首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Starting from a cohort of 50 NADH-oxidoreductase (complex I) deficient patients, we carried out the systematic sequence analysis of all mitochondrially encoded complex I subunits (ND1 to ND6 and ND4L) in affected tissues. This approach yielded the unexpectedly high rate of 20% mutation identification in our series. Recurrent heteroplasmic mutations included two hitherto unreported (T10158C and T14487C) and three previously reported mutations (T10191C, T12706C and A13514G) in children with Leigh or Leigh-like encephalopathy. The recurrent mutations consistently involved T-->C transitions (p<10(-4)). This study supports the view that an efficient molecular screening should be based on an accurate identification of respiratory chain enzyme deficiency.  相似文献   

2.
We describe a novel mitochondrial ND2 mutation (T4681C) in a patient presenting with Leigh Syndrome. Biochemical analyses revealed a low isolated complex I activity in patient's fibroblasts, blood and skeletal muscle. Mutant transmitochondrial cybrid clones retained the specific complex I defect, demonstrating the mitochondrial genetic origin of the disease. The mutation leads to a L71P substitution at an evolutionary conserved amino acid stretch. By two-dimensional blue native electrophoresis (2D-BN-SDS-PAGE), decreased complex I levels were observed together with an accumulation of specific assembly intermediates, suggesting that the mutation disturbs the complex I assembly pathway.  相似文献   

3.
The mutation pattern of mitochondrial DNA (mtDNA) in mainland Chinese patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) has been rarely reported, though previous data suggested that the mutation pattern of MELAS could be different among geographically localized populations. We presented the results of comprehensive mtDNA mutation analysis in 92 unrelated Chinese patients with MELAS (85 with classic MELAS and 7 with MELAS/Leigh syndrome (LS) overlap syndrome). The mtDNA A3243G mutation was the most common causal genotype in this patient group (79/92 and 85.9%). The second common gene mutation was G13513A (7/92 and 7.6%). Additionally, we identified T10191C (p.S45P) in ND3, A11470C (p. K237N) in ND4, T13046C (p.M237T) in ND5 and a large-scale deletion (13025-13033:14417-14425) involving partial ND5 and ND6 subunits of complex I in one patient each. Among them, A11470C, T13046C and the single deletion were novel mutations. In summary, patients with mutations affecting mitochondrially encoded complex I (MTND) reached 12.0% (11/92) in this group. It is noteworthy that all seven patients with MELAS/LS overlap syndrome were associated with MTND mutations. Our data emphasize the important role of MTND mutations in the pathogenicity of MELAS, especially MELAS/LS overlap syndrome.  相似文献   

4.
Defects in NADH:ubiquinone oxidoreductase (complex I), the largest complex of the mitochondrial respiratory chain, account for most cases of respiratory chain deficiency in human. Complex I contains at least 45 subunits, 7 of which are encoded by mitochondrial DNA (mtDNA). Here we report a novel 10197G>A mutation of the ND3 gene in three unrelated families with Leigh syndrome (LS) or dystonia. Variable degrees of heteroplasmy were found in all tissues tested and a high percentage of mutant mtDNA was observed in muscle. The 10197G>A mutation modifies a hydrophobic alanine residue into a hydrophilic threonine (A47T) in a highly conserved domain of ND3 subunit. Furthermore, this defect could be transferred along with the mutant mtDNAs to rho degrees lymphoblastoid cells in cybrid experiments. However, nuclear modifier genes may also play a role in the phenotypic expression and severity of the 10197G>A mutation. The association of the 10197G>A ND3 mutation with an isolated biochemical defect involving complex I and the discovery of the 10197G>A mutation with a similar phenotype in three unrelated families establish its pathogenicity and demonstrate that the amino acid position A47 is important for the function of complex I. These results show that the 10197G>A mutation in the mitochondrial ND3 gene should be considered as a common mtDNA mutation responsible for LS and dystonia.  相似文献   

