首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective.— We investigated in a sham‐controlled trial the analgesic effects of a 4‐week treatment of transcranial direct current stimulation (tDCS) over the primary motor cortex in chronic migraine. In addition, using a high‐resolution tDCS computational model, we analyzed the current flow (electric field) through brain regions associated with pain perception and modulation. Methods.— Thirteen patients with chronic migraine were randomized to receive 10 sessions of active or sham tDCS for 20 minutes with 2 mA over 4 weeks. Data were collected during baseline, treatment and follow‐up. For the tDCS computational analysis, we adapted a high‐resolution individualized model incorporating accurate segmentation of cortical and subcortical structures of interest. Results.— There was a significant interaction term (time vs group) for the main outcome (pain intensity) and for the length of migraine episodes (ANOVA, P < .05 for both analyses). Post‐hoc analysis showed a significant improvement in the follow‐up period for the active tDCS group only. Our computational modeling studies predicted electric current flow in multiple cortical and subcortical regions associated with migraine pathophysiology. Significant electric fields were generated, not only in targeted cortical regions but also in the insula, cingulate cortex, thalamus, and brainstem regions. Conclusions.— Our findings give preliminary evidence that patients with chronic migraine have a positive, but delayed, response to anodal tDCS of the primary motor cortex. These effects may be related to electrical currents induced in pain‐related cortical and subcortical regions.  相似文献   

2.
ObjectiveTo simulate the process of transcranial direct current stimulation (tDCS) on patients after decompressive craniectomy (DC), and to model cortical electric field distributions under different electrode montages, we constructed a finite element model that represented the human head at high resolution.MethodsUsing computed tomography images, we constructed a human head model with high geometrical similarity. The removed bone flap was simplified to be circular with a diameter of 12 cm. We then constructed finite element models according to bioelectrical parameters. Finally, we simulated tDCS on the finite element models under different electrode montages.ResultsInward current had a linear relationship with peak electric field value, but almost no effect on electric field distribution. If the anode was not over the skull hole (configuration 2), there was almost no difference in electric field magnitude and focality between the circular and square electrodes. However, if the anode was right over the hole (configuration 1), the circular electrodes led to higher peak electric field values and worse focality. In addition, configuration 1 significantly decreased focality compared with configuration 2.ConclusionOur results might serve as guidelines for selecting current and electrode montage settings when performing tDCS on patients after DC.  相似文献   

3.
Past evidence has shown that motor cortical stimulation with invasive and non-invasive brain stimulation is effective to relieve central pain. Here we aimed to study the effects of another, very safe technique of non-invasive brain stimulation--transcranial direct current stimulation (tDCS)--on pain control in patients with central pain due to traumatic spinal cord injury. Patients were randomized to receive sham or active motor tDCS (2mA, 20 min for 5 consecutive days). A blinded evaluator rated the pain using the visual analogue scale for pain, Clinician Global Impression and Patient Global Assessment. Safety was assessed with a neuropsychological battery and confounders with the evaluation of depression and anxiety changes. There was a significant pain improvement after active anodal stimulation of the motor cortex, but not after sham stimulation. These results were not confounded by depression or anxiety changes. Furthermore, cognitive performance was not significantly changed throughout the trial in both treatment groups. The results of our study suggest that this new approach of cortical stimulation can be effective to control pain in patients with spinal cord lesion. We discuss potential mechanisms for pain amelioration after tDCS, such as a secondary modulation of thalamic nuclei activity.  相似文献   

4.
Polanía R  Paulus W  Antal A  Nitsche MA 《NeuroImage》2011,54(3):2287-2296
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability and activity in a polarity-dependent way. Stimulation for a few minutes has been shown to induce plastic alterations of cortical excitability and to improve cognitive performance. These effects might be related to stimulation-induced alterations of functional cortical network connectivity. We aimed to investigate the impact of tDCS on cortical network function by functional connectivity and graph theoretical analysis of the BOLD fMRI spontaneous activity. fMRI resting-state datasets were acquired immediately before and after 10-min bipolar tDCS during rest, with the anode placed over the left primary motor cortex (M1) and the cathode over the contralateral frontopolar cortex. For each dataset, grey matter voxel-based synchronization matrices were calculated and thresholded to construct undirected graphs. Nodal connectivity degree and minimum path length maps were calculated and compared before and after tDCS. Nodal minimum path lengths significantly increased in the left somatomotor (SM1) cortex after anodal tDCS, which means that the number of direct functional connections from the left SM1 to topologically distant grey matter voxels significantly decreased. In contrast, functional coupling between premotor and superior parietal areas with the left SM1 significantly increased. Additionally, the nodal connectivity degree in the left posterior cingulate cortex (PCC) area as well as in the right dorsolateral prefrontal cortex (right DLPFC) significantly increased. In summary, we provide initial support that tDCS-induced neuroplastic alterations might be related to functional connectivity changes in the human brain. Additionally, we propose our approach as a powerful method to track for neuroplastic changes in the human brain.  相似文献   

