首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Haematopoietic cytokines such as IL-3, IL-5 and GM-CSF not only activate eosinophils but also prolong their life span by inhibiting their apoptotic cell death. We have studied the effects of IL-3, IL-5 and GM-CSF on apoptosis and mitogen-activated protein kinases (MAPKs) in a human eosinophilic leukaemic cell line (EoL-1). Results demonstrated that all three cytokines could trigger the receptor-mediated activation of extracellular signal-regulated kinase (ERK) within one hour but not p38 MAPK activity in EoL-1 cells. In contrast, sodium salicylate (NaSal), a nonsteroidal anti-inflammatory drug (NSAID), could activate p38 MAPK but not ERK within one hour. Both cytokines and specific p38 MAPK inhibitor SB 203580 could partly block the NaSal-induced apoptosis in EoL-1 cells. A specific MAPK/ERK kinase (MEK) inhibitor, PD 098059, could induce apoptosis and eliminate the protective effect of IL-3, IL-5 and GM-CSF against NaSal-induced apoptosis in EoL-1 cells. Taken together, cytokines IL-3, IL-5 and GM-CSF could prolong EoL-1 cells survival through the transient activation of ERK. On the other hand, activation of p38 MAPK in EoL-1 cells by NaSal could lead to apoptosis. Activation of p38 MAPK and the resulting induction of apoptosis in EoL-1 cells may be important to explain the anti-inflammatory action of NSAID in allergic inflammation.  相似文献   

4.
Haematopoietic cytokines such as IL-3, IL-5 and GM-CSF not only activate eosinophils but also prolong their life span by inhibiting their apoptotic cell death. We have studied the effects of IL-3, IL-5 and GM-CSF on apoptosis and mitogen-activated protein kinases (MAPKs) in a human eosinophilic leukaemic cell line (EoL-1). Results demonstrated that all three cytokines could trigger the receptor-mediated activation of extracellular signal-regulated kinase (ERK) within one hour but not p38 MAPK activity in EoL-1 cells. In contrast, sodium salicylate (NaSal), a nonsteroidal anti-inflammatory drug (NSAID), could activate p38 MAPK but not ERK within one hour. Both cytokines and specific p38 MAPK inhibitor SB 203580 could partly block the NaSal-induced apoptosis in EoL-1 cells. A specific MAPK/ERK kinase (MEK) inhibitor, PD 098059, could induce apoptosis and eliminate the protective effect of IL-3, IL-5 and GM-CSF against NaSal-induced apoptosis in EoL-1 cells. Taken together, cytokines IL-3, IL-5 and GM-CSF could prolong EoL-1 cells survival through the transient activation of ERK. On the other hand, activation of p38 MAPK in EoL-1 cells by NaSal could lead to apoptosis. Activation of p38 MAPK and the resulting induction of apoptosis in EoL-1 cells may be important to explain the anti-inflammatory action of NSAID in allergic inflammation.  相似文献   

5.
Haematopoietic cytokines such as IL-3, IL-5 and GM-CSF not only activate eosinophils but also prolong their life span by inhibiting their apoptotic cell death. We have studied the effects of IL-3, IL-5 and GM-CSF on apoptosis and mitogen-activated protein kinases (MAPKs) in a human eosinophilic leukaemic cell line (EoL-1). Results demonstrated that all three cytokines could trigger the receptor-mediated activation of extracellular signal-regulated kinase (ERK) within one hour but not p38 MAPK activity in EoL-1 cells. In contrast, sodium salicylate (NaSal), a nonsteroidal anti-inflammatory drug (NSAID), could activate p38 MAPK but not ERK within one hour. Both cytokines and specific p38 MAPK inhibitor SB 203580 could partly block the NaSal-induced apoptosis in EoL-1 cells. A specific MAPK/ERK kinase (MEK) inhibitor, PD 098059, could induce apoptosis and eliminate the protective effect of IL-3, IL-5 and GM-CSF against NaSal-induced apoptosis in EoL-1 cells. Taken together, cytokines IL-3, IL-5 and GM-CSF could prolong EoL-1 cells survival through the transient activation of ERK. On the other hand, activation of p38 MAPK in EoL-1 cells by NaSal could lead to apoptosis. Activation of p38 MAPK and the resulting induction of apoptosis in EoL-1 cells may be important to explain the anti-inflammatory action of NSAID in allergic inflammation.  相似文献   