5.
The mitochondrial 13513G>A (D393N) mutation in the ND5 subunit of the respiratory chain complex I was initially described in association with MELAS syndrome. Recent observations have linked this mutation to Leigh disease. We screened for the 13513G>A mutation in a cohort of 265 patients with Leigh and Leigh-like disease. The mutation was found in a total of 5 patients. An additional patient who had clinical presentation consistent with a Leigh-like phenotype but with a normal brain MRI was added to the cohort. None of an additional 88 patients meeting MELAS disease criteria, nor 56 patients with respiratory chain deficiency screened for the 13513G>A were found positive for the mutation. The most frequent clinical manifestations in our patients were hypotonia, ocular and cerebellar involvement. Low mutation heteroplasmy in the range of 20–40% was observed in all 6 patients. This observation is consistent with the previously reported low heteroplasmy of this mutation in some patients with the 13513G>A mutation and complex I deficiency. However, normal complex I activity was observed in two patients in our cohort. As most patients with Leigh-like disease and the 13513G>A mutation have been described with complex I deficiency, this report adds to the previously reported subset of patients with normal respiratory complex function. We conclude that in any patient with Leigh or Leigh-like disease, testing for the 13513G>A mutation is clinically relevant and low mutant loads in blood or muscle may be considered pathogenic, in the presence of normal respiratory chain enzyme activities.  相似文献   

6.
The m.13513G > A transition in the mitochondrial gene encoding the ND5 subunit of respiratory chain complex I, can cause mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) and has been reported to be a frequent cause of Leigh syndrome (LS). We determined the frequency of the mutation in a cohort of 123 patients with reduced complex I activity in muscle (n = 113) or fibroblast (n = 10) tissue. We describe a Pyrosequencing assay for rapid detection and quantification of the m.13513G > A mutation. Two patients with the mutation were identified; both had LS, optical atrophy and a Wolff-Parkinson-White Syndrome (WPWS)-like cardiac conduction defect. The clinical presentation of the m.13513G > A mutation is discussed. We conclude that the m.13513G > A mutation seems not as frequent as previously suggested and is most likely to be present in patients with Leigh (-like) syndrome combined with a complex I deficiency, optic atrophy and/ or WPWS. In addition, we confirmed that the adjacent m.13514A > G mutation is a rare cause of LS or MELAS since no cases with this transition were found.  相似文献   

7.
Leigh syndrome is a subacute necrotising encephalomyopathy frequently ascribed to mitochondrial respiratory chain deficiency. This condition is genetically heterogeneous, as mutations in both mitochondrial (mt) and nuclear genes have been reported. Here, we report the G13513A transition in the ND5 mtDNA gene in three unrelated children with complex I deficiency and a peculiar MRI aspect distinct from typical Leigh syndrome. Brain MRI consistently showed a specific involvement of the substantia nigra and medulla oblongata sparing the basal ganglia. Variable degrees of heteroplasmy were found in all tissues tested and a high percentage of mutant mtDNA was observed in muscle. The asymptomatic mothers presented low levels of mutant mtDNA in blood leucocytes. This mutation, which affects an evolutionary conserved amino acid (D393N), has been previously reported in adult patients with MELAS or LHON/MELAS syndromes, emphasising the clinical heterogeneity of mitochondrial DNA mutations. Since the G13513A mutation was found in 21% of our patients with Leigh syndrome and complex I deficiency (3/14), it appears that this mutation represents a frequent cause of Leigh-like syndrome, which should be systematically tested for molecular diagnosis in affected children and for genetic counselling in their maternal relatives.  相似文献   

8.

Background

Overlapping phenotypes including LHON, MELAS, and Leigh syndrome have recently been associated with numerous mtDNA point mutations in the ND5 gene of complex I, now considered a mutational hot spot.

Objective

To identify the mtDNA defect in a family with a prevalent ocular phenotype, including LHON‐like optic neuropathy, retinopathy, and cataract, but characterised also by strokes, early deaths, and miscarriages on the maternal line.

