首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effect of reduction in visceral obesity on the kinetics of apolipoprotein B-100 (apoB) metabolism in a controlled dietary intervention study in 26 obese men. Hepatic secretion of very low density lipoprotein (VLDL) apoB was measured using a primed, constant, infusion of 1-[13C]leucine. In seven men receiving the reduction diet, intermediate density lipoprotein (IDL) and low density lipoprotein (LDL) apoB kinetics were also determined. ApoB isotopic enrichment was measured using gas chromatography-mass spectrometry, and SAAM-II was used to estimate the fractional turnover rates. Subcutaneous and visceral adipose tissues at the L3 vertebra were quantified by magnetic resonance imaging. With weight reduction there was a significant decrease (P < 0.05) in body mass index, waist circumference, and visceral adipose tissue. The plasma concentrations of total cholesterol, triglyceride, insulin, and lathosterol also significantly decreased (P < 0.05). Compared with weight maintenance, weight reduction significantly decreased the VLDL apoB concentration, pool size, and hepatic secretion of VLDL apoB (delta+2.5+/-4.6 vs. delta-14.7+/-4.0 mg/kg fat free mass-day; P = 0.010), but did not significantly alter its fractional catabolism. Weight reduction was also associated with an increased fractional catabolic rate of LDL apoB (0.24+/-0.07 vs. 0.54+/-0.10 pools/day; P = 0.002) and conversion of VLDL to LDL apoB (11.7+/-2.5% vs. 56.3+/-11.4%; P = 0.008). A change in hepatic VLDL apoB secretion was significantly correlated with a change in visceral adipose tissue area (r = 0.59; P = 0.043), but not plasma concentrations of insulin, free fatty acids, or lathosterol. The data support the hypothesis that a reduction in visceral adipose tissue is associated with a decrease in the hepatic secretion of VLDL apoB, and this may be due to a decrease in portal lipid substrate supply. Weight reduction may also increase the fractional catabolism of LDL apoB, but this requires further evaluation.  相似文献   

2.
Familial hypobetalipoproteinemia (FHBL) is an autosomal codominant disorder characterized by low levels of apolipoprotein (apo) B and low-density lipoprotein (LDL) cholesterol. Decreased production rates of apoB have been demonstrated in vivo in FHBL heterozygotes. In the present study, we wished to investigate whether the transport of triglycerides was similarly affected in these subjects. Therefore, we studied the in vivo kinetics of very-low-density lipoprotein (VLDL) triglycerides and VLDL apoB-100 simultaneously in 7 FHBL heterozygotes from 2 well-characterized kindreds and 7 healthy normolipidemic subjects. In both kindreds, hypobetalipoproteinemia is caused by mutations in the 5' portion of the apoB gene specifying short truncations of apoB undetectable in plasma. A bolus injection of deuterated palmitate and a primed constant infusion of deuterated leucine were given simultaneously, and their incorporation into VLDL triglycerides and VLDL apoB, respectively, were determined by gas chromatography-mass spectrometry. Kinetic parameters were calculated by using compartmental modeling. VLDL apoB fractional catabolic rates (FCRs) in FHBL heterozygotes and controls were similar (11. 6+/-3.9 and 10.9+/-2.4 pools per day, respectively, P=0.72). On the other hand, FHBL heterozygotes had a 75% decrease in VLDL apoB production rates compared with normal subjects (5.8+/-1.8 versus 23.4+/-7.1 mg/kg per day, P<0.001). The decreased production rates of VLDL apoB accounts for the very low concentrations of plasma apoB found in heterozygotes from these kindreds (24% of normal). Mean VLDL triglyceride FCRs in FHBL subjects and controls were not significantly different (1.06+/-0.74 versus 0.89+/-0.50 pools per hour, respectively, P=0.61). There was a good correlation between VLDL apoB FCR and VLDL triglyceride FCR in the 2 groups (r=0.84, P<0. 001). VLDL triglyceride production rates were decreased by 60% in FHBL heterozygotes compared with controls (9.3+/-6.0 versus 23.0+/-9. 6 micromol/kg per hour, P=0.008). Thus, the hepatic secretion of VLDL triglycerides is reduced in FHBL heterozygotes but to a lesser extent than the decrease in apoB-100 secretion. This is probably achieved by the secretion of VLDL particles enriched with triglycerides.  相似文献   