5.
Transcranial direct current stimulation (tDCS) effectively modulates cortical excitability. Several studies suggest clinical efficacy in chronic pain syndromes. However, little is known regarding its effects on cortical pain processing. In this double-blind, randomized, cross-over, sham controlled study, we examined the effects of anodal, cathodal, and sham stimulation of the left motor cortex in 16 healthy volunteers using functional imaging during an acute heat pain paradigm as well as pain thresholds, pain intensity ratings, and quantitative sensory testing. tDCS was applied at 1 mA for 15 minutes. Neither cathodal nor anodal tDCS significantly changed brain activation in response to nociceptive stimulation when compared with sham stimulation. However, contrasting the interaction of stimulation modes (anodal/cathodal) resulted in a significant decrease of activation in the hypothalamus, inferior parietal cortex, inferior parietal lobule, anterior insula, and precentral gyrus, contralateral to the stimulation site after anodal stimulation, which showed the opposite behavior after cathodal stimulation. Pain ratings and heat hyperalgesia showed only a subclinical pain reduction after anodal tDCS. Larger-scale clinical trials using higher tDCS intensities or longer durations are necessary to assess the neurophysiological effect and subsequently the therapeutic potential of tDCS.  相似文献   

6.
Limb amputation may lead to chronic painful sensations referred to the absent limb, ie phantom limb pain (PLP), which is likely subtended by maladaptive plasticity. The present study investigated whether transcranial direct current stimulation (tDCS), a noninvasive technique of brain stimulation that can modulate neuroplasticity, can reduce PLP. In 2 double-blind, sham-controlled experiments in subjects with unilateral lower or upper limb amputation, we measured the effects of a single session of tDCS (2 mA, 15 min) of the primary motor cortex (M1) and of the posterior parietal cortex (PPC) on PLP, stump pain, nonpainful phantom limb sensations and telescoping. Anodal tDCS of M1 induced a selective short-lasting decrease of PLP, whereas cathodal tDCS of PPC induced a selective short-lasting decrease of nonpainful phantom sensations; stump pain and telescoping were not affected by parietal or by motor tDCS. These findings demonstrate that painful and nonpainful phantom limb sensations are dissociable phenomena. PLP is associated primarily with cortical excitability shifts in the sensorimotor network; increasing excitability in this system by anodal tDCS has an antalgic effect on PLP. Conversely, nonpainful phantom sensations are associated to a hyperexcitation of PPC that can be normalized by cathodal tDCS. This evidence highlights the relationship between the level of excitability of different cortical areas, which underpins maladaptive plasticity following limb amputation and the phenomenology of phantom limb, and it opens up new opportunities for the use of tDCS in the treatment of PLP.  相似文献   