Results

Sequencing of the entire mitochondrial genome from the proband''s muscle DNA identified the heteroplasmic 13042G→A transition, which was previously described only once in a patient with a different mitochondrial disease. This mutation fulfils the major pathogenic criteria, inducing an amino acid change (A236T) at an invariant position in a highly conserved domain of the ND5 gene. Phosphorus magnetic resonance spectroscopy in the proband disclosed an in vivo brain and skeletal muscle energy metabolism deficit.

Conclusions

These findings conclusively establish the pathogenic role of the 13042G→A mutation and underscore its variable clinical expression.  相似文献   

9.
目的 分析1个母系遗传的Leigh综合征家系的线粒体突变.方法 描述该家系患者的临床和实验室特点,应用DNA芯片结合直接测序对该家系患者进行全线粒体DNA测序.结果 该Leigh综合征家系患者临床以生长发育延迟、精神运动迟滞、呼吸节律异常、颅神经麻痹、小脑共济失调、抽搐为主要特征.神经影像学显示中脑、双侧大脑脚、导水管周围灰质、小脑齿状核及双侧丘脑受累.伴乳酸、丙酮酸代谢异常.突变分析证实该Leigh综合征家系由线粒体ND5*13513G>A突变所致.结论 ND5突变导致的母系遗传的Leigh综合征有某些特点,ND5*13513G>A突变可作为Leigh综合征患者的高频候选位点.  相似文献   

10.
The mitochondrial DNA (mtDNA) G13513A mutation in the ND5 subunit gene has been recently reported as a common cause of some phenotypes of mitochondrial myopathy. Until now, the prevalence and characteristics of this mutation in Leigh syndrome (LS) has not been determined. We screened 84 patients with Leigh syndrome (LS) and found the mutation in six (7%) of them. The proportions of mutant mtDNA in muscles were relatively low (42–70%). The onset of symptoms for patients with this mutation was from 9 months to 5 years. It should be noted that five patients had cardiac conduction abnormalities, particularly Wolff-Parkinson-White (WPW) syndrome (three patients). This study suggests that G13513A mutation is a frequent cause of LS and that patients with this mutation may have a characteristic clinical course.  相似文献   

11.
The mutation T3308C results in a Met --> Thr change at the highly conserved amino acid position 1 of the mtDNA ND1 gene (M1T). To study its potential pathogenic effect we have carried out a combination of mitochondrial protein synthesis and Northern and Western analyses. Our data demonstrate that M1T mutation does not affect the efficiency of the synthesis of the ND1 polypeptide and suggest that any codon specifying methionine located close to the 5' end of mitochondrial mRNAs may be used as translational initiator.  相似文献   

12.
Defects in NADH:ubiquinone oxidoreductase, the complex I of the mitochondrial respiratory chain represents the most frequent cause of mitochondrial diseases and is associated with a wide clinical spectrum varying from severe lactic acidosis in infants to muscle weakness in adults. Here, we report a patient with Leigh syndrome (LS), born to consanguineous parents, with severe complex I defect and a novel mutation in the NDUFS7 gene subunit. The homozygous mutation at nucleotide (nt) 434 G>A resulted in the modification of the arginine 145 to histidine in a highly conserved region of the protein. Parents were heterozygous carriers for this mutation. The mutation was absent from over than 100 healthy controls from the same ethnic origin. Identifying nuclear mutations as a cause of respiratory chain disorders will enhance the possibility of prenatal diagnosis and help us to understand how moleculardefects can lead to complex I deficiency.  相似文献   

