首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most familial early-onset Alzheimer's disease (FAD) is caused by mutations in the presenilin-1 (PS1) gene. Abeta 42 is derived from amyloid precursor protein (APP) and increased concentrations are widely believed to be a pathological hallmark of abnormal PS function. Thus, the interaction between PS1 and APP is central to the molecular mechanism of AD. To examine the effect of wild-type human PS1 on rat APP metabolism, we made several PC12D cell lines that expressed human wild or mutant PS1, and analyzed the processing of endogenous rat APP and the intracellular gamma-secretase activity. We found the ratio of Abeta 42/Abeta 40 increased in PC12D cells expressing wild-type human PS1. These changes were identical to those found in PC12D cells expressing human PS1 bearing the A260V mutation. These results suggest that APP metabolism is physiologically regulated by the PS1 and that loss of normal PS1 affects gamma-secretase activity.  相似文献   

2.
Mutations in two genes, presenilin 1 (PS1) and its homologue presenilin 2 (PS2), account for a majority of early onset familial Alzheimer disease cases which are characterized by intracellular neurofibrillary tangles and extracellular amyloid fibrils composed of the amyloid beta protein (Abeta). Abeta is derived from sequential cleavages of Amyloid Precursor Protein (APP) by beta-secretase and gamma-secretase, the latter is composed of four components, PS1, nicastrin (NCT), presenilin enhancer 2 (PEN-2), and anterior pharynx defective (APH-1). These components not only maintain the stability of the gamma-secretase complex but also regulate the activity of presenilinase, the protease responsible for the cleavage of full length PS1 into N-terminal and C-terminal fragments (NTF/CTF). We have previously shown that endoproteolysis of PS1 into NTF/CTF by presenilinase requires two critical aspartate residues, suggesting that PS1 may undergo autoproteolysis; full length PS1 complexes with NCT, PEN-2, APH-1 and forms the presenilinase. While these two aspartate residues are necessary for the endoproteolysis of full length PS1, they are equally critical for the gamma-secretase cleavage of multiple substrates, and it is hypothesized that the full length PS1/presenilinase is the zymogen of gamma-secretase. The inhibition profiles of presenilinase and gamma-secretase are illustrated by their biochemical similarity but are pharmacologically distinct. Since the uncleaved PS1 loop may obstruct the entry of gamma-secretase substrates to the docking site of the gamma-secretase complex, investigation of presenilinase inhibitors interfering with substrate-docking may facilitate a novel approach to identify APP specific gamma-secretase inhibitors.  相似文献   

3.
Accumulation of the amyloid beta-peptide (Abeta) in the brain is believed to initiate a series of neurotoxic events that causes neurodegeneration in Alzheimer's disease (AD). Abeta is generated by processing of the beta-amyloid precursor protein (APP) through the successive action of two proteolytic enzymes, beta-secretase and gamma-secretase. While beta-secretase has been identified as the membrane-bound aspartyl protease BACE, the identity of gamma-secretase, which catalyzes the final, intramembrane cleavage of APP as well as of several other type I transmembrane proteins, has been enigmatic for a long time. Exciting progress has been made in the past year towards its uncovering. Genetics paved the way for subsequent biochemical reconstitution studies that demonstrated that gamma-secretase is a protein complex composed of presenilin (PS), nicastrin (NCT), APH-1 and PEN-2. Thus, the complete set of genes that is required to generate Abeta from its precursor has now ultimately been identified. PS carries the active site of gamma-secretase and is a founding member of a novel class of polytopic aspartyl proteases that utilize a non-classical active site to cleave their membrane-tethered substrates. The other components are required for assembly, stabilization and maturation of the complex and NCT may be involved in the recognition of gamma-secretase substrates.  相似文献   

