies and the sagittal diameters of spinal canal with or without screws. The growth rates of vertebral bodies in lumbar spine were higher than in thoracic spine in both instrumented and adjacent groups.

Conclusion

Pedicle screw instrumentation does not cause a retardation effect on the development of vertebral bodies and the spinal canal in children at an early age. It is a safe and reliable procedure to achieve a stable fixation.  相似文献   

11.

Purpose

To identify changes in cervical alignment parameters following surgical correction of thoracolumbar deformity and then assess the preoperative parameters which induce changes in cervical alignment following corrective thoracolumbar deformity surgery.

Methods

A retrospective study of 49 patients treated for thoracolumbar deformity with preoperative planning of an acceptably aligned coronal and sagittal plane in each case. We compared cervical spine parameters in two distinct low [preoperative C7 sagittal vertical axis (SVA) ≤6 cm] and high (preoperative C7 SVA ≥9 cm) C7 SVA groups. Multilinear regression analysis was performed and revealed the relationship between postoperative cervical lordosis and preoperative spinopelvic parameters and surgical plans.

Results

In the lower C7 SVA group, cervical lordosis was significantly increased after thoracic/lumbar deformity correction (p < 0.01). In contrast, the high C7 SVA group showed decreased cervical lordosis postoperatively (p < 0.01). Multilinear regression analysis demonstrated the preoperative parameters (preoperative C2–7 angle, T1 slope, surgical plan for PT and C7 SVA), which determine the postoperative cervical lordosis.

Conclusion

In spinal deformity procedures, preoperative spinal alignment parameters, and surgical plans could affect postoperative cervical spine alignment.  相似文献   

12.

Study design

A cross-sectional study of the data retrospectively collected by chart review.

Objectives

This study aimed to clarify screw perforation features in 129 consecutive patients treated with computer-assisted cervical pedicle screw (CPS) insertion and to determine important considerations for computer-assisted CPS insertion.

Summary of background data

CPS fixation has been criticized for the potential risk of serious injury to neurovascular structures. To avoid such serious risks, computed tomography (CT)-based navigation has been used during CPS insertion, but screw perforation can occur even with the use of a navigation system.

Methods

The records of 129 consecutive patients who underwent cervical (C2–C7) pedicle screw insertion using a CT-based navigation system from September 1997 to August 2013 were reviewed. Postoperative CT images were used to evaluate the accuracy of screw placement. The screw insertion status was classified as grade 1 (no perforation), indicating that the screw was accurately inserted in pedicle; grade 2 (minor perforation), indicating perforation of less than 50 % of the screw diameter; and grade 3 (major perforation), indicating perforation of 50 % or more of the screw diameter. We analyzed the direction and rate of screw perforation according to the vertebral level.

Results

The rate of grade 3 pedicle screw perforations was 6.7 % (39/579), whereas the combined rate of grades 2 and 3 perforations was 20.0 % (116/579). No clinically significant complications, such as vertebral artery injury, spinal cord injury, or nerve root injury, were caused by the screw perforations. Of the screws showing grade 3 perforation, 30.8 % screws were medially perforated and 69.2 % screws were laterally perforated. Of the screws showing grades 2 and 3 perforation, 21.6 % screws were medially perforated and 78.4 % screws were laterally perforated. Furthermore, we evaluated screw perforation rates according to the vertebral level. Grade 3 pedicle screw perforation occurred in 6.1 % of C2 screws; 7.5 % of C3 screws; 13.0 % of C4 screws; 6.5 % of C5 screws; 3.2 % of C6 screws; and 4.0 % of C7 screws. Grades 2 and 3 pedicle screw perforations occurred in 12.1 % of C2 screws, 22.6 % of C3 screws, 31.5 % of C4 screws, 22.2 % of C5 screws, 14.4 % of C6 screws, and 12.1 % of C7 screws. C3–5 screw perforation rate was significantly higher than C6–7 (p = 0.0024).

Conclusions

Careful insertion of pedicle screws is necessary, especially at C3 to C5, even when using a CT-based navigation system. Pedicle screws tend to be laterally perforated.  相似文献   

13.

Purpose

To analyze postoperative changes in the cervical sagittal alignment (CSA) of patients with AIS treated by posteromedial translation.