13.
Mitochondrial cytopathies are characterized by a large variability of clinical phenotypes and severity. The 14487T>C mutation in mtDNA has been recently described to be associated with Leigh syndrome. The 12297T>C mutation has been described in isolated dilated cardiomyopathy patients. Here, we report a family with multiple members who harbor both mutations, with only a few individuals who are affected with Leigh syndrome. Mitochondrial whole genome sequencing analysis in the proband’s muscle specimen detected two nearly homoplasmic mutations: 14487T>C (M63V in ND6) and 12297T>C in the tRNA Leu (CUN) gene. These two mutations were also detected in the blood, urine sediments, hair follicles, and buccal swab samples of all matrilineal relatives tested. All individuals tested were nearly homoplasmic for the 12297T>C mutation, but had variable degrees of heteroplasmy for 14487T>C. We also screened for the frequency of these two mutations. Of 268 patients with Leigh or Leigh-like disease, one case was found to harbor the 14487T>C mutation (0.3%), and one had the 12297T>C mutation (0.3%). Neither mutation was detected in the 88 patients meeting MELAS syndrome criteria nor in the 56 patients with respiratory chain complex I or I + III deficiency. In conclusion, the 14487T>C mutation appears as the primary etiology of Leigh syndrome in this family, demonstrating the high level of heteroplasmy needed for a clinically significant phenotype with this mutation. The 12297T>C mutation was not associated with dilated cardiomyopathy for the family members who were clinically evaluated and who were shown by testing to be nearly homoplasmic for that mutation.  相似文献   

14.
Mutations in mitochondrial DNA (mtDNA), particularly those in the 12S rRNA gene, have been shown to be associated with sensorineural hearing loss. Recently, a systematic and extended mutation screening of the mitochondrial 12S rRNA gene has been initiated in the large clinical population of the Otology Clinic at the Chinese PLA General Hospital with the aim of identifying mtDNA mutations associated with hearing loss. Here we report the clinical and molecular characterization of a Chinese patient with auditory neuropathy. Sequence analysis of mtDNA in this patient identified a T-to-C transition at position 1095 (T1095C) in the 12S rRNA gene and other nucleotide changes. The T1095C mutation is expected to disrupt an evolutionarily conserved A-to-U base-pair, which is at the highly conserved P-site of 12S rRNA. The T1095C mutation has also been found to be associated with hearing loss in several unrelated families. Among other nucleotide changes, two novel variants: the I175V mutation in the CO2 and the V112M mutation in the ND6 localize at highly evolutionarily conserved residues from different organisms. Furthermore, the absence of mutation in the otoferlin related to auditory neuropathy showed that otoferlin may not be involved in the phenotypic expression of T1095C mutation in this subject. These data suggest that the T1095C mutation may be associated with auditory neuropathy in this subject, and two novel variants I175V and V112M may play a role in the phenotypic expression of the T1095C mutation.  相似文献   

15.
We report here on the clinical, genetic, and molecular characterization of three Han Chinese pedigrees with aminoglycoside-induced and nonsyndromic hearing loss. Clinical evaluation revealed the variable phenotype of hearing impairment including severity, age-at-onset, audiometric configuration in these subjects. The penetrance of hearing loss in WZD8, WZD9, and WZD10 pedigrees were 46%, 46%, and 50%, respectively, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrance of hearing loss in these pedigrees were 23%, 31%, and 37.5%, respectively. Mutational analysis of the complete mitochondrial genomes showed the homoplasmic A1555G mutation and distinct sets of mitochondrial DNA variants belonging to haplogroups D4b2b, B5b1, and F2, respectively. Of these, the tRNA(Cys) T5802C, tRNA(Thr) A15924C, and ND5 T12338C variants are of special interest as these variants occur at positions which are highly evolutionarily conserved nucleotides of tRNAs or amino acid of polypeptide. These homoplasmic mtDNA variants were absent among 156 unrelated Chinese controls. The T5802C and G15927A variants disrupted a highly conserved A-U or C-G base-pairing at the anticodon-stem of tRNA(Cys) or tRNA(Thr), while the ND5 T12338C mutation resulted in the replacement of the translation-initiating methionine with a threonine, and also located in two nucleotides adjacent to the 3' end of the tRNA(Leu(CUN)). Thus, mitochondrial dysfunctions, caused by the A1555G mutation, would be worsened by these mtDNA variants. Therefore, these mtDNA mutations may have a potential modifier role in increasing the penetrance and expressivity of the deafness-associated 12S rRNA A1555G mutation in those Chinese pedigrees.  相似文献   

16.