6.
7.
During gram-negative sepsis, human monocytes are triggered to produce large quantities of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-alpha) in response to endotoxin (lipopolysaccharide [LPS]). Several studies have identified signal transduction pathways that are activated by LPS, including activation of nuclear factor-kappaB (NF-kappaB) and activation of mitogen-activated protein kinases (MAPKs), including ERK1 and ERK2, c-Jun N-terminal kinase, and p38. In this study, the relevance of ERK1 and ERK2 activation for LPS-induced TNF-alpha production by primary human monocytes has been addressed with PD-098059, which specifically blocks activation of MAPK kinase (MEK) by Raf-1. TNF-alpha levels in the monocyte culture supernatant, induced by 10 ng of LPS/ml, were reduced by PD-098059 (50 microM). In addition, PD-098059 also reduced TNF-alpha mRNA expression when cells were stimulated for 1 h with LPS. On the other hand, LPS-induced interleukin-10 (IL-10) levels in the monocyte supernatant were only slightly inhibited by PD-098059. Ro 09-2210, a recently identified MEK inhibitor, completely abrogated TNF-alpha levels at nanomolar concentrations. IL-10 levels also were strongly reduced. To show the efficacy of PD-098059 and Ro 09-2210, ERK1 and -2 activation was monitored by Western blotting with an antiserum that recognizes the phosphorylated (i.e., activated) forms of ERK1 and ERK2. Addition of LPS to human monocytes resulted in activation of both ERK1 and ERK2 in a time- and concentration (50% effective concentration between 1 and 10 ng of LPS/ml)-dependent manner. Activation of ERK2 was blocked by PD-098059 (50 microM), whereas ERK1 seemed to be less affected. Ro 09-2210 completely prevented LPS-induced ERK1 and ERK2 activation. LPS-induced p38 activation also was prevented by Ro 09-2210. These data further support the view that the ERK signal transduction pathway is causally involved in the synthesis of TNF-alpha by human monocytes stimulated with LPS.  相似文献   

8.
The capacity of cytokines to modulate neutrophil apoptosis is thought to be a major factor influencing the resolution of granulocytic inflammation. We have previously shown that the late survival effect of TNF-alpha in human neutrophils involves activation of both NF-kappa B and phosphoinositide 3-kinase (PI3-kinase) pathways. In this study, we address how these pathways integrate to prevent cell death. In human neutrophils, TNF-alpha (200 U/ml) induced rapid I kappa B-alpha degradation, NF-kappa B activation and IL-8 release (31.8+/-5.4 pg/10(5) cells/2 h), whereas GM-CSF (10 ng/ml) stimulated an equivalent IL-8 release (26.5+/-4.5 pg/10(5) cells/2 h) without enhanced I kappa B-alpha degradation or NF-kappa B activation compared to control. Importantly, inhibition of PI3-kinase did not modify TNF-alpha -induced I kappa B-alpha degradation, yet fully inhibited the survival effect of both cytokines. Inhibition of I kappa B-alpha phosphorylation, PI3-kinase or ERK1/2 activation blocked IL-8 release by both cytokines. Blocking IL-8 activity by inhibiting its synthesis or by using a neutralizing antibody enhanced the early pro-apoptotic effect of TNF-alpha and inhibited its late survival effect without affecting GM-CSF-induced survival. These data suggest that cross-talk between NF-kappa B and PI3-kinase pathways in TNF-alpha -stimulated neutrophils results from NF-kappa B/ERK1/2-dependent IL-8 production which acts in an autocrine manner to drive PI3-kinase-dependent survival. In contrast, GM-CSF-mediated survival does not involve NF-kappa B activation or IL-8 release.  相似文献   

9.
Secretory phospholipases A(2) (sPLA(2)) are enzymes released during inflammatory reactions. These molecules activate immune cells by mechanisms either related or unrelated to their enzymatic activity. We examined the signaling events activated by group IA (GIA) and group IB (GIB) sPLA(2) in human lung macrophages leading to cytokine/chemokine production. sPLA(2) induced the production of cytokines (TNF-alpha, IL-6 and IL-10) and chemokines (CCL2, CCL3, CCL4 and CXCL8), whereas no effect was observed on IL-12, CCL1, CCL5 and CCL22. sPLA(2) induced the phosphorylation of the MAPK p38 and ERK1/2, and inhibition of these kinases by SB203580 and PD98059, respectively, reduced TNF-alpha and CXCL8 release. Suppression of sPLA(2) enzymatic activity by a site-directed inhibitor influenced neither cytokine/chemokine production nor activation of MAPK, whereas alteration of sPLA(2) secondary structure suppressed both responses. GIA activated the phosphatidylinositol 3-kinase (PI3 K)/Akt system and a specific inhibitor of PI3 K (LY294002) reduced sPLA(2)-induced release of TNF-alpha and CXCL8. GIA promoted phosphorylation and degradation of IkappaB and inhibition of NF-kappaB by MG-132 and 6-amino-4-phenoxyphenylethylamino-quinazoline suppressed the production of TNF-alpha and CXCL8. These results indicate that sPLA(2) induce the production of cytokines and chemokines in human macrophages by a non-enzymatic mechanism involving the PI3 K/Akt system, the MAPK p38 and ERK1/2 and NF-kappaB.  相似文献   