3.
To further explore the physiology of very-low-density lipoprotein (VLDL) apolipoprotein B-100 (apoB), we performed a pooled analysis of 21 reports based on the intravenous administration of stable isotope-labeled amino acids in a total of 154 healthy normolipidemic subjects. Prandial status was the most significant independent predictor (P < .001) of the hepatic secretion of apoB, which was higher in the fed state compared with the fasted state (1,819 +/- 188 v 1,046 +/- 61 mg/d, P < .001). In the fed state, apoB secretion increased with age (P = .003) and tended to be higher in men compared with women (P = .0065). The fractional catabolism of VLDL apoB decreased with weight (P = .0038) and was lower in men versus women (8.38 +/- 0.55 v 12.59 +/- 1.65 pools/d, P = .007), as well as patients that were carriers of the E4 allele compared with those who were not carriers of this allele (5.52 +/- 0.49 v 9.58 +/- 0.87 pools/d, P < .001). The VLDL apoB concentration in both the fed and fasted states was dependent on both the rate of hepatic production and fractional clearance of apoB. Plasma cholesterol, triglyceride, low-density lipoprotein (LDL) cholesterol, and high-density lipoprotein (HDL) cholesterol concentrations in the fasted state were principally determined by the fractional catabolism of VLDL apoB (P< .005). These findings suggest that under physiologic conditions in healthy individuals, the transport of VLDL apoB in plasma is predominantly determined by age, sex, body weight, apoE genotype, and prandial status.  相似文献   

4.
We examined the effect of atorvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, on the kinetics of apolipoprotein B-100 (apoB) metabolism in 25 viscerally obese men in a placebo-controlled study. Very-low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), and low-density lipoprotein (LDL) apoB kinetics were measured using an iv bolus injection of [(2)H(3)]leucine. ApoB isotopic enrichment was measured using gas chromatography-mass spectrometry. Kinetic parameters were derived by using a multicompartmental model (SAAM-II). Compared with the placebo group, atorvastatin treatment resulted in significant (P < 0.001) decreases in total cholesterol (-34%), triglyceride (-19%), LDL cholesterol (-42%), total apoB (-39%), and lathosterol (-86%); VLDL-apoB, IDL-apoB, and LDL-apoB pool sizes also fell significantly (P < 0.002) by -27%, -22%, and -41%, respectively. This was associated with an increase in the fractional catabolic rates of VLDL-apoB (+58%, P = 0.019), IDL-apoB (+40%, P = 0.049), and LDL-apoB (+111%, P = 0.001). However, atorvastatin did not significantly alter the production and conversion rates of apoB in all lipoproteins. We conclude that in obese subjects, atorvastatin decreases the plasma concentration of all apoB-containing lipoproteins chiefly by increasing their catabolism and not by decreasing their production or secretion. This may be owing to up-regulation of hepatic receptors as a consequence of inhibition of cholesterogenesis.  相似文献   

5.
It has been postulated that the rate of hepatic very low density lipoprotein (VLDL) apolipoprotein (apo) B secretion is dependent upon the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. To test this hypothesis in vivo, apoB kinetic studies were carried out in miniature pigs before and after 21 days treatment with high-dose (10 mg/kg/day), atorvastatin (A) or simvastatin (S) (n = 5). Pigs were fed a diet containing fat (34% of calories) and cholesterol (400 mg/day; 0.1%). Statin treatment decreased plasma total cholesterol [31 (A) vs. 20% (S)] and low density lipoprotein (LDL) cholesterol concentrations [42 (A) vs. 24% (S)]. Significant reductions in plasma total triglyceride (46%) and VLDL triglyceride (50%) concentrations were only observed with (A). Autologous [131I]VLDL, [125I]LDL, and [3H]leucine were injected simultaneously, and apoB kinetic parameters were determined by triple-isotope multicompartmental analysis using SAAM II. Statin treatment decreased the VLDL apoB pool size [49 (A) vs. 24% (S)] and the hepatic VLDL apoB secretion rate [50 (A) vs. 33% (S)], with no change in the fractional catabolic rate (FCR). LDL apoB pool size decreased [39 (A) vs. 26% (S)], due to reductions in both the total LDL apoB production rate [30 (A) vs. 21% (S)] and LDL direct synthesis [32 (A) vs. 23% (S)]. A significant increase in the LDL apoB FCR (15%) was only seen with (A). Neither plasma VLDL nor LDL lipoprotein compositions were significantly altered. Hepatic HMG-CoA reductase was inhibited to a greater extent with (A), when compared with (S), as evidenced by 1) a greater induction in hepatic mRNA abundances for HMG-CoA reductase (105%) and the LDL receptor (40%) (both P < 0.05); and 2) a greater decrease in hepatic free (9%) and esterified cholesterol (25%) (both P < 0.05). We conclude that both (A) and (S) decrease hepatic VLDL apoB secretion, in vivo, but that the magnitude is determined by the extent of HMG-CoA reductase inhibition.  相似文献   