7.
Zheng X  Alsop DC  Schlaug G 《NeuroImage》2011,58(1):26-33
Transcranial direct current stimulation (tDCS) can up- and down-regulate cortical excitability depending on current direction, however our abilities to measure brain-tissue effects of the stimulation and its after-effects have been limited so far. We used regional cerebral blood flow (rCBF), a surrogate measure of brain activity, to examine regional brain-tissue and brain-network effects during and after tDCS. We varied the polarity (anodal and cathodal) as well as the current strength (0.8 to 2.0mA) of the stimulation. Fourteen healthy subjects were randomized into receiving either anodal or cathodal stimulation (two subjects received both, one week apart) while undergoing Arterial Spin Labeling (ASL) in the MRI scanner with an alternating off-on sampling paradigm. The stimulating, MRI-compatible electrode was placed over the right motor region and the reference electrode over the contralateral supra-orbital region. SPM5 was used to process and extract the rCBF data using a 10mm spherical volume of interest (VOI) placed in the motor cortex directly underneath the stimulating scalp electrode. Anodal stimulation induced a large increase (17.1%) in rCBF during stimulation, which returned to baseline after the current was turned off, but exhibited an increase in rCBF again in the post-stimulation period. Cathodal stimulation induced a smaller increase (5.6%) during stimulation, a significant decrease compared to baseline (-6.5%) after cessation, and a continued decrease in the post-stimulation period. These changes in rCBF were all significant when compared to the pre-stimulation baseline or to a control region. Furthermore, for anodal stimulation, there was a significant correlation between current strength and the increase in rCBF in the on-period relative to the pre-stimulation baseline. The differential rCBF after-effects of anodal (increase in resting state rCBF) and cathodal (decrease in resting state rCBF) tDCS support findings of behavioral and cognitive after-effects after cathodal and anodal tDCS. We also show that tDCS not only modulates activity in the brain region directly underlying the stimulating electrode but also in a network of brain regions that are functionally related to the stimulated area. Our results indicate that ASL may be an excellent tool to investigate the effects of tDCS and its stimulation parameters on brain activity.  相似文献   

8.
The accurate identification of obscured and concealed objects in complex environments was an important skill required for survival during human evolution, and is required today for many forms of expertise. Here we used transcranial direct current stimulation (tDCS) guided using neuroimaging to increase learning rate in a novel, minimally guided discovery-learning paradigm. Ninety-six subjects identified threat-related objects concealed in naturalistic virtual surroundings used in real-world training. A variety of brain networks were found using functional magnetic resonance imaging (fMRI) data collected at different stages of learning, with two of these networks focused in right inferior frontal and right parietal cortex. Anodal 2.0 mA tDCS performed for 30 min over these regions in a series of single-blind, randomized studies resulted in significant improvements in learning and performance compared with 0.1 mA tDCS. This difference in performance increased to a factor of two after a one-hour delay. A dose-response effect of current strength on learning was also found. Taken together, these brain imaging and stimulation studies suggest that right frontal and parietal cortex are involved in learning to identify concealed objects in naturalistic surroundings. Furthermore, they suggest that the application of anodal tDCS over these regions can greatly increase learning, resulting in one of the largest effects on learning yet reported. The methods developed here may be useful to decrease the time required to attain expertise in a variety of settings.  相似文献   

9.
目的 探讨经颅直流电刺激(tDCS)对脑梗死后吞咽障碍的有效强度及其神经机制。方法 2016年1月至2018年12月,脑梗死后吞咽障碍住院患者60例随机分为低强度组(n = 20)、中强度组(n = 20)和高强度组(n = 20),分别给予1.0 mA、1.5 mA和2.0 mA tDCS,共30 d。治疗前后观察吞咽造影和脑电α波变化。结果 与治疗前相比,高强度组口腔期评分升高(t = -2.196, P < 0.05),α波优势频率显著升高( t = -6.488, P < 0.001)。 结论 高强度tDCS可提高脑梗死后吞咽障碍患者脑兴奋性,改善吞咽功能。  相似文献   

10.
Measurements of motor evoked potentials (MEPs) have shown that anodal and cathodal transcranial direct current stimulations (tDCS) have facilitatory or inhibitory effects on corticospinal excitability in the stimulated area of the primary motor cortex (M1). Here, we investigated the online effects of short periods of anodal and cathodal tDCS on human brain activity of healthy subjects and associated hemodynamics by concurrent blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) at 3T. Using a block design, 20s periods of tDCS at 1 mA intensity over the left M1 altered with 20s periods without tDCS. In different fMRI runs, the effect of anodal or cathodal tDCS was assessed at rest or during finger tapping. A control experiment was also performed, in which the electrodes were placed over the left and right occipito-temporo-parietal junction. Neither anodal nor cathodal tDCS over the M1 for 20s stimulation duration induced a detectable BOLD signal change. However, in comparison to a voluntary finger tapping task without stimulation, anodal tDCS during finger tapping resulted in a decrease in the BOLD response in the supplementary motor area (SMA). Cathodal stimulation did not result in significant change in BOLD response in the SMA, however, a tendency toward decreased activity could be seen. In the control experiment neither cathodal nor anodal stimulation resulted in a significant change of BOLD signal during finger tapping in any brain area including SMA, PM, and M1. These findings demonstrate that the well-known polarity-dependent shifts in corticospinal excitability that have previously been demonstrated using measurements of MEPs after M1 stimulation are not paralleled by analogous changes in regional BOLD signal. This difference implies that the BOLD signal and measurements of MEPs probe diverse physiological mechanisms. The MEP amplitude reflects changes in transsynaptic excitability of large pyramidal neurons while the BOLD signal is a measure of net synaptic activity of all cortical neurons.  相似文献   