10.
Alveolar macrophages (AMs) normally respond to lipopolysaccharide (LPS) by activating Toll-like receptor (TLR)-4 signaling, a mechanism critical to lung host defense against gram-negative bacteria such as Pseudomonas aeruginosa. Because granulocyte macrophage colony-stimulating factor (GM-CSF)-deficient (GM(-/-)) mice are hyporesponsive to LPS, we evaluated the role of GM-CSF in TLR-4 signaling in AMs. Pulmonary TNF-alpha levels and neutrophil recruitment 4 h after intratracheal administration of Pseudomonas LPS were reduced in GM(-/-) compared with wild-type (GM(+/+)) mice. Secretion of TNF-alpha by AMs exposed to LPS ex vivo was also reduced in GM(-/-) mice and restored in mice expressing GM-CSF specifically in the lungs (SPC-GM(+/+)/GM(-/-) mice). LPS-dependent NF-kappaB promoter activity, TNF-alpha secretion, and neutrophil chemokine release were reduced in AM cell lines derived from GM(-/-) mice (mAM) compared with GM(+/+) (MH-S). Retroviral expression of PU.1 in mAM cells, which normally lack PU.1, rescued all of these AM defects. To determine whether GM-CSF, via PU.1, regulated expression of TLR-4 pathway components, mRNA and protein levels for key components were evaluated in MH-S cells (GM(+/+), PU.1(Positive)), mAM cells (GM(-/-), PU.1(Negative)), and mAMPU.1+ cells (GM(-/-), PU.1(Positive)). Cluster of differentiation antigen-14, radioprotective 105, IL-1 receptor-associated kinase (IRAK)-M mRNA, and protein were dependent upon GM-CSF and restored by expression of PU.1. In contrast, expression of other TLR-4 pathway components (myeloid differentiation-2, TLR-4, IRAK-1, IRAK-2, Toll/IL-1 receptor domain containing adapter protein/MyD88 adaptor-like, myeloid differentiation primary-response protein 88, IRAK-4, TNF receptor-associated factor-6, NF-kappaB, inhibitor of NF-kappaB kinase) were not GM-CSF or PU.1-dependent. These results show that GM-CSF, via PU.1, enables AM responses to P. aeruginosa LPS by regulating expression of a specific subset of components of the TLR-4 signaling pathway.  相似文献   

11.
The effect of granulocyte colony-stimulating factor (G-CSF) on human neutrophil motility was studied using videomicroscopy. Stimulation of neutrophils with G-CSF resulted in enhanced motility with morphological change and increased adherence. Enhanced neutrophil motility was detected within 3-5 min after G-CSF stimulation, reached a maximum at 10 min, and was sustained for approximately 35 min. The maximum migration rate was 84.4 +/- 2.9 microm/5 min. A study using the Boyden chamber method revealed that G-CSF-stimulated neutrophils exhibited random migration but not chemotaxis. Enhanced neutrophil motility and morphological change were inhibited by MEK [mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase] inhibitors (PD98059 and U0126), and a phosphatidylinositol 3-kinase (PI3K) inhibitor (wortmannin), but not by a p38 MAPK inhibitor (SB203580). These findings are consistent with the fact that G-CSF selectively activates MEK/ERK and PI3K, but not p38, in neutrophils. MEK/ERK activation was associated with G-CSF-induced redistribution of F-actin and phosphorylated myosin light chain. Enhanced neutrophil motility was observed even in the presence of neutralizing anti-CD18 antibody, which prevented cell adherence. These findings indicate that G-CSF induces human neutrophil migration via activation of MEK/ERK and PI3K.  相似文献   