6.
Subjects with the apolipoprotein (apo) E4 allele have been shown to have higher low density lipoprotein (LDL) cholesterol and apoB levels than do subjects with the other alleles. To elucidate the metabolic mechanisms responsible for this finding, we examined the kinetics of apoB-48 within triglyceride-rich lipoproteins (TRLs) and of apoB-100 within very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and LDL by using a primed constant infusion of [5,5,5-(2)H(3)]leucine in the fed state (hourly feeding) during consumption of an average American diet in 18 normolipidemic subjects, 12 of whom had the apoE3/E3 genotype and 6, the apoE3/E4 genotype. Lipoproteins were isolated by ultracentrifugation and apolipoproteins, by sodium dodecyl sulfate gels; isotope enrichment was assessed by gas chromatography-mass spectrometry. Kinetic parameters were calculated by multicompartmental modeling of the data with SAAM II software. Compared with the apoE3/E3 subjects, the apoE3/E4 subjects had significantly higher levels of total apoB, 100. 1+/-17.8 versus 135.4+/-34.0 mg/dL (P=0.009), and significantly higher levels of LDL apoB-100, 88.1+/-19.2 versus 127.5+/-32.7 mg/dL (P=0.005), respectively. The pool size of TRL apoB-48 was 17.4% lower for apoE3/E4 subjects compared with apoE3/E3 subjects due to a 33.3% lower production rate (P=0.28). There was no significant difference in the TRL apoB-48 fractional catabolic rate (5.1+/-2.2 versus 5.0+/-2.1 pools per day). The pool size for VLDL apoB-100 was 36% lower for apoE3/E4 subjects compared with apoE3/E3 subjects due entirely to a 30% lower production rate (P=0.04). The LDL apoB-100 pool size was 57.8% higher (P=0.003) for apoE3/E4 subjects compared with apoE3/E3 subjects due to a 35.5% lower fractional catabolic rate of LDL apoB-100 (P=0.003), with no significant difference in production rate. In addition, 77% of VLDL apoB-100 was converted to LDL apoB-100 in apoE3/E4 subjects compared with 58% in apoE3/E3 subjects (P=0.05). In conclusion, the presence of 1 E4 allele was associated with higher LDL apoB-100 levels owing to lower fractional catabolism of LDL apoB-100 and a 33% increase in the conversion of VLDL apoB-100 to LDL apoB-100.  相似文献   

7.
Lipoprotein metabolism in subjects with hepatic lipase deficiency   总被引:2,自引:0,他引:2  
A heritable deficiency of hepatic lipase (HL) provides insights into the physiologic function of HL in vivo. The metabolism of apolipoprotein B (apoB)-100 in very-low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), and low-density lipoprotein (LDL) and of apoA-I and apoA-II in high-density lipoprotein (HDL) particles lipoprotein (Lp)(AI) and Lp(AI:AII) was assessed in 2 heterozygous males for compound mutations L334F/T383M or L334F/R186H, with 18% and 22% of HL activity, respectively, compared with 6 control males. Subjects were provided with a standard Western diet for a minimum of 3 weeks. At the end of the diet period, apo kinetics was assessed using a primed-constant infusion of [5,5,5-(2)H(3)] leucine. Mean plasma triglyceride (TG) and HDL cholesterol levels were 55% and 12% higher and LDL cholesterol levels 19% lower in the HL patients than control subjects. A higher proportion of apoB-100 was in the VLDL than IDL and LDL fractions of HL patients than control subjects due to a lower VLDL apoB-100 fractional catabolic rate (FCR) (4.63 v 9.38 pools/d, respectively) and higher hepatic production rate (PR) (33.24 v 10.87 mg/kg/d). Delayed FCR of IDL (2.78 and 6.31 pools/d) and LDL (0.128 and 0.205 pools/d) and lower PR of IDL (3.67 and 6.68 mg/kd/d) and LDL 4.57 and 13.07 mg/kg/d) was observed in HL patients relative to control subjects, respectively. ApoA-I FCR (0.09 and 0.13 pools/d) and PR (4.01 and 6.50 mg/kg/d) were slower in Lp(AI:AII) particles of HL patients relative to control subjects, respectively, accounting for the somewhat higher HDL cholesterol levels. HL deficiency may result in a lipoprotein pattern associated with low heart disease risk.  相似文献   