11.
Epilepsy is an intractable disease, though many treatment modalities have been developed. Recently, noninvasive transcranial direct current stimulation (tDCS), which can change brain excitability, was introduced and has been applied for therapeutic purposes regarding epilepsy. A suppression of seizures was experienced by cathodal tDCS in a medication refractory pediatric epileptic patient. The patient was an 11-year-old female who had focal cortical dysplasia of the cerebral hemisphere. The patient was treated with antiepileptic drugs but the mean seizure frequency was still eight episodes per month. The tDCS cathode was placed at the midpoint of P4 and T4 in the 10-20 EEG system where the abnormal wave was observed on a sleep EEG. Two mA of tDCS was applied 20 minutes a day, five days a week for two weeks. During a two-month period after treatment termination, only six seizure attacks occurred, and the duration of each seizure episode also decreased. tDCS was applied under the same conditions for another two weeks. For two months after the second treatment session, only one seizure attack occurred, and it showed great improvement compared to the eight seizure attacks per month before the tDCS treatment. The medications were not changed, and there were no notable side effects that were caused by tDCS.  相似文献   

12.
Purpose: The present study aimed to explore the short-term effect of anodal transcranial direct current stimulation (tDCS) on tongue twister production.

Method: Thirty healthy native Cantonese adult speakers were randomly assigned to the anodal tDCS group or the sham tDCS group. Anodal tDCS of 2?mA was applied over the Broca’s area of the brain. The stimulation lasted for 20?min for the anodal tDCS group and 30?s for the sham tDCS group. The participants were instructed to produce a list of tongue twisters before, immediately after and 4?h after tDCS.

Result: Speech rate and response accuracy measured immediately after stimulation were significantly faster and higher, respectively, than before stimulation. Although there was no change in speech rate measured at 4?h after stimulation, response accuracy at that time point was significantly lower than that measured immediately after stimulation. However, there were no significant differences between the anodal tDCS and sham tDCS groups in either speech rate or response accuracy.

Conclusion: The findings revealed that a single session of anodal tDCS over the Broca’s area did not significantly improve speech production during tongue twister production.  相似文献   

13.
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that has been investigated for the treatment of many neurological or neuropsychiatric disorders. Its main effect is to modulate the cortical excitability depending on the polarity of the current applied. However, understanding the mechanisms by which these modulations are induced and persist is still an open question. A possible marker indicating a change in cortical activity is the subsequent variation in regional blood flow and metabolism. These variations can be effectively monitored using functional near-infrared spectroscopy (fNIRS), which offers a noninvasive and portable measure of regional blood oxygenation state in cortical tissue. We studied healthy volunteers at rest and evaluated the changes in cortical oxygenation related to tDCS using fNIRS. Subjects were tested after active stimulation (12 subjects) and sham stimulation (10 subjects). Electrodes were applied at two prefrontal locations; stimulation lasted 10 min and fNIRS data were then collected for 20 min. The anodal stimulation induced a significant increase in oxyhemoglobin (HbO2) concentration compared to sham stimulation. Additionally, the effect of active 10-min tDCS was localized in time and lasted up to 8–10 min after the end of the stimulation. The cathodal stimulation manifested instead a negligible effect. The changes induced by tDCS on HbO2, as captured by fNIRS, agreed with the results of previous studies. Taken together, these results help clarify the mechanisms underlying the regional alterations induced by tDCS and validate the use of fNIRS as a possible noninvasive method to monitor the neuromodulation effect of tDCS.  相似文献   