Methods

49 patients with thoracic AIS underwent posterior arthrodesis with hybrid constructs, combining lumbar pedicle screws and thoracic universal clamps. Posteromedial translation was the main correction technique used. 3D radiological parameters were measured from low-dose biplanar radiographs. CSA was assessed using the C2C6 angle, and the central hip vertical axis (CHVA) was used as a reference axis to evaluate patients’ balance.

Results

Preoperatively, 58 % of patients had thoracic hypokyphosis, and 79 % had a kyphotic CSA. Significant correlation was found (r = 0.45, P = 0.01) between thoracic hypokyphosis and cervical kyphosis. Increase in T4–T12 thoracic kyphosis (average 14.5° ± 10°) was associated with significant decrease in cervical kyphosis in the early postoperative period. The CSA further improved spontaneously during follow-up by 7.6° (P < 0.0001). Significant positive correlation (r = 0.32, P = 0.03) was found between thoracic and cervical improvements. At latest follow-up, 94 % of the patients were normokyphotic and 67 % had a CSA in the physiological range. Sagittal balance of the thoracolumbar spine was not significantly modified postoperatively. However, the procedure significantly changed the position of C2 in regard to the CHVA (C2–CHVA), which reflects headposition (P = 0.012). At last follow-up, the patients sagittal imbalance was not significantly different from the preoperative imbalance (P = 0.34).

Conclusions

Thoracic hypokyphosis and cervical hypolordosis, observed in AIS, can be improved postoperatively, when the posteromedial translation technique is used for correction. The cervical spine remains adaptable in most patients, but the proportion of patients with physiological cervical lordosis at final follow-up remained low (24.5 %).  相似文献   

14.
下颈椎前路椎弓根螺钉固定系统的设计与运用   总被引:1,自引:1,他引:0  
目的:研究下颈椎前路椎弓根螺钉钢板系统运用的可行性,为临床使用提供依据。方法:对16具颈椎标本随机分割获得C3.4,C4加C5.6,C6,7各8个运动单元(functionalspinalunit,FSu),共32个FSU。运用下颈椎前路椎弓根螺钉钢板系统模拟植入重建FSU稳定性。测量钢板螺钉与椎体之间的适应性,运用X线摄片及CT扫描及重建评估下颈椎前路椎弓根螺钉植入的准确性,对于穿破椎弓根的标本,解剖明确其累及周围组织的情况。结果:32个FSU共计植入下颈椎前路椎弓根螺钉64枚,所有螺钉均顺利植入,无术中植入困难者。螺钉植入后与钢板螺钉孔之间的匹配程度好,未见难以锁紧的情况。钢板与椎体之间适应性良好。X线片提示所有64枚下颈椎前路椎弓根螺钉植入位置满意,螺钉长短合适。CT横断位像提示共有6枚螺钉在下颈椎椎弓根穿出,2枚内侧皮质1度穿破,4枚1度外侧缘皮质穿破累及横突孔内侧缘,未见螺钉≥2度穿破椎弓根。2枚下颈椎前路椎弓根内侧皮质1度穿破的患者,解剖发现仅有椎管内椎弓根内侧的静脉丛累及,未见硬膜囊受压,未见神经根受累。4枚1度外侧缘穿破的患者有1枚横突孔内椎静脉的累及,未见椎动脉穿破累及的情况,但其中1枚螺钉紧换椎动脉而行。结论:下颈椎前路椎弓根螺钉钢板系统适应下颈椎前路椎弓根螺钉固定重建,有临床运用价值。  相似文献   

15.

Purpose

Single center evaluation of the placement accuracy of thoracolumbar pedicle screws implanted either with fluoroscopy or under CT-navigation using 3D-reconstruction and intraoperative computed tomography control of the screw position. There is in fact a huge variation in the reported placement accuracy of pedicle screws, especially concerning the screw placement under conventional fluoroscopy most notably due to the lack of the definition of screw misplacement, combined with a potpourri of postinstrumentation evaluation methods.

Methods

The operation data of 1,006 patients operated on in our clinic between 1995 and 2005 is analyzed retrospectively. There were 2,422 screws placed with the help of CT-navigation compared to 2,002 screws placed under fluoroscopy. The postoperative computed tomography images were reviewed by a radiologist and an independent spine surgeon.