8.
Type IIB hyperlipidemia is associated with premature vascular disease, an atherogenic lipoprotein phenotype characterised by elevated levels of triglyceride-rich VLDL and small dense LDL, together with subnormal levels of HDL. The dose-dependent and independent effects of a potent HMGCoA reductase inhibitor, Atorvastatin, at daily doses of 10 and 40 mg, were evaluated on triglyceride-rich lipoprotein subclasses (VLDL-1, VLDL-2 and IDL), on the major LDL subclasses (light LDL, LDL-1+LDL-2, D: 1.019-1.029 g/ml; intermediate LDL, LDL-3, D: 1.029-1.039 g/ml and small dense LDL, LDL-4+LDL+5, D: 1.039-1.063 g/ml), on CETP-mediated cholesteryl ester transfer from HDL to apoB-containing lipoproteins, on phospholipid transfer protein activity and on plasma-mediated cellular cholesterol efflux in patients (n=10) displaying type IIB hyperlipidemia. Plasma concentrations of triglyceride-rich lipoprotein subclasses (TRL: VLDL-1, Sf 60-400; VLDL-2, Sf 20-60 and IDL, Sf 12-20) and of LDL (D: 1.019-1.063 g/ml) were markedly diminished after 6 weeks of statin treatment at 10 mg per day (-31 and -36%, respectively; P<0.002) and by 42 and 51%, respectively at the 40 mg per day dose. Increasing doses of atorvastatin progressively normalised both the quantitative and qualitative features of the LDL subclass profile, in which dense LDL predominated at baseline. Indeed, dense LDL levels were reduced by up to 57% at the 40-mg dose, leading to a shift in the peak of the density profile towards larger, buoyant LDL particles typical of normolipidemic subjects. In addition, marked reduction in numbers of apoB100-containing particle acceptors led to a 30% decrease (P<0.02) in CETP-mediated CE transfer from HDL. Finally, a significant dose-dependent statin-mediated elevation (+15% at 10 mg; P=0.0003 and +35% at 40 mg; P<0.0001 compared to baseline) in the capacity of plasma from type IIB subjects to mediate free cholesterol efflux from Fu5AH hepatoma cells was observed. Moreover, atorvastatin (40 mg per day) significantly increased plasma apoAI levels (+24%; P<0.05), thereby suggesting that this statin enhances production of apoAI and with it, formation of nascent pre-beta HDL particles. Plasma PLTP activity was not affected by either dose of atorvastatin. We conclude that increasing the dose of atorvastatin leads to dose-dependent, preferential and progressive reduction in particle numbers of atherogenic VLDL-2, IDL and dense LDL, and concomitantly, to enhanced cellular cholesterol efflux in type IIB dyslipidemia, thereby diminishing the atherosclerotic burden in subjects characterised by high cardiovascular risk.  相似文献   

9.
In a randomized, double-blind, crossover trial of 5-week treatment period with placebo or rosuvastatin (10 or 40 mg/day) with 2-week placebo wash-outs between treatments, the dose-dependent effect of rosuvastatin on apolipoprotein (apo) B-100 kinetics in metabolic syndrome subjects were studied. Compared with placebo, there was a significant dose-dependent decrease with rosuvastatin in plasma cholesterol, triglycerides, LDL cholesterol, apoB and apoC-III concentrations and in the apoB/apoA-I ratio, lathosterol:cholesterol ratio, HDL cholesterol concentration and campesterol:cholesterol ratio also increased significantly. Rosuvastatin significantly increased the fractional catabolic rates (FCR) of very-low density lipoprotein (VLDL), intermediate density lipoprotein (IDL) and LDL-apoB and decreased the corresponding pool sizes, with evidence of a dose-related effect. LDL apoB production rate (PR) fell significantly with rosuvastatin 40 mg/day with no change in VLDL and IDL-apoB PR. Changes in triglycerides were significantly correlated with changes in VLDL apoB FCR and apoC-III concentration, and changes in lathosterol:cholesterol ratio were correlated with changes in LDL apoB FCR, the associations being more significant with the higher dose of rosuvastatin. In the metabolic syndrome, rosuvastatin decreases the plasma concentration of apoB-containing lipoproteins by a dose-dependent mechanism that increases their rates of catabolism. Higher dose rosuvastatin may also decrease LDL apoB production. The findings provide a dose-related mechanism for the benefits of rosuvastatin on cardiovascular disease in the metabolic syndrome.  相似文献   