14.
Transcranial direct current stimulation (tDCS) has recently emerged as a promising approach to enhance neurorehabilitative outcomes. However, little is known about how the local electrical field generated by tDCS relates to underlying neuroplastic changes and behavior. To address this question, we present a case study analysis of an individual with hemianopia due to stroke and who benefited from a combined visual rehabilitation training and tDCS treatment program. Activation associated with a visual motion perception task (obtained by functional magnetic resonance imaging; fMRI) was used to characterize local changes in brain activity at baseline and after training. Individualized, high-resolution electrical field modeling reproducing precise cerebral and lesioned tissue geometry, predicted distortions of current flow in peri-lesional areas and diffuse clusters of peak electric fields. Using changes in fMRI signal as an index of cortical recovery, correlations to the electrical field map were determined. Significant correlations between the electrical field and change in fMRI signal were region specific including cortical areas under the anode electrode and peri-lesional visual areas. These patterns were consistent with effective tDCS facilitated rehabilitation. We describe the methodology used to analyze tDCS mechanisms through combined fMRI and computational modeling with the ultimate goal of developing a rationale for individualized therapy.  相似文献   

15.
Previous studies have shown that non‐invasive stimulation of the dorsolateral prefrontal cortex (DLPFC) could modulate experimentally induced pain and working memory (WM) in healthy subjects. However, the two aspects have never been assessed concomitantly. The present study was set up to investigate the effects of transcranial direct current stimulation (tDCS) of the DLPFC on thermal pain and WM in the same population of healthy volunteers. In a randomized and balanced order of different sessions separated by 1 week, 20 min of 2 mA anodal, cathodal or sham tDCS were applied to the left or right DLPFC in two separate experiments. Twelve healthy volunteers were enrolled for each stimulated hemisphere. Warm and cold detection thresholds, heat and cold pain thresholds as well as heat pain tolerance thresholds were measured before, during and following tDCS. WM was assessed by a 2‐back task applied once during cortical stimulation. Anodal tDCS of the right DLPFC led to an increase of tolerance to heat pain. The 2‐back task revealed fewer outliers during cathodal tDCS of the left DLPFC. The present data show an involvement of the DLPFC in the processing of pain and WM. There was no correlation between these findings, suggesting that the analgesic effects of cortical stimulation are not associated with cognitive processing. However, this conclusion is difficult to affirm because of some limitations of the study regarding the parameters of stimulation or a ceiling effect of the 2‐back task for instance.  相似文献   

16.
Transcranial direct current stimulation (tDCS) was recently reintroduced as a tool for inducing relatively long-lasting changes in cortical excitability in focal brain regions. Anodal stimulation over the primary motor cortex enhances cortical excitability, whereas cathodal stimulation decreases it. Prior studies have shown that enhancement of D2 receptor activity by pergolide consolidates tDCS-generated excitability diminution for up to 24 hours and that cathodal stimulation of the primary motor cortex diminishes experimentally induced pain sensation and reduces the N2-P2 amplitude of laser-evoked potentials immediately poststimulation. In the present study, we investigated the effect of pergolide and cathodal tDCS over the primary motor cortex on laser-evoked potentials and acute pain perception induced with a Tm:YAG laser in a double-blind, randomized, placebo-controlled, crossover study. The amplitude changes of laser-evoked potentials and subjective pain rating scores of 12 healthy subjects were analyzed prior to and following 15 minutes cathodal tDCS combined with pergolide or placebo intake at five different time points. Our results indicate that the amplitude of the N2 component was significantly reduced following cathodal tDCS for up to two hours. Additionally, pergolide prolonged the effect of the cathodal tDCS for up to 24 hours, and a significantly lowered pain sensation was observed for up to 40 minutes. Our study is a further step toward clinical application of cathodal tDCS over the primary motor cortex using pharmacological intervention to prolong the excitability-diminishing effect on pain perception for up to 24 hours poststimulation. Furthermore, it demonstrates the potential for repetitive daily stimulation therapy for pain patients.  相似文献   