Background

Detection of mutations in the mitochondrial DNA (mtDNA) is usually limited to common mutations and the transfer RNA genes. However, mutations in other mtDNA regions can be an important cause of oxidative phosphorylation (OXPHOS) disease as well.

Objective

To investigate whether regions in the mtDNA are preferentially mutated in patients with OXPHOS disease.

Methods

Screening of the mtDNA for heteroplasmic mutations was performed by denaturing high‐performance liquid chromatography analysis of 116 patients with OXPHOS disease but without the common mtDNA mutations.

Results

An mtDNA sequence variant was detected in 15 patients, 5 of which were present in the ND5 gene. One sequence variant was new and three were known, one of which was found twice. The novel sequence variant m.13511A→T occurred in a patient with a Leigh‐like syndrome. The known mutation m.13513G→A, associated with mitochondrial encephalomyopathy lactic acidosis and stroke‐like syndrome (MELAS) and MELAS/Leigh/Leber hereditary optic neuropathy overlap syndrome, was found in a relatively low percentage in two patients from two different families, one with a MELAS/Leigh phenotype and one with a MELAS/chronic progressive external ophthalmoplegia phenotype. The known mutation m.13042G→A, detected previously in a patient with a MELAS/myoclonic epilepsy, ragged red fibres phenotype and in a family with a prevalent ocular phenotype, was now found in a patient with a Leigh‐like phenotype. The sequence variant m.12622G→A was reported once in a control database as a polymorphism, but is reported in this paper as heteroplasmic in three brothers, all with infantile encephalopathy (Leigh syndrome) fatal within the first 15 days of life. Therefore, a causal relationship between the presence of this sequence variant and the onset of mitochondrial disease cannot be entirely excluded at this moment.

Conclusions

Mutation screening of the ND5 gene is advised for routine diagnostics of patients with OXPHOS disease, especially for those with MELAS‐ and Leigh‐like syndrome with a complex I deficiency.Mitochondria are key for many cellular processes. One of the most important mechanisms is oxidative phosphorylation (OXPHOS) resulting in the production of cellular energy in the form of ATP. The OXPHOS system consists of five multiprotein complexes (I–V) and two mobile electron carriers (coenzyme q and cytochrome c) embedded in the lipid bilayer of the mitochondrial inner membrane.1,2 The mitochondrial genome encodes 13 essential polypeptides of the OXPHOS system and the necessary RNA machinery (two ribosomal RNAs and 22 transfer RNAs (tRNA)). The remaining structural proteins and proteins involved in import, assembly and mitochondrial DNA (mtDNA) replication are encoded by the nucleus and specifically targeted to the mitochondria. OXPHOS disease is characterised by a wide variety of clinical symptoms, in which one or more organs can be involved, and by genetic and clinical heterogeneity.2,3 With an estimated total number of about 1500 nuclear mitochondrial genes of which 600 have been identified so far,4 this complicates the process of identification of the underlying genetic defect. Although mutations in the mtDNA tRNA genes have been reported far more often than other mutations in mtDNA protein‐coding genes,2 this figure is highly biased by a preferential screening of these genes.In this study, the complete mtDNA was screened for heteroplasmic mutations using denaturing high‐performance liquid chromatography (DHPLC) analysis in a group of 116 unrelated patients suspected for OXPHOS disease but without the common mutations for mitochondrial encephalomyopathy, lactic acidosis and stroke‐like syndrome (MELAS) m.3243A→G, myoclonic epilepsy, ragged red fibres (MERRF) m.8344A→G, Leigh/neuropathy, ataxia and retinitis pigmentosa m.8993T→G/C or large deletions. For this group of patients, we report that the ND5 gene is a commonly mutated gene.  相似文献   