4.
Data that have accumulated for well over a decade have implicated the beta-amyloid (Abeta) peptide as a central player in the pathogenesis of Alzheimer's disease (AD). Amyloid plaques, composed primarily of Abeta progressively form in the brains of AD patients, and mutations in three genes (amyloid precursor protein [APP] and presenilin 1 and 2 [PS1 and PS2]) cause early-onset familial AD (FAD) by directly increasing production of the toxic, plaque-promoting Abeta42 peptide. Given the strong association between Abeta and AD, it is likely that therapeutic strategies to lower the levels of Abeta in the brain should prove beneficial for the treatment of AD. One such strategy could involve inhibiting the enzymes that generate Abeta. Abeta is a product of catabolism of the large type-I membrane protein APP. Two proteases, called beta- and gamma-secretase, endoproteolyze APP to liberate the Abeta peptide. Recently, the molecules responsible for these proteolytic activities have been identified. Several lines of evidence suggest that the PS1 and PS2 proteins are gamma-secretase, and the identity of beta-secretase has been shown to be the novel transmembrane aspartic protease, beta-site APP-cleaving enzyme 1 (BACE1; also called Asp2 and memapsin 2). BACE2, a protease homologous to BACE1, was also identified, and together the two enzymes define a new family of transmembrane aspartic proteases. BACE1 exhibits all the functional properties of beta-secretase, and as the key enzyme that initiates the formation of Abeta, BACE1 is an attractive drug target for AD. This review discusses the identification and initial characterization of BACE1 and BACE2, and summarizes recent studies of BACE1 knockout mice that have validated BACE1 as the authentic beta-secretase in vivo.  相似文献   

5.
Amyloid-beta (Abeta) deposits are one of the hallmarks of the neuropathological degeneration observed in Alzheimer's disease (AD) and Abeta concentrations have been reported to vary in different brain regions of AD patients. Abeta is produced by the sequential cleavage of amyloid precursor protein (APP) by beta-secretase and gamma-secretase, respectively. Previous studies have shown that over-expression of the gamma-secretase complex leads to increased gamma-secretase proteolytic activity increasing Abeta production. However, it is not known whether brain regions with highest Abeta concentration also express relatively higher levels of gamma-secretase activity. Accordingly, the relationship between Abeta levels and gamma-secretase activity across brain regions was investigated and correlated in the brains of transgenic and non-transgenic rodents commonly used in AD research. The data demonstrated that Abeta levels do vary in different brain regions in both transgenic and non-transgenic mice but are not correlated with regional gamma-secretase activity. Furthermore, this study demonstrated that while mutations in the APP and PS1 sequences affect the absolute Abeta levels this is not reflected in an increase in gamma-secretase proteolytic activity. The data in the current paper indicate that this assay is able to measure the level of gamma-secretase activity in rodent species. Using this methodology will aid our understanding of physiological gamma-secretase function.  相似文献   

6.
Mutations in presenilin 1 gene (PS1) account for the majority of early-onset familial Alzheimer's disease (FAD) cases. The disease is characterized by intracellular neurofibrillary tangles and extracellular amyloid fibrils composed of amyloid beta peptides (Abeta). Two successive cleavages are necessary to free the Abeta peptide from the amyloid precursor protein (APP). Gamma-secretase catalyzes the final cleavage of APP to generate Abeta peptides. PS1 is a catalytic subunit of gamma-secretase and is also involved in the cleavage of many membrane proteins. PS1 also has functional interactions with many other proteins. The use of animal models of AD has initiated the deciphering of these molecular pathways and mechanisms. Transgenic mouse models are useful to study the features of FAD and to investigate the nature of the neural-tissue changes of the disease and their evolution during aging. When expressed alone, mutations in human PS1 do not induce any detectable lesions, although they do increase Abeta peptides. This absence has led to the criticism that PS1 mouse models are not valuable for the study of AD. In this review we present how studies using PS1 transgenic mice have raised new questions related to pathological mechanisms of AD and are useful models for the study of (1) progressive cognitive decline, (2) early-occurring synaptic dysfunction, and (3) mechanisms other than amyloidogenesis that can be involved in disease pathogenesis.  相似文献   