Results

In the lumbar spine, the placement accuracy was 96.4 % for CT-navigated screws and 93.9 % for pedicle screws placed under fluoroscopy, respectively. This difference in accuracy was statistically significant (Fishers Exact Test, p = 0.001). The difference in accuracy became more impressing in the thoracic spine, with a placement accuracy of 95.5 % in the CT-navigation group, compared to 79.0 % accuracy in the fluoroscopy group (p < 0.001).

Conclusion

This study underlines the relevance of CT-navigation-guided pedicle screw placement, especially when instrumentation of the middle and upper thoracic spine is carried out.  相似文献   

16.

Purpose

The percutaneous insertion technique requires surgical skill and experience. However, there have been few clinical reports evaluating the accuracy of minimally invasive pedicle screw placement using the conventional fluoroscopy method. The purpose of this study was to evaluate the accuracy of percutaneous pedicle screw placement in the treatment of thoracic and lumbar spine fractures using two-plane conventional fluoroscopy.

Methods

A prospective clinical trial was performed. A total of 502 percutaneous pedicle screws in 111 patients, all inserted with the assistance of conventional fluoroscopy, were evaluated. The safety and accuracy of pedicle screw placement were based on the evaluation of postoperative axial 3-mm slice computed tomography scans using the scoring system described by Zdichavsky et al. [Eur J Trauma 30:234–240, 2004; Eur J Trauma 30:241–247, 2004].

Results

427/502 pedicle screws (85 %) were classified as good and excellent concerning the best possible screw length and 494/502 (98 %) were found to have good or excellent position. One screw had to be revised due to medial position with a neurological deficit.

Conclusions

This study demonstrates the feasibility of placing percutaneous posterior thoracolumbar pedicle screws with the assistance of conventional fluoroscopy. Minimally invasive transpedicular instrumentation is an accurate, reliable and safe method to treat a variety of spinal disorders, including thoracic and lumbar spine fractures.  相似文献   

17.

Background context

Several authors have reported cervical dislocations and fracture-dislocations above, below or through the fused cervical segment after cervical fusion. No previous reports have described fracture/dislocations at the cervicothoracic junction (CTJ) after multilevel anterior cervical spine fusion.

Purpose

To report CTJ fracture/subluxation after multilevel anterior cervical spine fusion surgery, a technique for surgical management and strategies to prevent this avoidable complication.

Study design

A case report and review of the literature.

Methods

A 61-year-old women underwent anterior cervical decompression and fusion (ACDF) from C3 to C7. The patient did well postoperatively until she suffered a CTJ fracture/subluxation 4?months later sustained during a fall.

Results

The patient underwent posterior and anterior fusion surgery C7–T2. Radiographs 2?years after her reconstruction surgery showed solid fusion from C3 to T2.

Conclusions

The CTJ area is susceptible to injury because it represents the transition between mobile and relatively immobile portions of the spine, especially when a long lever arm is created by a low cervical fusion. It is difficult to image with plain radiographs, and therefore, injury may be easily overlooked. If overlooked, severe neurological injury can result. Anterior and posterior fusion is often necessary to appropriately stabilize the CTJ after fracture/dislocation.  相似文献   

18.

Purpose

To determine whether translaminar facet screws can provide stability equivalent to pedicle screws and whether the two posterior instrumentations have the same influence on the adjacent segments in two-level anterior lumbar interbody fusion.

Methods

In a biomechanical study conducted, we used 12 fresh human lumbar spines and tested an intact spine with a stand-alone two-level anterior lumbar interbody fusion and anterior fusion augmented with pedicle screws or translaminar facet screws, under 400 N compressive preloads and 7.5 N m moments in flexion, extension, axial rotation and lateral bending, and measured the stiffness of the operated level, range of motion and intradiscal pressure at the adjacent levels.

Results

We found a significant increase in the stiffness of the segments operated, range of motion and intradiscal pressure at the adjacent superior segment in the stand-alone two-level anterior lumbar interbody fusion during flexion, axial rotation and lateral bending, but a decrease in extension, when compared with the intact spine. The stiffness of operated segments, range of motion and intradiscal pressure in the adjacent segment are significantly higher in the two-level anterior lumbar interbody fusion augmented with posterior instrumentation than in the stand-alone two-level anterior lumbar interbody fusion. There was no significant difference between the two augmented constructs except that, at the adjacent superior segment, the intradiscal pressure was more in the construction augmented with a pedicle screw than with a translaminar facet screw in flexion.