10.
The acute reduction of low-density lipoprotein (LDL) cholesterol obtained by LDL-apheresis allows the role of the high level of circulating LDL on lipoprotein metabolism in heterozygous familial hypercholesterolemia (heterozygous FH) to be addressed. We studied apolipoprotein B (apoB) kinetics in five heterozygous FH patients before and the day after an apheresis treatment using endogenous labeling with [(2)H(3)]leucine. Compared with younger control subjects, heterozygous FH patients before apheresis showed a significant decrease in the fractional catabolic rate of LDL (0.24 +/- 0.08 vs. 0.65 +/- 0.22 day(-1); P < 0.01), and LDL production was increased in heterozygous FH patients (18.9 +/- 7.0 vs. 9.9 +/- 4.2 mg/kg.day; P < 0.05). The modeling of postapheresis apoB kinetics was performed using a nonsteady state condition, taking into account the changing pool size of very low density lipoprotein (VLDL), intermediate density lipoprotein, and LDL apoB. The postapheresis kinetic parameters did not show statistical differences compared with preapheresis parameters in heterozygous FH patients; however, a trend for increases in fractional catabolic rate of LDL (0.24 +/- 0.08 vs. 0.35 +/- 0.09 day(-1); P = 0.067) and the production of VLDL (13.7 +/- 8.3 vs. 21.9 +/- 1.6 mg/kg.day; P = 0.076) was observed. These results suggested that the marked decrease in plasma LDL obtained a short time after LDL-apheresis is able to stimulate LDL receptor activity and VLDL production in heterozygous FH.  相似文献   

11.
Apolipoprotein B (apoB) metabolism was investigated in four normal, three type IV, and three type V hyperlipoproteinemic subjects. Following injection of autologous radioiodinated very low density lipoprotein (VLDL) the rate of clearance of the apoprotein from this particle and its subsequent appearance in low density lipoprotein (LDL) was measured by frequent apoB specific activity determinations over an 11-day period. The resultant data were analyzed using the SAAM 27 computer program. In the normal subjects, more than 95% of the injected VLDL apoB was rapidly transferred to the LDL density range and accounted for all LDL apoB synthesis in that group. The plasma VLDL apoB concentration in the type IV group was, on average, five times the normal level. This resulted primarily from a doubling of the VLDL apoB synthetic rate associated with a defective or saturated catabolic mechanism. Only 60% of this material subsequently appeared in LDL, while the remainder was catabolized via an LDL-independent pathway. The turnover parameters of LDL apoB were normal in the type IV patients. Type V hyperlipoproteinemic subjects exhibited a 12- to 35-fold increase in plasma VLDL apoB concentration over normal. This again derived from increased VLDL apoB synthesis in the presence of defective removal of the apoprotein; the fractional catabolic rate of VLDL apoB in this group was 14% of the normal value. However, in contrast to the type IV patient data, more than 85% of the apoB in type V VLDL eventually appeared in LDL whose turnover rate was raised as a result of an increase in its catabolism; the fractional catabolic rate of LDL apoB in type V patients was four-fold above normal. The plasma LDL apoB pool size was substantially reduced in these subjects. This study shows that in hyperlipoproteinemic pheno-types IV and V there exist multiple anomalies of apoB metabolism affecting both VLDL and LDL.  相似文献   

12.
Combined hyperlipidemia predisposes subjects to coronary heart disease. Two lipid abnormalities--increased cholesterol and atherogenic dyslipidemia--are potential targets of lipid-lowering therapy. Successful management of both may require combined drug therapy. Statins are effective low-density lipoprotein (LDL) cholesterol-lowering drugs. For atherogenic dyslipidemia (high triglycerides, small LDL, and low high-density lipoprotein [HDL]), fibrates are potentially beneficial. The present study was designed to examine the safety and efficacy of a combination of low-dose simvastatin and fenofibrate in the treatment of combined hyperlipidemia. It was a randomized, placebo-controlled trial with a crossover design. Three randomized phases were employed (double placebo, simvastatin 10 mg/day and placebo, and simvastatin 10 mg/day plus fenofibrate 200 mg/day). Each phase lasted 3 months, and in the last week of each phase, measurements were made of plasma lipids, lipoprotein cholesterol, plasma apolipoproteins B, C-II, and C-III and LDL speciation on 3 consecutive days. Simvastatin therapy decreased total cholesterol by 27%, non-HDL cholesterol by 30%, total apolipoprotein B by 31%, very low-density lipoprotein (VLDL) + intermediate-density lipoprotein (IDL) cholesterol by 37%, VLDL + IDL apolipoprotein B by 14%, LDL cholesterol by 28%, and LDL apolipoprotein B by 21%. The addition of fenofibrate caused an additional decrease in VLDL + IDL cholesterol and VLDL + IDL apolipoprotein B by 36% and 32%, respectively. Simvastatin alone caused a small increase in the ratio of large-to-small LDL, whereas the addition of fenofibrate to simvastatin therapy caused a marked increase in the ratio of large-to-small LDL species. Simvastatin alone produced a small (6%) and insignificant increase in HDL cholesterol concentrations. When fenofibrate was added to simvastatin therapy, HDL cholesterol increased significantly by 23%. No significant side effects were observed with either simvastatin alone or with combined drug therapy. Therefore, a combination of simvastatin 10 mg/day and fenofibrate 200 mg/day appears to be effective and safe for the treatment of atherogenic dyslipidemia in combined hyperlipidemia.  相似文献   