7.
Mutations in the presenilin 1 (PS1) gene are the major cause of familial Alzheimer s disease (AD). They effect an increased production of the highly neurotoxic 42 amino acid variant of the amyloid-beta peptide (Abeta), which is believed to initiate the disease. Abeta is the product of two consecutive cleavages of the beta-amyloid precursor protein (APP) by two proteases, beta-secretase and gamma-secretase. The latter enzyme has been identified as an intramembrane-cleaving multiprotein complex that apart from APP cleaves a large number of other type I transmembrane proteins. PS1 and its homologue PS2 are essential for gamma-secretase cleavage and more than a decade after their discovery it is now firmly established that they function as catalytic subunits of gamma-secretase. This review recapitulates the findings that led to this conclusion as well as the further progress made on the function of PS as gamma-secretase since then.  相似文献   

8.
Alzheimer's disease is characterized by the invariable accumulation of senile plaques that are predominantly composed of amyloid beta-peptide (Abeta). Abeta is generated by proteolytic processing of the beta-amyloid precursor protein (betaAPP) involving the combined action of beta- and gamma-secretase. Cleavage within the Abeta domain by alpha-secretase prevents Abeta generation. In some very rare cases of familial AD (FAD), mutations have been identified within the betaAPP gene. These mutations are located close to or at the cleavage sites of the secretases and pathologically effect betaAPP processing by increasing Abeta production, specifically its highly amyloidogenic 42 amino acid variant (Abeta42). Most of the mutations associated with FAD have been identified in the two presenilin (PS) genes, particularly the PS1 gene. Like the mutations identified within the betaAPP gene, mutations in PS1 and PS2 cause the increased generation of Abeta42. PS1 has been shown to be functionally involved in Notch signaling, a key process in cellular differentation, and in betaAPP processing. A gene knock out of PS1 in mice leads to an embryonic lethal phenotype similar to that of mice lacking Notch. In addition, absence of PS1 results in reduced gamma-secretase cleavage and leads to an accumulation of betaAPP C-terminal fragments and decreased amounts of Abeta. Recent work may suggest that PS1 could be the gamma-secretase itself, exhibiting the properties of a novel aspartyl protease. Mutagenesis of either of two highly conserved intramembraneous aspartate residues of PS1 leads to reduced Abeta production as observed in the PS1 knockout. A corresponding mutation in PS2 interfered with betaAPP processing and Notch signaling suggesting a functional redundancy of both presenilins. In this issue, some of the recent work on the molecular mechanisms involved in Alzheimer's disease (AD) as well as novel diagnostic approaches and risk factors for AD will be discussed. In the first article, we like to give an overview on mechanisms involved in the proteolytic generation of Amyloid beta-peptide (Abeta), the major pathological player of this devastating disease. In the second part of this article recent results will be described, which demonstrate an unexpected biological and pathological function of an AD associated gene.  相似文献   

9.
The gamma-secretase complex consists of PS1/PS2, nicastrin, APH-1a, and PEN-2. PS1 undergoes endoproteolytic processing to yield two fragments: PS1-NTF and PS1-CTF. Changes in PEN-2 levels have been shown previously to affect the endoproteolytic processing of wild-type (wt)-PS1. However, the effects of PEN-2 on the proteolytic processing of familial Alzheimer's disease (FAD) mutant forms of PS1 have not yet been reported. To determine whether PEN-2 affects the proteolytic processing of mutant PS1 in the same manner as that of wt-PS1, we established RNA interference (RNAi) for PEN-2 in H4 human neuroglioma cells stably transfected to express wt or FAD mutant forms of PS1 including L286V, A246E, and that lacking exon 9 (Delta9). As expected, in H4 cells expressing wt-PS1, RNAi for PEN-2 increased levels of PS1-FL and attenuated PS1 endoproteolysis. Likewise, in cells expressing PS1 with the FAD missense mutations, L286V and A246E, RNAi for PEN-2 increased PS1-FL and reduced PS1 endoproteolysis. However, in H4 cells stably transfected to express the FAD-linked Delta9 mutation (PS1 lacking exon 9), RNAi for PEN-2 did not increase but, instead, decreased PS1-FL. In contrast, RNAi for nicastrin and APH-1a decreased PS1-FL in H4 cells expressing either wt-PS1 or Delta9-PS1. In summary, the metabolism of wt-PS1 and FAD-linked Delta9-PS1 is specifically and differentially affected by loss of function of PEN-2.  相似文献   