12.
13.
Human neutrophil migratory responses to Toll-like receptor (TLR) agonists were studied using videomicroscopy. When challenged with lipopolysaccharide (LPS, TLR4 agonist) or N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-(R)-cysteinyl-seryl-(lysyl)(3)-lysine (P3CSK4, TLR2 agonist), neutrophils displayed enhanced motility, which was found to reflect increased random migration but not directed migration (chemotaxis). Enhanced neutrophil motility was detected within 10 min after stimulation with LPS or P3CSK4, and was sustained for more than 80 min. Stimulation of neutrophils with LPS or P3CSK4 resulted in the activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK), which preceded neutrophil migration. TLR-mediated neutrophil migration was strongly suppressed by pretreatment of cells with U0126 (MAPK/ERK kinase inhibitor) but not with U0124 (an inactive analogue of U0126) or SB203580 (a p38 MAPK inhibitor), and was almost completely abolished by pretreatment of cells with U0126 and SB203580 in combination. Randomly migrating neutrophils in response to LPS or P3CSK4 displayed directed migration when further challenged with gradient concentrations of N-formyl-methionyl-leucyl-phenylalanine (FMLP) or platelet-activating factor (PAF). These findings indicate that TLR agonists stimulate human neutrophil migration via the activation of ERK and p38 MAPK, and FMLP- or PAF-induced neutrophil chemotaxis is not affected by the pre-exposure of cells to TLR agonists.  相似文献   

14.
15.
Granulocyte macrophage-colony-stimulating factor (GM-CSF), released from alveolar macrophages (AM), is an important regulator of eosinophil, T cell, and macrophage function and survival. We determined the mechanisms of GM-CSF regulation in AM from normal volunteers activated by lipopolysaccharide (LPS) by examining the role of nuclear factor-kappaB (NF-kappaB), and of p38 mitogen-activated protein (MAP) kinase and MAP kinase kinase (MKK-1). PD 098059 (10 microM), an inhibitor of upstream activator of MKK-1, inhibited GM-CSF expression, but the expression of GM-CSF was not inhibited by SB 203580 (10 microM), an inhibitor of p38-MAP kinase. Phosphorylation of extracellular signal-regulated kinase-1 (ERK-1), ERK-2, and p38 MAP kinase by LPS were demonstrated on Western blot analysis. LPS increased NF-kappaB:DNA binding as examined by electrophoretic mobility shift assay, but this was not suppressed by PD 098059 or by SB 203580. LPS induced an increase in NF-kappaB activation as examined by p50 translocation assay without suppression by PD 098059 or by SB 203580. SN50 (100 microM), an inhibitor of NF-kappaB translocation and the specific IKK-2-Inhibitor (AS602868; 10 microM), also prevented GM-CSF expression and release induced by LPS, indicating that GM-CSF release is NF-kappaB-dependent. PD 098059, but not SB 203580, inhibited LPS-induced histone acetyltransferase (HAT) activity, indicating chromatin modification. Furthermore, AS602868 and SN 50 suppressed LPS-induced HAT activity. TSA (10 ng/ml), an inhibitor of histone deacetylase (HDAC), reversed the inhibitory effect of PD 098059, SB 203580, SN 50 and AS602868 on GM-CSF release. GM-CSF expression and release in AM is controlled by NF-kappaB activation, and this is modulated by phosphorylation of MKK-1 and p38 MAP kinase acting on histone acetylation.  相似文献   

16.
Here we investigated the role of the phosphatidylinositol 3-kinase (PI 3-K) and mitogen-activated protein kinase (MAPK) pathways in the secretion of tumor necrosis factor (TNF)-α and interleukin (IL)-10 in human primary monocytes after stimulation with the PPD antigen of Mycobacterium tuberculosis. MAPK [extracellular signal-regulated kinase (ERK) 1/2 and p38] and Akt are rapidly phosphorylated in human monocytes stimulated with PPD. We found that the PI 3-K-Akt pathway stimulated by PPD is essential for both IL-10 and TNF-α production, although the inhibition of IL-10 production was more pronounced. The analysis of cytokine production using specific inhibitors of the MAPK pathway revealed that both p38 and ERK activation are essential for PPD-induced TNF-α production, whereas p38, but not ERK, activation is essential for IL-10 secretion. The inhibition of PI 3-K did not significantly activate p38 MAPK or ERK 1/2 in PPD-stimulated human monocytes. Further, the Src inhibitor PP2 inhibited the release of TNF-α but enhanced IL-10 release, suggesting the differential regulation of Src kinase in upstream signaling. Collectively, these data suggest that the PI 3-K and MAPK pathways play a central role in the regulation of both pro- and anti-inflammatory cytokines by the PPD antigen of M. tuberculosis.  相似文献   