13.
Aims Previous studies have suggested that plasma lipids are affected differently by the peroxisome proliferators‐activated receptor (PPAR)‐γ agonists pioglitazone and rosiglitazone. The aim of this study was to perform a quantitative lipoprotein turnover study to determine the effects of PPAR‐γ agonists on lipoprotein metabolism. Methods Twenty‐four subjects with Type 2 diabetes treated with diet and/or metformin were randomized in a double‐blind study to receive 30 mg pioglitazone, 8 mg rosiglitazone or placebo once daily for 3 months. Before and after treatment, absolute secretion rate (ASR) and fractional catabolic rate (FCR) of very low‐density lipoprotein (VLDL), intermediate‐density lipoprotein (IDL) and low‐density lipoprotein (LDL) apolipoprotein B100 were measured with a 10‐h infusion of 1‐13C leucine. Results There was a significant decrease in glycated haemoglobin (HbA1c) and non‐esterified fatty acids with pioglitazone (P = 0.01; P = 0.02) and rosiglitazone (P = 0.04; P = 0.003), respectively, but no change in plasma triglyceride or high‐density lipoprotein (HDL) cholesterol. Following rosiglitazone, there was a significant reduction in VLDL apolipoprotein B100 (apoB) ASR (P = 0.01) compared with baseline, a decrease in VLDL triglyceride/apoB (P = 0.01), an increase in LDL2 cholesterol (P = 0.02) and a decrease in LDL3 cholesterol (P = 0.02). There was a decrease in VLDL triglyceride/apoB (P = 0.04) in the pioglitazone group. There was no significant difference in change in VLDL ASR or FCR among the three groups. Conclusions In patients with Type 2 diabetes and normal lipids, treatment with rosiglitazone or pioglitazone had no significant effect on lipoprotein metabolism compared with placebo.  相似文献   

14.
Familial hypobetalipoproteinemia (FHBL) is an autosomal codominant disorder that may result from different mutations in the apolipoprotein B (apoB) gene or chromosome 2. However, linkage of FHBL to the apoB gene was ruled out in 2 kindreds reported to date, and the genetic and metabolic bases for FHBL remain unknown. One of the reported kindreds is our 40-member F kindred, in which we found linkage of FHBL to a novel susceptibility region on chromosome 3p21. 1-2. In addition to having low apoB levels, some, but not all, of the affected subjects in the F kindred also had low levels of high density lipoprotein (HDL) cholesterol and apoA-I. Our aim was to define the metabolic bases of the disorder in the F kindred. Therefore, we studied the in vivo kinetics of apoB and apoA-I and very low density lipoprotein (VLDL) triglycerides in 4 affected subjects and 5 normolipidemic relatives. Deuterated leucine and deuterated glycerol were used to label the apolipoproteins and triglycerides, respectively. Compartmental modeling was used to obtain the kinetic parameters. Affected subjects had (1) normal fractional catabolic rates (FCRs) for VLDL apoB, (2) increased FCRs for low density lipoprotein (LDL) apoB (0.050+/-0.009 versus 0. 030+/-0.006 pools per hour for normal subjects, P=0.005), and (3) decreased production rates of VLDL apoB (11.4+/-1.7 versus 25.6+/-4. 9 mg. kg(-1). d(-1), P=0.003), LDL apoB (7.8+/-1.3 versus 12.7+/-3.7 mg. kg(-1). d(-1), P=0.04), and VLDL triglycerides (8.2+/-4.5 versus 19.6+/-10.8 58 micromol. kg(-1). h(-1), P=0.09). These data differ from those obtained in previously studied FHBL heterozygotes bearing apoB-2 and apoB-9, 2 very short truncations of apoB. Low HDL cholesterol and apoA-I levels were caused by higher apoA-I FCRs (0. 035+/-0.005 versus 0.018+/-0.005 pools per hour in controls, P<0.01) without significant decrease in apoA-I production rates (18.7+/-2.7 versus 22.8+/-5.6 mg. kg(-1). d(-1)). In conclusion, decreased secretion of apoB-containing lipoproteins and hypercatabolism of LDL account for low apoB and cholesterol levels in this novel form of FHBL.  相似文献   