10.
Mutations in presenilin 1 (PS1) cause early-onset familial Alzheimer;s disease (FAD). Although FAD accounts for less than 5% of all cases of Alzheimer;s disease (AD), extensive analyses of PS1 function have elucidated an important neuronal mechanism underling AD pathogenesis. PS1 is considered to be an essential component of gamma-secretase, which cleaves amyloid precursor protein (APP) at the transmembrane region and releases amyloid beta (Abeta) peptide. In addition to this well-documented function, a growing amount of evidence suggests that PS1 is involved in the intracellular trafficking of selected membrane proteins (i.e. APP, nicastrin, trkB, telencephalin). Recently, we have also shown that PS1 is involved in the trafficking of N-cadherin from the endoplasmic reticulum to the plasma membrane via the microtubule network. N-cadherin is localized at the synaptic junctional complex, providing an adhesive force across the synaptic cleft, and the its regulation is crucial for the neuron to exert its specific function, i.e. synaptic activity. In a mature neuron, polarized targeting of proteins from the cell body to the axonal and dendritic processes is essential for its proper function, especially, for the maintenance of synaptic function. Alterations in protein transport caused by a dysfunction in PS1 could lead to a disturbance in synaptic transmission and finally to neurodegeneration. This article will review the current knowledge of PS1 function in protein trafficking and discuss its potential role in AD pathogenesis.  相似文献   

11.
Gamma-secretase catalyzes the final cleavage of the beta-amyloid precursor protein to generate amyloid-beta peptide, the principal component of amyloid plaques in the brains of patients suffering from Alzheimer's disease. Here, we review the identification of gamma-secretase as a protease complex and its assembly and trafficking to its site(s) of cellular function. In reconstitution experiments, gamma-secretase was found to be composed of four integral membrane proteins, presenilin (PS), nicastrin (NCT), PEN-2 and APH-1 that are essential and sufficient for gamma-secretase activity. PS, which serves as a catalytic subunit of gamma-secretase, was identified as a prototypic member of novel aspartyl proteases of the GxGD type. In human cells, gamma-secretase could be further defined as a heterogeneous activity consisting of distinct complexes that are composed of PS1 or PS2 and APH-1a or APH-1b homologues together with NCT and PEN-2. Using green fluorescent protein as a reporter we localized PS and gamma-secretase activity at the plasma membrane and endosomes. Investigation of gamma-secretase complex assembly in knockdown and knockout cells of the individual subunits allowed us to develop a model of complex assembly in which NCT and APH-1 first stabilize PS before PEN-2 assembles as the last component. Furthermore, we could map domains in PS and PEN-2 that govern assembly and trafficking of the complex. Finally, Rer1 was identified as a PEN-2-binding protein that serves a role as an auxiliary factor for gamma-secretase complex assembly.  相似文献   

12.
The accumulation of amyloid beta-peptide (Abeta) in the brain is a critical pathological process in Alzheimer's disease (AD). Recent studies have implicated intracellular Abeta in neurodegeneration in AD. To investigate the generation of intracellular Abeta, we established human neuroblastoma SH-SY5Y cells stably expressing wild-type amyloid precursor protein (APP), Swedish mutant APP, APP plus presenilin 1 (PS1) and presenilin 2 (PS2; wild-type or familial AD-associated mutant), and quantified intracellular Abeta40 and Abeta42 in formic acid extracts by sensitive Western blotting. Levels of both intracellular Abeta40 and Abeta42 were 2-3-fold higher in cells expressing Swedish APP, compared with those expressing wild-type APP. Intracellular Abeta42/Abeta40 ratios were approximately 0.5 in these cells. These ratios were increased markedly in cells expressing mutant PS1 or PS2 compared with those expressing their wild-type counterparts, consistent with the observed changes in secreted Abeta42/Abeta40 ratios. High total levels of intracellular Abeta were observed in cells expressing mutant PS2 because of a marked elevation of Abeta42. Immunofluorescence staining additionally revealed more intense Abeta42 immunoreactivity in mutant PS2-expressing cells than in wild-type cells, which was partially colocalized with immunoreactivity for the trans-Golgi network and endosomes. The data collectively indicate that PS mutations promote the accumulation of intracellular Abeta42, which appears to be localized in multiple subcellular compartments.  相似文献   