Conclusions

Translaminar facet screws can provide stability equivalent to pedicle screws, but their influence on the adjacent segments is relatively lower; therefore, we suggest that translaminar facet screws be the choice in the optimal posterior instrumentation in a two-level anterior lumbar interbody fusion.  相似文献   

19.

Background

Expandable cervical cages have been utilised successfully to reconstruct the cervical spine for various conditions. However, to date there are only limited data on their influence on cervical sagittal profile. In this retrospective study, we present our experience with performing anterior cervical corpectomy in one or two levels using expandable titanium cages in order to achieve stable reconstruction and restoration of cervical lordosis.

Methods

A case series of data from 48 consecutive patients (20 men, 28 women; mean age 61 years) operated upon in a 5-year-period is retrospectively reviewed. Standard anterior single- or two-level cervical corpectomy, fusion and spinal reconstruction were performed, including placement of an expandable titanium cage and an anterior cervical plate. The mean follow-up was 23 months (range, 8–42 months). Outcome was measured by clinical examinations and visual analogue scale (VAS) scale; myelopathy was classified according the Nurick grading system. Radiographic analysis comprised several parameters, including segmental Cobb angle, cervical lordosis, subsidence ratio and sagittal cage angle. Computed tomography was done 1 and 2 years after surgery; cervical spine radiographs were obtained 3, 6, 12 and 24 months after surgery.

Results

In 38 patients (79 %) osseous fusion or stability of construct could be demonstrated in the 2-year follow up examination. The mean restoration of segmental Cobb angle as well as cervical lordosis amounted to 7.6° and 5.4° respectively, both being statistically significant. Furthermore, a profound correction (10° or more) of the sagittal cervical curve was shown in 15 patients.

Conclusion

Regarding the restoration of the physiological sagittal cervical profile, expandable cervical cages seem to be efficient and easy to use for cervical spine reconstruction after anterior corpectomy. Donor-site-related complications are avoided, fast and strong reconstruction of the anterior column is provided, resulting in satisfactory fusion rates after 2 years.  相似文献   

20.

Purpose

To analyze the relationship between the cervical spine and global spinal-pelvic alignment in young patients with idiopathic scoliosis based on a morphological classification, and to postulate the hypothesis that cervical kyphosis is a part of cervico-thoracic kyphosis in them.

Methods

120 young patients with idiopathic scoliosis were recruited retrospectively between 2006 and 2011. The following values were measured and calculated: cervical angles (CA), cervico-thoracic angles (CTA), pelvic incidence (PI), pelvic tilt (PT), sacral slope (SS), spinal sacral angle (SSA), hip to C7/hip to sacrum, thoracic kyphosis (TK), lumbar lordosis (LL), Roussouly sagittal classification, Lenke Type Curve and Lumbar Modifier. The cervical curves were classified as lordosis, straight, sigmoid and kyphosis. They were categorized into four groups as cervical non-kyphosis group (CNK Group), cervical kyphosis group (CK Group), cervical-middle-thoracic kyphosis group (CMTK Group), and cervical-lower-thoracic kyphosis group (CLTK Group) according to their morphological characters of sagittal alignments. All parameters were compared and analyzed among groups.

Results

The incidence of cervical kyphosis was 40 % (48/120). The CA and the CTA were in significant correlation (r = 0.854, P = 0.00). The cervical spine alignments were revealed to be significantly different among groups (r = 85.04, P = 0.00). Significant differences among groups in CA, CTA and TK were also detected. A strong correlation between the group type and Lenke Lumbar Modifier was still seen (P < 0.05). Fisher’s exact test revealed that the individual vertebral body kyphosis and wedging were directly related to the overall cervical kyphosis (P = 0.00, respectively).

Conclusion

The cervical kyphosis is correlated with global sagittal alignment, and is a part of cervico-thoracic sagittal deformity in young patients with idiopathic scoliosis. Despite the deformity in cervical alignment, the global spine could still be well-balanced with spontaneous adjustment. The correlation between our grouping based on the morphological characteristics of the sagittal alignments and Lenke Lumbar Modifier suggests that the coupled motion principle be appropriate to explain the modifications both in coronal and sagittal planes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号