17.
目的:观察增生疗法联合经颅直流电刺激治疗膝骨性关节炎疼痛的效果并探讨其作用机制。方法:选取膝骨性关节炎患者42例作为研究对象,随机分成观察组和对照组各21例。2组各有1例脱落,最终各20例完成研究。2组均给予增生治疗,即20%高渗葡萄糖8ml关节内注射,每周1次,共3次。观察组再给以电流强度为2mA的经颅直流电刺激治疗,每天1次,每次20min,持续2周;对照组也给予电刺激治疗。但每次仅在治疗开始和结束时各提供15s的2mA电流刺激以模拟真刺激的体感知觉,其余时间无电流刺激,每天1次,每次20min,持续2周。分别于治疗前、第1次增生治疗后2、4、6周,采用视觉模拟评分(VAS)、西安大略和麦克马斯特大学骨关节炎指数(WOMAC)、压痛阈(PPT)和条件性疼痛调制(CPM)对患者的膝关节功能活动及疼痛情况进行评估。结果:治疗前,2组患者的VAS、WOMAC、PPT及CPM比较均无统计学差异。在第1次增生治疗后的2、4、6周,观察组患者的VAS评分较同时间点对照组降低,CPM较同时间点对照组升高(均P<0.05);2组患者的VAS、WOMAC均较治疗前降低(均P<0.05),...  相似文献   

18.
Several brain stimulation technologies are beginning to evidence promise as pain treatments. However, traditional versions of 1 specific technique, transcranial direct current stimulation (tDCS), stimulate broad regions of cortex with poor spatial precision. A new tDCS design, called high definition tDCS (HD-tDCS), allows for focal delivery of the charge to discrete regions of the cortex. We sought to preliminarily test the safety and tolerability of the HD-tDCS technique as well as to evaluate whether HD-tDCS over the motor cortex would decrease pain and sensory experience. Twenty-four healthy adult volunteers underwent quantitative sensory testing before and after 20 minutes of real (n = 13) or sham (n = 11) 2 mA HD-tDCS over the motor cortex. No adverse events occurred and no side effects were reported. Real HD-tDCS was associated with significantly decreased heat and cold sensory thresholds, decreased thermal wind-up pain, and a marginal analgesic effect for cold pain thresholds. No significant effects were observed for mechanical pain thresholds or heat pain thresholds. HD-tDCS appears well tolerated, and produced changes in underlying cortex that are associated with changes in pain perception. Future studies are warranted to investigate HD-tDCS in other applications, and to examine further its potential to affect pain perception. PERSPECTIVE: This article presents preliminary tolerability and efficacy data for a new focal brain stimulation technique called high definition transcranial direct current stimulation. This technique may have applications in the management of pain.  相似文献   

19.
目的:探查恢复期失语症患者左外侧裂后部(PPR)经颅直流电刺激(tDCS)对图命名及听理解的作用。方法:采用成组前后对照实验设计,治疗分为A、B期。A期为4周语言治疗,B期为4周tDCS治疗与语言治疗。tDCS刺激电极阳极位于左侧外侧裂后部周围区,阴极位于右肩。刺激强度1.1mA,每次20min。7例脑卒中后失语症患者在每个治疗期前后进行汉语失语症心理语言评价(PACA)。结果:7例患者经4周A期语言治疗后,图命名和听觉词—图匹配成绩未见显著改变;经4周tDCS与语言治疗后,患者的图命名和听觉词—图匹配成绩显著提高(图命名成绩平均提高64%,听觉词—图匹配成绩平均提高15%)。结论:tDCS阳极刺激左外侧裂后部周围区可以提高恢复期失语症患者的图命名和听觉词—图匹配任务的正确率,其治疗机制可能是由于阳极刺激提高了脑损伤周围区的神经元兴奋性,促进了语言功能的代偿。tDCS为失语症提供了一种新的有效的治疗技术。  相似文献   

20.
目的 观察经颅直流电刺激(tDCS)联合镜像疗法(MT)对脑卒中患者上肢运动功能障碍的影响。 方法 2018年4月至2019年3月,78例脑卒中住院患者随机分为tDCS组(n= 26)、MT组(n= 26)和联合组(n= 26),分别在常规药物治疗和康复训练的基础上增加阳极tDCS、MT和tDCS联合MT。治疗前和治疗4周后,测量患侧脑区运动诱发电位皮质潜伏期(CL)、中枢运动传导时间(CMCT),采用Fugl-Meyer评定量表上肢部分(FMA-UE)和改良Barthel指数(MBI)进行评定。 结果 治疗后,3组患者CL和CMCT,以及FMA-UE和MBI评分均较治疗前改善(|t| > 2.609, P < 0.001),联合组优于tDCS组和MT组( P < 0.05)。 结论 tDCS和MT均可以改善脑卒中患者患侧大脑皮质兴奋性和上肢运动功能,联合应用效果更佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号