13.
Differential display analysis of presenilin 1-deficient mouse brains   总被引:1,自引:0,他引:1  
Missense mutations in presenilin 1 (PS1) gene are the most common cause of early onset familial Alzheimer's disease (FAD). AD pathogenic PS1 mutations result in elevated gamma-secretase cleavage of APP and diminished S3-site cleavage of Notch. We have previously described a PS1-hypomorphic mouse line that could survive postnatally with markedly reduced gamma-secretase cleavage of APP and S3-site cleavage of Notch, resulting in a Notch developmental phenotype similar to PS1-null mice. This model was exploited to identify genes whose expression is altered due to the loss of PS1. A global gene expression study by differential display was performed on whole brains of PS1-hypomorphic mice and their wild type siblings. In total, more than 16,000 bands corresponding to cDNAs were compared between the mutant and wild-type brains. This analysis identified 19 cDNAs showing significantly altered expression resulting from PS1 deficiency. Four of the identified cDNAs corresponded to genes that could be associated with AD or presenilin function. Hypoxia inducible factor 1a (Hif1a), NPRAP (delta-catenin) and cell division cycle 10 (CDC10) showed significantly reduced expression in the PS1-hypomorphic compared to wild-type brains, whereas expression of nucleoside diphosphate kinase sub-unit A (NDPK-A) was markedly elevated in the respective brains. Clarification of the possible role of these genes in AD and the basis for their differential expression induced by PS1-deficiency may provide insight into the disease, presenilin function and consequences of its loss, as well as possible deleterious effects of AD therapeutics aimed at inhibiting PS1.  相似文献   

14.
APH-1 is one of the four essential components of presenilin (PS)-gamma-secretase complexes. There are three major isoforms of APH-1 in humans: APH-1aS, APH-1aL, and APH-1b. To gain insight into the functional role of APH-1 in gamma-secretase complexes, we analyzed the relationship between the three APH-1 forms and characterized APH-1 mutants with a disrupted transmembrane GxxxG motif. We found that overexpression of APH-1aS or APH-1b in human cells significantly reduced the levels of endogenous APH-1aL protein. However, this displacement was not observed in PS-deficient cells, suggesting that it is dependent on PS. In transiently transfected cells, the levels of APH-1aL with G122D or L123D mutations were much lower than wild-type APH-1aL. Also, cycloheximide treatment of stable transfectants revealed that the mutant proteins are much less stable than the wild type. Furthermore, coimmunoprecipitation analysis showed that wild-type but not the mutant APH-1aL is incorporated into PS1 complexes, displacing endogenous APH-1aS. These results collectively indicate that the three forms of APH-1 can replace each other in PS complexes and that the transmembrane GxxxG region is essential for the stability of the APH-1 protein as well as the assembly of PS complexes.  相似文献   