17.
We retrospectively analyzed the clinical, histological, and biochemical data of 11 children, five of which carried the maternally-inherited mitochondrial T8993C and six carrying the T8993G point mutations in the ATP synthase 6 gene. The percentage of heteroplasmy was 95% or higher in muscle and in blood. All patients had an early clinical presentation with muscle hypotonia, severe extrapyramidal dysfunction and Leigh disease demonstrated by the cranial MRI. A slower clinical progression and more frequent sensory-neuronal involvement were noted in the patients carrying the T8993C mutation in a high mutation load in muscle and blood. No histological abnormality was found. In 9 out of 11 patients a decreased ATP production was detected, and complex V activity was deficient in all children. The activities of the respiratory enzyme complexes II and IV were normal, whereas an associated combined complex I and III deficiency were present in two patients. No obvious difference was found between the biochemical parameters of the two patient groups harboring different mutations in the same gene. No correlation was found between the degree of complex V enzyme deficiency and the severity of the phenotype. We confirmed an impaired assembly/stability of complex V in our patients. This is the first report of decreased activity and impaired assembly/stability of complex V in patients with T8993C mutations measured in muscle tissue.  相似文献   

18.
Complex I deficiency is a frequent cause of mitochondrial disease as it accounts for one third of these disorders. By genotyping several putative disease loci using microsatellite markers we were able to describe a new NDUFS7 mutation in a consanguineous family with Leigh syndrome and isolated complex I deficiency. This mutation lies in the first intron of the NDUFS7 gene (c.17-1167 C>G) and creates a strong donor splice site resulting in the generation of a cryptic exon. This mutation is predicted to result in a shortened mutant protein of 41 instead of 213 amino acids containing only the first five amino acids of the normal protein. Analysis of the assembly state of the respiratory chain complexes under native condition revealed a marked decrease of fully assembled complex I while the quantity of the other complexes was not altered. These results report the first intronic NDUFS7 gene mutation and demonstrate the crucial role of NDUFS7 in the biogenesis of complex I.  相似文献   

19.
It is known that respiratory function deteriorates with age. Endogenous damage to DNA is thought to contribute to the aging process. The mitochondrial oxidative phosphorylation system, a bio-engine, consists of five complexes, and 13 subunits of those complexes are biosynthesized from information encoded in mitochondrial DNA. Mitochondrial DNA is shown to have a much higher mutation rate than nuclear DNA. We examined the diaphragms obtained at autopsy from 34 humans, 23 men and 11 women, ranging in age from 25 to 85 yr, for mitochondrial DNA deletions using the polymerase chain reaction method. Multiple mitochondrial DNA deletions were detected particularly among the elderly; the number of deletions in those over age 70 was significantly higher than in those under age 40. The occurrence of a 3.4-kbp deletion of mitochondrial DNA increased with age, i.e., 0% of those under age 30, 20.0% of those in their forties, 25.0% of those in their fifties, 28.6% of those in their sixties, 72.7% of those in their seventies, and in all of those over age 80. The mutation was based on the directly repeated sequence, 5'-TCACCCC-3', which exists in both the CO3 gene and the ND5 gene. Replication impairment occurred at that directly repeated sequence, which caused the elimination of a genome between the CO3 gene and the ND5 gene, and information for biosynthesis of four subunits in complex I (ND3, ND4L, ND4, and ND5), one in complex IV (CO3), and five transfer RNA genes was missing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We report a novel point mutation in the gene for the mitochondrially encoded ND6 subunit of the NADH:ubiquinone oxidoreductase (complex I of the respiratory chain) in a patient with MELAS syndrome. The mutation causes a change from alanine to valine in the most conserved region of the ND6 subunit. The patient was heteroplasmic for the mutation in both muscle and blood, but the mutation was not detected in the patient's mother. A marked reduction of complex I activity was found in the patient's muscular tissue. This is the first report of a mutation in the ND6 subunit causing MELAS. Our data confirm the genetic heterogeneity in mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes syndrome, and confirms that MELAS can be caused by mutation in polypeptide-coding mtDNA genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号