17.
Endotoxin [lipopolysaccharide (LPS)] tolerance suppresses macrophage/monocyte proinflammatory-mediator production. This phenomenon also confers cross-tolerance to other stimuli including tumor necrosis factor (TNF) alpha and interleukin (IL)-1beta. Post-receptor convergence of signal transduction pathways might occur after LPS, IL-1beta, and TNF-alpha stimulation. Therefore, it was hypothesized that down-regulation of common signaling molecules induces cross-tolerance among these stimuli. LPS tolerance and cross-tolerance were examined in THP-1 cells. Phosphorylation of MAP kinases and degradation of inhibitor kappaBalpha (IkappaBalpha) DNA binding of nuclear factor-kappaB (NF-kappaB), and mediator production were examined. In naive cells, LPS, TNF-alpha, and IL-1beta induced IkappaBalpha degradation, kinase phosphorylation, and NF-kappaB DNA binding. LPS stimulation induced production of TNF-alpha or TxB2 and degradation of IRAK. However, neither TNF-alpha nor IL-1beta induced IRAK degradation or stimulated TNF-alpha or TxB2 production in naive cells. Pretreatment with each stimulus induced homologous tolerance to restimulation with the same agonist. LPS tolerance also suppressed LPS-induced TxB2 and TNF-alpha production. LPS pretreatment induced cross-tolerance to TNF-alpha or IL-1beta stimulation. Pretreatment with TNF-alpha induced cross-tolerance to LPS-induced signaling events and TxB2 production. Although pretreatment with IL-1beta did not induce cross-tolerance to LPS-induced signaling events, it strongly inhibited LPS TNF-alpha and TxB2 production. These data demonstrate that IL-1beta induces cross-tolerance to LPS-induced mediator production without suppressing LPS-induced signaling to MAP kinases or NF-kappaB activation.  相似文献   

18.
Neutrophils are an important cellular source of proinflammatory mediators, whose regulation may be of potential benefit for the treatment of a number of inflammatory diseases. However, the mechanisms of lipopolysaccharide (LPS)-induced neutrophil activation and its regulation by anti-inflammatory cytokines have not yet been fully elucidated. Recent studies have revealed that mitogen-activated protein kinases (MAPK) play a crucial role in the generation of proinflammatory mediators in some cell types. Therefore, we conducted this study to determine whether MAPK activation could be involved in prostaglandin E(2) (PGE(2)) production and cyclooxygenase (COX)-2 expression in LPS-stimulated human neutrophils. PD98059 (MEK1 inhibitor) and SB203580 (p38(MAPK) inhibitor) reduced PGE(2) production as well as COX-2 expression in LPS-stimulated neutrophils. In addition, both extracellular signal-regulated protein kinase (ERK) and p38(MAPK) were phosphorylated and activated in time- and dose-dependent manners. Since we previously showed that IL-10 and IL-4 similarly inhibited COX-2 expression in LPS-stimulated neutrophils, we next tested the effects of IL-10 and IL-4 on the phosphorylation and activation of both kinases. IL-10 inhibited the phosphorylation and activation of p38(MAPK), but not ERK. In addition, IL-4 caused a marginal inhibition in the activation of p38(MAPK). Taken together, these results suggest that both ERK and p38(MAPK) pathways are involved in LPS-induced COX-2 expression and PGE(2) production in neutrophils, and IL-10 and IL-4 inhibit neutrophil prostanoid synthesis by down-regulating the activation of p38(MAPK).  相似文献   

19.
20.
Yan L  Tang Q  Shen D  Peng S  Zheng Q  Guo H  Jiang M  Deng W 《Inflammation》2008,31(3):180-188
Tumor necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine involved in mitogen-activated protein kinase (MAPK) signaling pathways, contributes to the pathogenesis of cardiovascular diseases. Recently, suppressor of cytokine signaling-1 (SOCS-1) has been shown to modulate responses to TNF-alpha. However, whether SOCS-1 suppresses TNF-alpha-dependent apoptotic processes in cardiomyocytes and whether MAPK pathways mediate this effect have not been clearly elucidated. This study was carried out to define the role of SOCS-1 on TNF-alpha-induced apoptosis in neonatal rat cardiomyocytes and to investigate the signal pathways involved. Exposure to TNF-alpha (10 ng/ml for 24 h) significantly increased the number of apoptotic cells, the activity of caspase-8 and caspase-3, and the Bax/Bcl-xl ratio. In contrast, adenovirus-mediated gene transfer of SOCS-1 reversed the pro-apoptotic effect of TNF-alpha. Additionally, preincubation of cardiomyocytes with the extracellular signal-regulated kinase-1 and -2 (ERK1/2) inhibitor PD98059 attenuated the protective effect of SOCS-1, but the p38-MAPK inhibitor SB203580 and the c-Jun amino-terminal kinase (JNK) inhibitor SP600125 had no effect. Furthermore, the TNF-alpha-induced decrease in the phosphorylation of ERK1/2 was abolished by overexpression of SOCS-1. These findings suggest that SOCS-1 prevents TNF-alpha-induced apoptosis in cardiac myocytes via ERK1/2 pathway activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号