15.
The amyloid precursor protein (APP) is cleaved by two enzymes, beta-secretase and gamma-secretase, to generate the pathological amyloid beta (Abeta) peptide. Expression of familial Alzheimer's disease (FAD) mutants of APP in primary neurons causes both intracellular accumulation of the C-terminal beta-secretase cleavage product of APP and increased secretion of Abeta, and eventually results in apoptotic death of the cells. To determine whether either of these two processing products of APP is involved in this apoptotic pathway, we first modeled experimentally the accumulation of the beta-secretase cleavage product in neurons. The C-terminal 100 amino acids (C100) of APP, with and without a signal peptide, was expressed in cells via recombinant herpes simplex virus (HSV) vectors. Both transgene products were targeted to the membrane, and both caused apoptosis in the neurons, implicating the beta-secretase cleavage product of APP in apoptosis caused by FAD APPs. Expression in neurons of a mutant of FAD APP that inhibited beta-secretase cleavage inhibited its ability to cause apoptosis. However, expression in neurons of a mutant of FAD APP that inhibited gamma-secretase cleavage did not inhibit the ability of this mutant to cause apoptosis. These data suggested that the C-terminal beta-secretase cleavage product of APP, but not Abeta, mediates the apoptosis caused by FAD mutants of APP. Consistent with this hypothesis, C31, which is generated from the beta-secretase cleavage product, itself caused neuronal apoptosis. Inhibitors of caspases 3, 6 and 8, but not of caspase 9, inhibited the apoptosis caused by FAD mutants of APP. It may be inferred from these data that beta-secretase cleavage of FAD mutants of APP allows the appropriate caspase access to its site of action to produce C31, which directly causes neuronal apoptosis.  相似文献   

16.
Buoyant membrane fractions containing presenilin 1 (PS1), an essential component of the gamma-secretase complex, and APP CTFbeta, a gamma-secretase substrate, can be isolated from cultured cells and brain by several different fractionation procedures that are compatible with in vitro gamma-secretase assays. Analysis of these gradients for amyloid beta protein (Abeta) and CTFgamma production indicated that gamma-secretase activity is predominantly localized in these buoyant membrane microdomains. Consistent with this localization, we find that gamma-secretase activity is cholesterol dependent. Depletion of membrane cholesterol completely inhibits gamma-secretase cleavage, which can be restored by cholesterol replacement. Thus, altering cholesterol levels may influence the development of Alzheimer's disease (AD) by influencing production and deposition of Abeta within cholesterol rich membrane microdomains.  相似文献   

17.
Many patients affected by early onset familial Alzheimer's disease (FAD), carry mutations in the presenilin 1 (PS1) gene. Since it has been suggested that FAD-linked PS1 mutations impair the unfolded protein response (UPR) due to endoplasmic reticulum (ER) stress, we analyzed the UPR and amyloid beta-protein processing in fibroblasts bearing various PS1 mutations. Neither in normal conditions nor after induction of ER stress with DTT or tunicamycin were the mRNA levels of UPR-responsive genes (BiP and PDI) significantly different in control and FAD fibroblasts. DTT, which blocked APP transport to the Golgi, caused a 30% decrease of secreted Abeta42 in wild type and PS1 mutant fibroblasts. In contrast, tunicamycin, which allowed exit of APP from the ER, increased secreted Abeta42 only in PS1 mutant fibroblasts. Our findings suggest that, although the UPR is active in fibroblasts from FAD patients, mutant PS1 may selectively increase Abeta42 secretion when N-glycosylation is impaired.  相似文献   

18.
The amyloid hypothesis has dominated the thinking in our attempts to understand, diagnose and develop drugs for Alzheimer's disease (AD). This article presents a new hypothesis that takes into account the numerous familial AD (FAD) mutations in the amyloid precursor protein (APP) and its processing pathways, but suggests a new perspective beyond toxicity of forms of the amyloid beta-peptide (Abeta). Clearly, amyloid deposits are an invariable feature of AD. Moreover, although APP is normally processed to secreted and membrane-bound fragments, sAPPbeta and CTFbeta, by BACE, and the latter is subsequently processed by gamma-secretase to Abeta and CTFgamma, this pathway mostly yields Abeta of 40 residues, and increases in the levels of the amyloidogenic 42-residue Abeta (Abeta42) are seen in the majority of the mutations linked to the disease. The resulting theory is that the disease is caused by amyloid toxicity, which impairs memory and triggers deposition of the microtubule associated protein, Tau, as neurofibrillary tangles. Nevertheless, a few exceptional FAD mutations and the presence of large amounts of amyloid deposits in a group of cognitively normal elderly patients suggest that the disease process is more complex. Indeed, it has been hard to demonstrate the toxicity of Abeta42 and the actual target has been shifted to small oligomers of the peptide, named Abeta derived diffusible ligands (ADDLs). Our hypothesis is that the disease is more complex and caused by a failure of APP metabolism or clearance, which simultaneously affects several other membrane proteins. Thus, a traffic jam is created by failure of important pathways such as gamma-secretase processing of residual intramembrane domains released from the metabolism of multiple membrane proteins, which ultimately leads to a multiple system failure. In this theory, toxicity of Abeta42 will only contribute partially, if at all, to neurodegeneration in AD. More significantly, this theory would predict that focussing on specific reagents such as gamma-secretase inhibitors that hamper metabolism of APP, may initially show some beneficial effects on cognitive performance by elimination of acutely toxic ADDLs, but over the longer term may exacerbate the disease process by reducing membrane protein turnover.  相似文献   