15.
We investigated the effects of estrogen and simvastatin, administered both alone and in combination, on the plasma lipid levels and lipoprotein-related enzymes in 45 postmenopausal women with type IIa hypercholesterolemia. They received 0.625 mg conjugated equine estrogen (n=15), 5 mg simvastatin (n=15), or the combination (n=15) daily for 3 months. We measured the concentrations of cholesterol and triglyceride in the plasma, and in the very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL)1 (1.019相似文献   

16.
The low density lipoprotein (LDL) receptor is well known for its role in mediating the removal of apolipoprotein B (apoB)-containing lipoproteins from plasma. Results from in vitro studies in primary mouse hepatocytes suggest that the LDL receptor may also have a role in the regulation of very low density lipoprotein (VLDL) production. We conducted in vivo experiments using LDLR-/-, LDLR+/-, and wild-type mice (LDLR indicates LDL receptor gene) in which the production rate of VLDL was measured after the injection of [35S]methionine and the lipase inhibitor Triton WR1339. Despite the fact that LDLR-/- mice had a 3.7-fold higher total cholesterol level and a 2.1-fold higher triglyceride level than those of the wild-type mice, there was no difference in the production rate of VLDL triglyceride or VLDL apoB between these groups of animals. Experiments were also conducted in apobec1-/- mice, which make only apoB-100, the form of apoB that binds to the LDL receptor. Interestingly, the apobec1-/- mice had a significantly higher production rate of apoB than did the wild-type mice. However, despite significant differences in total cholesterol and triglyceride levels, there was no difference in the production rate of total or VLDL triglyceride or VLDL apoB between LDLR-/- and LDLR+/- mice on an apobec1-/- background. These results indicate that the LDL receptor has no effect on the production rate of VLDL triglyceride or apoB in vivo in mice.  相似文献   

17.
Dyslipidemia is an important risk factor for cardiovascular disease in patients with chronic renal failure (CRF). We evaluated the safety and efficacy of atorvastatin in patients with dyslipidemia associated with CRF who were undergoing hemodialysis (HD). Thirty-five patients who were receiving HD were given atorvastatin (10 mg/d) for 3 months. Chylomicron (CM), light and dense very-low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), and light and dense low-density lipoprotein (LDL) were separated by ultracentrifugation. Apolipoprotein (apo) B was measured by electroimmunoassay. Mean LDL particle diameter was measured by gradient gel electrophoresis. Atorvastatin therapy reduced LDL-cholesterol (C) by 36% and remnant-like particle (RLP)-C by 58%. Atorvastatin significantly reduced apo B, apo CIII, and apo E in VLDL by 40% to 46% and IDL-apo B by 66%. Atorvastatin also significantly reduced cholesterol in CM, light VLDL, and dense VLDL without consistently affecting triglyceride (TG) in these lipoproteins. Atorvastatin similarly reduced both light and dense LDL-apo B by 38%. LDL particle size in the HD patients significantly increased during atorvastatin treatment from 25.7 +/- 0.4 to 26.2 +/- 0.6 nm. High sensitive C-reactive protein (HS-CRP) was halved by atorvastatin decreasing from 0.08 +/- 0.05 to 0.04 +/- 0.03 mg/dL. Atorvastatin treatment did not affect the creatinine kinase level, and no classical adverse effects were observed during the study. These results suggest that atorvastatin is safe and effective for the management of dyslipidemia in patients with CFR who are receiving HD, which may help to suppress the development of atherosclerosis.  相似文献   

18.
This study assessed nonfasting cholesterol and triglyceride in plasma and in lipoproteins as predictors of the extent of aortic atherosclerosis in 2 similar groups of rabbits from the St. Thomas's Hospital strain; the lipoprotein classes studied in the 2 groups were very low (VLDL), intermediate (IDL), low (LDL), and high density lipoprotein (HDL), and Sf greater than 60 lipoprotein, Sf 12-60 lipoprotein, LDL and HDL, respectively. These rabbits exhibit elevated plasma levels of VLDL, IDL, and LDL, with plasma cholesterol and triglyceride of up to 23 mmol/l and 7 mmol/l, respectively, and with up to 100% of the aortic intima bearing atherosclerosis-like lesions. In group 1 rabbits (n = 25), univariate linear regression showed that cholesterol in plasma, LDL, IDL and in VLDL each were positively associated with the extent of aortic atherosclerosis. In group 2 rabbits (n = 20), cholesterol in plasma, LDL and Sf 12-60, but not in Sf greater than 60 lipoprotein, was consistently positively associated with the extent of aortic atherosclerosis. Neither plasma triglyceride, triglyceride in lipoprotein fractions nor HDL cholesterol was associated consistently with the extent of atherosclerosis. Using step-up multiple linear regression among lipoprotein lipids, IDL and Sf 12-60 lipoprotein cholesterol were the most powerful independent predictors of the extent of aortic atherosclerosis in the 2 groups of rabbits. LDL cholesterol was the only other independent predictor. The results suggest that remnant lipoproteins, whether defined as IDL or Sf 12-60 lipoprotein, play an important causal role in atherosclerosis under conditions where plasma levels of these lipoproteins are elevated.  相似文献   