19.
Presenilin 1 (PS1) and presenilin 2 play a critical role in the gamma-secretase processing of amyloid precursor protein (APP) and Notch1. Here, we investigate maturation and intracellular trafficking of APP and other membrane proteins in cells expressing an experimental PS1 deletion mutant (deltaM1,2). Stable expression of deltaM1,2 impairs gamma-secretase processing of Notch1 and delays Abeta secretion. Kinetic studies show enhanced O-glycosylation and sialylation of holo-APP and marked accumulation of APP COOH-terminal fragments (CTFs). Surface biotinylation, live staining, and trafficking studies show increased surface accumulation of holo-APP and CTFs in deltaM1,2 cells resulting from enhanced surface delivery of newly synthesized APP. Expression of a loss-of-function PS1 mutant (D385A) or incubation of cells with gamma-secretase inhibitors also increases surface levels of holo-APP and CTFs. In contrast to APP, glycosylation and surface accumulation of another type I membrane protein, nicastrin, are markedly reduced in deltaM1,2 cells. Finally, expression of deltaM1,2 results in the increased assembly and surface expression of nicotinic acetylcholine receptors, illustrating that PS1's influence on protein trafficking extends beyond APP and other type I membrane protein substrates of gamma-secretase. Collectively, our findings provide evidence that PS1 regulates the glycosylation and intracellular trafficking of APP and select membrane proteins.  相似文献   

20.
Aging of transgenic mice that overexpress the London mutant of amyloid precursor protein (APP/V717I) (Moechars et al., 1999a) was now demonstrated not to affect the normalized levels of alpha- or beta-cleaved secreted APP nor of the beta-C-terminal stubs. This indicated that aging did not markedly disturb either alpha- or beta-secretase cleavage of APP and failed to explain the origin of the massive amounts of amyloid peptides Abeta40 and Abeta42, soluble and precipitated as amyloid plaques in the brain of old APP/V717I transgenic mice. We tested the hypothesis that aging acted on presenilin1 (PS1) to affect gamma-secretase-mediated production of amyloid peptides by comparing aged APP/V717I transgenic mice to double transgenic mice coexpressing human PS1 and APP/V717I. In double transgenic mice with mutant (A246E) but not wild-type human PS1, brain amyloid peptide levels increased and resulted in amyloid plaques when the mice were only 6-9 months old, much earlier than in APP/V717I transgenic mice (12-15 months old). Mutant PS1 increased mainly brain Abeta42 levels, whereas in aged APP/V717I transgenic mice, both Abeta42 and Abeta40 increased. This resulted in a dramatic difference in the Abeta42/Abeta40 ratio of precipitated or plaque-associated amyloid peptides, i.e., 3.11+/-0.22 in double APP/V717I x PS1/A246E transgenic mice compared with 0.43 +/- 0.07 in aged APP/V717I transgenic mice, and demonstrated a clear difference between the effect of aging and the effect of the insertion of a mutant PS1 transgene. In conclusion, we demonstrate that aging did not favor amyloidogenic over nonamyloidogenic processing of APP, nor did it exert a mutant PS1-like effect on gamma-secretase. Therefore, the data are interpreted to suggest that parenchymal and vascular accumulation of amyloid in aging brain resulted from failure to clear the amyloid peptides rather than from increased production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号