19.
The kinetics of apolipoprotein (apo) B-100 and apoB-48 within triglyceride-rich lipoproteins (TRLs) and of apoB-100 within IDL and LDL were examined with a primed-constant infusion of (5,5,5-(2)H(3)) leucine in the fed state (hourly feeding) in 19 subjects after consumption of an average American diet (36% fat). Lipoproteins were isolated by ultracentrifugation and apolipoproteins by SDS gels, and isotope enrichment was assessed by gas chromatography/mass spectrometry. Kinetic parameters were calculated by multicompartmental modeling of the data with SAAM II. The pool sizes (PS) of TRL apoB-48, VLDL apoB-100, and LDL apoB-100 were 17+/-10, 273+/-167, and 3325+/-1146 mg, respectively. There was a trend toward a faster fractional catabolic rate (FCR) for VLDL apoB-100 than for TRL apoB-48 (6.73+/-3.48 versus 5.02+/-2.07 pools/d, respectively, P=0.06). The mean FCRs for IDL and LDL apoB-100 were 10.07+/-7.28 and 0.27+/-0.08 pools/d, respectively. The mean production rate (PR) of TRL apoB-48 was 6.5% of VLDL apoB-100 (1. 3+/-0.90 versus 20.06+/-6.53 mg. kg(-1). d(-1), P<0.0001). TRL apoB-48 PS was correlated with apoB-48 PR (r=0.780, P<0.0001) but not FCR (r=-0.1810, P=0.458). VLDL apoB-100 PS was correlated with both PR (r=0.713, P=0.0006) and FCR (r=-0.692, P=0.001) of VLDL apoB-100 and by apoB-48 PR (r=0.728, P=0.0004). LDL apoB-100 PS was correlated with FCR (r=-0.549, P=0.015). These data indicate that (1) the FCRs of TRL apoB-48 and VLDL apoB-100 are similar in the fed state, (2) TRL apoB-48 PS is correlated with TRL apoB-48 PR, (3) VLDL apoB-100 PS is correlated with both PR and FCR of VLDL apoB-100 and PR of TRL apoB-48, and (4) LDL apoB-100 PS is correlated with LDL FCR.  相似文献   

20.
The specific impact of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors and fibrates on the in vivo metabolism of apolipoprotein (apo) B has not been systematically investigated in patients with type 2 diabetes mellitus with high plasma triglyceride (TG) levels. Therefore, the objective of this 2-group parallel study was to examine the differential effects of a 6-week treatment with atorvastatin or fenofibrate on in vivo kinetics of apo B-48 and B-100 in men with type 2 diabetes mellitus with marked hypertriglyceridemia. Apolipoprotein B kinetics were assessed at baseline and at the end of the intervention using a primed constant infusion of [5,5,5-D(3)]-l-leucine for 12 hours in the fed state. Fenofibrate significantly decreased plasma TG levels with no significant change in plasma low-density lipoprotein cholesterol (LDL-C) and apo B levels. On the other hand, atorvastatin significantly reduced plasma levels of TG, LDL-C, and apo B. After treatment with fenofibrate, very low-density lipoprotein (VLDL) apo B-100 pool size (PS) was decreased because of an increase in the fractional catabolic rate (FCR) of VLDL apo B-100. No significant change was observed in the kinetics of LDL apo B-100. Moreover, fenofibrate significantly decreased TG-rich lipoprotein (TRL) apo B-48 PS because of a significant increase in TRL apo B-48 FCR. After treatment with atorvastatin, VLDL and IDL apo B-100 PSs were significantly decreased because of significant elevations in the FCR of these subfractions. Low-density lipoprotein apo B-100 PS was significantly lowered because of a tendency toward decreased LDL apo B-100 production rate (PR). Finally, atorvastatin reduced TRL apo B-48 PS because of a significant decrease in the PR of this subfraction. These results indicate that fenofibrate increases TRL apo B-48 as well as VLDL apo B-100 clearance in men with type 2 diabetes mellitus with marked hypertriglyceridemia, whereas atorvastatin increases both VLDL and IDL apo B-100 clearance and decreases TRL apo B-48 and LDL apo B-100 PR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号